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In this paper, we study the effects of using an algorithm-based risk assessment instrument to support the prediction of risk of criminal
recidivism. The instrument we use in our experiments is a machine learning version of RiskEval (name changed for double-blind
review), which is the main risk assessment instrument used by the Justice Department of Country (omitted for double-blind review).
The task is to predict whether a person who has been released from prison will commit a new crime, leading to re-incarceration,
within the next two years. We measure, among other variables, the accuracy of human predictions with and without algorithmic
support. This user study is done with (1) general participants from diverse backgrounds recruited through a crowdsourcing platform,
(2) targeted participants who are students and practitioners of data science, criminology, or social work and professionals who work
with RiskEval. Among other findings, we observe that algorithmic support systematically leads to more accurate predictions from
all participants, but that statistically significant gains are only seen in the performance of targeted participants with respect to that
of crowdsourced participants. We also run focus groups with participants of the targeted study to interpret the quantitative results,
including people who use RiskEval in a professional capacity. Among other comments, professional participants indicate that they
would not foresee using a fully-automated system in criminal risk assessment, but do consider it valuable for training, standardization,
and to fine-tune or double-check their predictions on particularly difficult cases.
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1 INTRODUCTION

Since the 1970s the use of Risk Assessment Instruments (RAI) in high stakes contexts such as medicine or criminal
justice, together with their risks and benefits, have been a subject of debate across various disciplines. RAIs may increase
the accuracy, robustness, and efficiency in decision making [42]; however, they can also lead to biased decisions and,
consequently, to discriminatory outcomes [2, 60].
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QUALITATIVE Experts Focus groups

3 Data Scientists

4 Domain experts

2 Domain experts

4 Domain experts

CROWDSOURCED TARGETED
Crowdworkers Interaction Experts Interaction

247 participants 146 participants
25p. Data. sci.

29p. Dom. exps.

First Round (R1) Second Round (R2)

Fig. 1. Sequence of studies and number of participants.

Crowd. (R1) Crowd. (R2) Dom.Exp Data.Sci
N=247 N=146 N=29 N=25

Gender Male 61.0% 54.3% 20.7% 40.0%
Female 48.4% 45.7% 79.3% 56.0%
Other 0.6% 0.0% 0.0% 4.0%

Education Secondary 19.3% 15.5% 3.5% 20.0%
Undergraduate 57.5% 68.2% 48.2% 56.0%
Postgraduate 22.3% 15.5% 48.3% 24.0%

Age 18-25 44.3% 53.5% 55.2% 76.0%
26-33 25.2% 24.8% 10.3% 20.0%
34-45 19.6% 12.4% 13.8% 4.0%
45-75 10.9% 9.2% 20.7% 0.0%

Numeracy 0 (lowest) 11.2% 18.5% 17.2% 4.0%
1 15.0% 20.5% 24.1% 0.0%
2 24.0% 22.0% 6.9% 28.0%
3 (highest) 49.8% 39.0% 51.7% 68.0%

Table 1. Demographics by study group.

Understanding the performance of a RAI requires looking beyond the statistical properties of a predictive algorithm,
and considering the quality and reliability of the decisions made by humans using the RAI [28]. This is because high-
stakes decisions are rarely made by algorithms alone, and humans are almost invariably “in-the-loop,” i.e., involved to
some extent in the decision making process [10]. Indeed, the General Data Protection Regulation (GDPR)1 in Europe
gives data subjects the right “not to be subject to a decision based solely on automated processing” (Article 22), and the
proposed Artificial Intelligence Act2 published in April 2021, considers criminal risk assessment a “high-risk” application
subject to stringent human oversight.

Our work involves a sequence of studies outlined in Figure 1 and described in the next sections. We develop and test
different user interfaces of a machine learning version of RiskEval, the main RAI used by Country’s criminal justice
system.3 We ask participants to predict the re-incarceration risk based on the same factors used by RiskEval, such as
criminal history, which empirically affect the recidivism risk of individuals. Some participants are additionally shown
the risk that the RAI predicts using the same factors. Our primary goal is to assess how the interaction with the studied
RAI affects human predictions, their accuracy, and their willingness to rely on a RAI for this task.

As most previous studies on this topic, we partially rely on crowdsourcing [22, 24, 31, 32]. Controlled in-lab/survey
experiments and crowdsourced experiments have the limitation that participants do not face the real world consequences
that professional decisions have on the lives of inmates. In addition, untrained crowdworkers may exhibit different
decision making behaviour than trained professionals. The former limitation can only be addressed through studies
that analyze the real-world adoption of a RAI through observational methods [9, 61, 62]. However, these studies usually
face the difficulty of isolating the effect of RAI adoption from other changes that co-occur in the study period. The
latter can be addressed in an experimental setting by recruiting professional participants, as we do in this paper. To the
best of our knowledge, most studies focus on crowdsourced participants. This might be the first study that, in addition
to a crowdsourced study, runs a targeted study. We recruited students and professionals of data science as well as
domain experts (with a background in criminology and social work), including people who work within Country’s
criminal justice system and use RiskEval in a professional capacity. Finally, we conducted a qualitative study with small
sub-groups of the targeted user study, particularly professionals within the Justice Department of Country, as well as
data scientists. Our main contributions are:
1Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679. Accessed Jan 2022.
2Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206. Accessed Jan 2022.
3Name of instrument changed and name of country omitted for double-blind review.
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Human Predictions in Algorithm-Supported Recidivism Risk Assessment 3

• We confirm previous results that show how accuracy in decision making slightly improves with algorithmic
support, how participants adjust their own predictions in the direction of the algorithmic predictions, and how
different scales in risk communication yield different levels of accuracy.

• We describe differences between targeted participants and crowdsourced workers. Despite identical experimental
conditions and tasks, we find that the predictions differ between these groups and targeted participants outperform
crowdsourced participants in terms of accuracy.

• We provide insights into how professionals use RAIs in real-world applications from our focus groups. Our
interviewees would not foresee using a fully automated system in criminal risk-assessment, but they see benefits in
using algorithmic support for training and standardization, and for fine-tuning and double-checking particularly
difficult cases.

The remainder of this paper is structured as follows. First, we give an overview of related work (§2). Next, we describe
our approach, including the variables of our study (§3), as well as the materials and procedures we employ (§4). We
present the experiment setup for crowdsourced and targeted participants (§5), and the obtained results from both
groups (§6). Then we present the results from the focus groups (§7). Finally, we discuss our findings (§8), as well as the
limitations of this study and possible directions for future work (§9).

2 RELATEDWORK

2.1 Risk Assessment Instruments (RAI) for Criminal Recidivism

Law enforcement systems increasingly use statistical algorithms, e.g., methods that predict the risk of arrestees to
re-offend, to support their decision making [14, 26]. RAIs for criminal recidivism risk are in use in various countries
including Austria [53], Canada [43], Germany [16], Spain [1], the U.K. [39], and the U.S. [18]. There are ethical and legal
aspects to consider, as algorithms may exhibit biases, which are sometimes inherited from the data on which they are
trained [6]. However, some argue that RAIs bear the potential for considerable welfare gains [42]. The literature shows
that decisions based on RAIs’ scores are never made by an algorithm alone. Decisions in criminal justice are made by
professionals (e.g., judges or case workers) [4], sometimes using RAIs [62]. Consequently, algorithms aimed at supporting
decision processes, especially in high-risk contexts such as criminal justice, cannot be developed without taking into
account the influences that institutional, behavioural, and social aspects have on the decisions [58]. Furthermore, human
factors such as biases, preferences and deviating objectives can also influence the effectiveness of algorithm-supported
decision making [40, 48].

Experienced decision makers may be more inclined to deviate from an algorithmic recommendation, relying more
on their own cognitive processes [31]. Moreover, trained professionals, such as probation officers, may prefer to rely on
their own decision and not just on a single numerical RAI prediction. Any additional information that they consider
may be used as a reason to deviate from what a RAI might recommend for a case [49]. There are other reasons why
humans disagree with an algorithmic recommendation. For instance, the human’s objectives might be misaligned with
the objective for which the algorithm is optimized [27], or the context may create incentives for the human decision
maker not to follow the algorithm’s recommendation [62]. Sometimes humans are unable to evaluate the performance
of themselves or the risk assessment, and engage in "disparate interactions" reproducing biased predictions by the
algorithm [29]. Another reason could be algorithm aversion, e.g., human decision makers may discontinue the use of an
algorithm after observing a mistake, even if the algorithm is on average more accurate than them [11, 20]. In contrast,
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controlled user studies in criminal risk assessment indicate that crowdsourced participants tend to exhibit automation

bias, i.e., a tendency to over-rely on the algorithm’s prediction [3, 22].
Effective human-algorithm interaction depends on users’ training with the tool, on the experience of the human

decision maker with the algorithm, and on the specific professional domain in which the decision is made. Therefore,
some researchers have studied the impact of the adoption of RAIs in criminal justice decision-making in real-world
applications [9, 61, 62]. These observational studies yield valuable insights, but the conditions of adoption as well as the
design of the RAI cannot be controlled, making it difficult to isolate the effect of the RAI on the studied outcome.

2.2 Controlled User Studies and Interaction Design of RAIs

Algorithm-supported human decision making has also been studied in controlled experiments [22, 24, 29, 30, 33, 46].
Among these, an influential study by Dressel and Farid in 2018 [22], showed how crowdsourced users recruited from
Amazon Mechanical Turk (AMT) were able to outperform the predictions of COMPAS, a RAI that has been subject to
significant scrutiny since the seminal work of Angwin et al. [2]. Follow-up studies criticized Dressel and Farid’s study,
noting that participants were shown the ground truth of each case (i.e., whether or not the person actually recidivated)
immediately after every prediction they make, which does not correspond to how these instruments are used in practice.
Without this feedback, human predictions that were not supported by algorithms performed worse than the algorithm
under analysis [46].

The way risk assessments are communicated and integrated in the decision process plays a crucial role in the
quality of the predictions. For instance, criminal forensics clinicians have a preference for (non-numerical) categorical
statements (such as “low risk” and “high risk”) over numerical risk levels. However, an experimental survey showed
that a RAI providing numerical information elicits better predictive accuracy than if categorical risk levels are used [69].
One issue with categorical expressions is that professionals tend to disagree about the limits of the categories and how
these categories represent different numerical risk estimations [38]. However, numerical expressions introduce other
challenges. For instance, participants in a study perceived violence risk as higher when the risk was presented in a
frequency format instead of a percentage format [38]. Another question is whether numerical risks should be presented
on an absolute or a relative scale. A study with clinicians showed that participants hardly distinguish between absolute
probability of violence and comparative risk [69]. Furthermore, besides showing only risk levels, risk assessments could
include additional information about the nature of the crime, the factors of the RAI and other factors that may have
preventive effects on future re-offense [36]. Complementary and graphical information can improve the understanding
of risk evaluations [37]. However, it can also increase the overestimation of risk factors while ignoring other contextual
information [7]. Nevertheless, the use of different visualization methods is mainly unexplored.

Given the experience from previous work, we build our user interface to test and measure the performance of
participants using different categorical risk levels and numerical expressions for risk, specifically absolute and relative
risk scales. We conduct a recidivism prediction experiment with crowdsourced participants, but also complement it with
targeted participants. One of the main novelties of our study resides in assessing how targeted participants, including
domain experts and data scientists, perform differently than crowdsourced participants. Additionally, focus groups and
interviews with professionals provide valuable insights into how RAIs are perceived and used in practice.

3 APPROACH AND RESEARCH QUESTIONS

This paper takes an experimental approach. Participants in our experiments are asked to determine the probability that
an inmate will be re-arrested, based on a list of criminologically relevant characteristics of the case. We focus on three
Manuscript submitted to ACM
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main outcome variables (§3.1): the accuracy of predictions, the changes that participants make to their predictions
when given the chance to revise them after seeing the RAI’s recommendation, and their willingness to rely on similar
RAIs. The main independent variables (§3.2) are the background of the participants, and the type of risk scale used. Our
research questions (§3.3) are about the interaction of these variables.

3.1 Outcome variables

3.1.1 Predictive accuracy. The performance of predictive tools including RAIs is often evaluated in terms of the extent
to which they lead to correct predictions. Due to the inherent class imbalance in this domain, as most people do not
recidivate, most studies (e.g., experimental [22, 30, 35]) do not use the metric accuracy, which is the probability of
issuing a correct prediction. Instead, it is more common to measure the area under the receiver operating characteristic
(AUC-ROC or simply AUC). The AUC can be interpreted as the probability that a randomly drawn recidivist obtains a
higher score than a randomly drawn non-recidivist.

3.1.2 Prediction alignment with the RAI. In this work, we observe users’ reliance on the algorithmic support system
indirectly by looking at changes in their predictions after observing an algorithmic prediction. We assume that if users
change their initial predictions to align them with those of a RAI, they are implicitly signaling more reliance on that
RAI than if they would have stuck to their initial prediction. In general, the extent to which people are willing to trust
and rely on a computer system is related to people’s engagement and confidence in it [12, 44, 65], and in the case of
predictive algorithms, to their perceived and actual accuracy [66]. Different types of information disclosure can elicit
different levels of trust and reliance [23]. Performing joint decisions, i.e., being the human in the loop [17], can increase
willingness to rely on a system [68].

3.1.3 Preferred level of automation. The experience of interacting with an algorithm-based RAI may also affect the
acceptability of similar algorithms in the future. Algorithm-based RAIs may operate in ways that differ by their level of
automation [15]. At the lowest level of automation, the human makes all decisions completely disregarding the RAI; at
the highest level of automation, the RAI makes all decisions without human intervention; intermediate levels represent
various types of automated interventions. In general, the level of automation chosen by a user should be proportionate
to the performance of the automated system. Both algorithm aversion [11] or under-reliance, as well as automation bias

[51] or over-reliance, negatively affect the predictive accuracy of users.

3.2 Participant groups and conditions

In this section we describe the main independent variables that we tested in the experiments.

3.2.1 Participant’s educational and professional background. Most user studies on recidivism risk prediction rely on
crowdsourced participants from online platforms. The background of participants may change the way they interact
with a RAI. Data scientists and statisticians have training on statistics, probability, and predictive instruments. Domain
experts with a background in psychology, criminology, or who work within the prison system, have a deeper knowledge
of factors driving criminal recidivism. Additionally, domain experts who use RAIs receive training on their usage, and
they often have a fair amount of training in applied statistics.

Naturally, in real-world applications case worker decisions are far more consequential than the consequences faced
by crowdworkers in their lab-like decision scenarios. Similar to previous work [13, 22, 29, 67], we add an incentive
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RELATIVE SCALEABSOLUTE SCALE 

Your predicted risk: 38%

Risk Level Reference

< Probably will not be arrested Probably will be arrested > 0.0 = the lowest risk among all inmates the highest risk among all inmates = 10.0

Risk Level Reference

Risk predicted by a computational system based on statistics: 0.91% LEVEL 1

Your predicted risk: 1   LEVEL1

Risk predicted by a computational system based on statistics: 3.54     LEVEL 2

Level 1 Level 3 Level 3 Level 4 Level 5Level 1
< 5% 5% to 29% 30% to 49% 50% to 85% > 85%

Level 3 Level 3 Level 4 Level 5

Fig. 2. Risk scales used in our experiments (left: absolute scale, right: relative scale).

(in the form of a bonus payment) for correct predictions in the crowdsourced studies. However, this is to encourage
appropriate effort, not to simulate a high-stakes scenario.

We consider three participant groups: (1) crowdsourced workers from unspecified backgrounds, (2) students and
practitioners of data science, and (3) students of criminology and people with expertise in the prison system. Recruitment
procedures are described in §4.3.

3.2.2 Risk scales. The literature on risk communication suggests that both numerical and categorical information are
useful for different purposes [41, 49, 63, 69]. Categories alone can be misleading when similar cases are assigned to
different categories despite only small differences in their risk [41]. In our research, we initially used only a categorical
scale,4 but then switched to scales that combine both categorical and numerical values; further, we test two different
types of numerical scales. The first scale is based on the probability of recidivism, which we denote “absolute scale” as
it expresses a probability in absolute terms. The second scale we use is based on quantiles of the risk distribution in the
data, and we call it the “relative scale” since it is relative to the risk levels of other cases in the data. We also use five
categories, for easier comparison with the absolute scale. Both scales are depicted in Figure 2. Other elements in that
figure are discussed in the following sections.

3.2.3 Additional variables. Many additional variables could have been included but we were mindful of survey length
and wanted to minimize survey drop-out. We included three additional variables: numeracy, decision-making style,
and current emotional state. Numeracy is the ability to understand and manage numerical expressions. The decision
confidence and the type of information that professionals rely on when using RAIs depends on their numerical
proficiency [56]. Ideally, professionals working with RAIs should have a fairly high level of numerical literacy, as
interpreting RAIs requires the understanding of probabilities, which is not common knowledge. Other factors that
have been shown to affect people’s decision making behaviour are their decision-making style and current emotional
state [8, 45].

3.3 Research questions

Based on the variables we have presented, we pose the following research questions:

RQ1 Under which conditions do participants using a RAI to predict recidivism achieve the highest predic-
tive accuracy?

RQ2 To what extent do participants rely on the RAI to predict recidivism?

4We group probabilities using a five-level, empirically-grounded recommendation developed by the US Department of Justice and the US National Reentry
Resource Center [34].
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4 MATERIALS AND METHODS

In this section, we describe the materials (§4.1) for our user study which consist of a risk prediction instrument based
on RiskEval (4.1.1) and a selection of cases used for assessment (4.1.2). Next, we present a description of the procedure
followed by participants (4.2), and the way in which they were recruited (4.3).

4.1 Materials

4.1.1 RiskEval. This is one of several risk assessment tools used by the Justice Department of Country since 2010
[reference omitted for double-blind review]. This tool is applied multiple times during an inmate’s time in prison; in most
cases, once every six months.

RiskEval consists of 43 items that are completed by professionals based on an inmate’s record and suitable interviews.
Then, a team of professionals (with some overlaps with the various interviewers) makes a decision based on the values
of the items and the output of RiskEval’s algorithm. RiskEval’s algorithm predicts the risks of four different outcomes:
committing further violent offenses (violent recidivism), violence in the prison facilities to other inmates or prison
staff, self-injury, and breaking of prison permits. We focus on violent recidivism, which is computed based on 23 of the
43 risk factors, including criminal/penitentiary record, biographical factors, family/social factors, clinical factors, and
attitude/personality factors.

The original RiskEval uses integer coefficients determined by a group of experts; instead, we use a predictor of violent
recidivism created using logistic regression that has a better AUC (0.76) than the original RiskEval (0.72) and is more
accurate than models created using other ML methods such as random forests or neural networks [reference omitted for

double-blind review]. This is done to reduce any effects of potential shortcomings of RiskEval originating from using
hand-picked integer coefficients, instead using a state-of-the-art predictor based on the same items.

4.1.2 Cases. In this study, we use a dataset of cases used in previous work [reference omitted for double-blind review].
It consists of the RiskEval protocol items for the inmates released between 2010 and 2013, and for which recidivism
was evaluated by the Department of Justice of Country. Upon recommendation of our Ethics Review Board, we do not
show participants the data of any individual inmate, but instead created semi-synthetic cases using a cross-over of
cases having similar features and similar risk levels (for details, see Supplementary Material A.3).

We selected 14 cases which contain a mixture of recidivists and non-recidivists, combining cases in which the
majority of humans make correct predictions and cases in which they tend to err, and cases in which the algorithm
makes a correct prediction and cases in which it errs. In our first crowdsourcing experiment (referred to as R1 in the
following) we observed that these cases were not representative of the performance of the algorithm on the overall
dataset. Hence, for the second crowdsourcing experiment (R2 in the following) we exchanged 2 cases to bring the AUC
from 0.61 to 0.75 which is closer to the AUC of the algorithm on the original data (0.76). Out of the 14 cases, 3 were
used as examples during the “training” phase of the experiments, while participants were asked to predict recidivism
for the remaining 11 cases. All participants evaluate the same 11 cases, but in randomized order.

4.2 Procedure

The study obtained the approval of our university’s Ethics Review Board in December, 2020. All user studies were
conducted between December, 2020 and July, 2021, and done remotely due to the pandemic caused by the SARS-COVID-
19 virus. The survey is designed to be completed in less than 30 minutes and used an interface hosted in our university’s
server created using standard web technologies (Python and Flask). The survey is structured as follows:

Manuscript submitted to ACM



8 Portela et al.

4.2.1 Landing page and consent form. The recruitment (§4.3) leads potential participants from different groups to
different landing pages, which record which group the participant belongs to. There, participants learn about the
research and we ask for their explicit consent for participating.

4.2.2 Demographics and additional variables. Consenting participants are asked three optional demographic questions:
age (range), gender, and educational level. Then, three sets of questions are asked to capture the following additional
variables (described in §3.2.3):
- Numeracy: We use a test by Lipkus [47], which has been used in previous work [37]. It consists of three questions
about probabilities, proportions, and percentages, such as “If a fair dice is rolled 1,000 times, how many times it will
come even (2, 4, or 6)?” (Answer: 500). We measure “numeracy” as the number of correct answers (0 to 3).
- Decision making style: The General Decision Making Style (GDMS) [55] is a well known survey that identifies five
types of individual decision making style: rational, intuitive, dependent, avoidant, and spontaneous.
- Current emotional state: We used a Visual Analogue Scale (VAS) to account for 7 attitudes (happiness, sadness, anger,
surprise, anxiety, tranquility, and vigor). This survey has been used in previous work [52].

4.2.3 Past experience and attitudes towards RAIs. Participants are asked about their knowledge about and experience
with RAIs, as well as what they consider as the three most determining features to predict recidivism, out of the ones
used by RiskEval. The final question of this part is about the level of automation they would prefer for determining the
risk of recidivism (see Supplementary Material B.1).

4.2.4 Training. The training part consists of the risk assessment of three cases (two non-recidivists and one recidivist).
The purpose of this part is to prepare participants for the actual evaluations and to calibrate their assessment to a
ground truth reference. Therefore, unlike the actual risk assessments of the evaluation tasks, participants are shown the
ground truth (recidivism or no-recidivism) after each one.

4.2.5 Evaluation tasks. The evaluation tasks are the core part of the study and ask participants to predict the probability
of violent recidivism for eleven cases. Participants see a list of 23 items that are used by RiskEval to predict violent
recidivism (see Supplementary Material B.3 for an illustrated reference), and they are asked to select a number, which
can be a recidivism probability or a risk level, depending on the condition (see Figure 2). Additionally, they are asked to
select from the list of items the three items that they considered most important in their evaluation, and to indicate
their confidence with their prediction on a 5-points scale.

Participants in the control group are shown just one screen per case to enter their prediction, while participants in a
treatment group are shown a second screen for each case, displaying the algorithm’s prediction. This second screen
also shows participants their initial prediction for comparison, and allows them to optionally change it. In both screens,
participants indicate the confidence in their prediction before continuing.

4.2.6 Closing survey. The experiment ends with a final questionnaire and an evaluation of the entire process. This
questionnaire repeats some of the questions made in the beginning, such as the preferred level of automation, the
emotional state, and the three features they consider most important in predicting recidivism. Additionally, participants
can leave a comment or feedback about the study.
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4.3 Participant recruitment

A summary of the participants’ demographics is shown in Table 1. The crowdsourced study consisted of two rounds
(R1 and R2) for which we recruited participants via Prolific.5 We selected residents of Country, between 18 to 75
years old, and with more than 75% of successful completion of other studies in the platform. Participants were payed a
platform-standard rate of 7.5 GBP6 per hour for participating in the survey. They took an average of 20−25 minutes to
complete the survey. Additionally, we offered a bonus payment of 1 GBP to those who achieved an AUC greater than
0.7. This is common practice and incentivizes conscientious completion of the survey (see, e.g., [13, 22, 29, 67]).

For the targeted studies, participants were recruited through students’ mailing lists from two universities in Country,
as well as social media groups of professionals of data science in countries having the same official language as Country.
Additionally, we invited professionals from the Justice Department of Country to participate; the invitation to participate
was done by their Department of Research and Training. The number of participants in previous crowdsourced user
studies is usually a few hundred: 103 in [32], 202 in [13], 400 in [46], 462 in [22] and 600 in [29]. In line with the previous
studies, we had 449 participants in total (393 crowdsouced and 54 targeted).

5 PARTICIPANTS AND EXPERIMENTAL SETUP

5.1 Crowdsourced: First Round (R1)

In thefirst round (R1) we compared two experimental groups. The treatment group was shown the machine prediction
and the control group was not. In treatment group G1 machine predictions are shown only as categorical information,
while in G2 machine predictions are shown as categorical and numerical information. In this round, 247 participants
completed the evaluation: 48 in the control group, 100 in treatment group G1, and 99 in treatment group G2. Additionally,
74 participants were excluded, either because they did not complete the survey or did not evaluate all of the eleven
cases, or finished the experiment either too fast (less than five minutes) or too slowly (more than one hour).

As described in §4.1.2, we used in R1 a set of cases for which the AUC of the machine predictions was 0.61. To bring
this more in line with the observed AUC in the entire dataset (0.76), we exchanged two cases for the second round (R2),
and the AUC measured on the new set of cases became 0.75.

5.2 Crowdsourced: Second Round (R2)

In the second round (R2) we compared two experimental groups, where the treatment group was shown the machine
prediction and the control group was not. In treatment group G1 machine predictions are shown on an absolute scale

as categorical and numerical information, while in G2 machine predictions are shown on a relative scale as categorical
and numerical information.

In this round, 146 participants completed the evaluation: 17 in the control group, 66 in treatment group G1, and 63 in
treatment group G2. Additionally, 137 participants were excluded for the same reasons as in R1.

5.3 Targeted Study

The targeted study seeks to establish the effect (if any) of the participant’s background when interacting with the RAI.
We used the same experimental setup and treatment groups from crowdsourcing (R2). Due to the limited number of
participants, we considered as a baseline the control group of R2.

5Prolific is a crowdsourcing platform specialized in supporting scientific research. It is available at: https://www.prolific.co/
6Prolific is a UK-based company that uses British pounds as main currency. We follow their advice for average payment per hour.
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We considered both students and professionals with a background either in data science, or in a field relevant to the
prison system and the application of RiskEval, such as psychology, criminology, or social work. For data science, we
recruited 14 students at the undergraduate and graduate level, and 11 professionals. For a domain-specific background,
we recruited 4 students at the graduate level (Master in Criminology students), and 25 professionals. A summary of all
experimental groups is shown in Table 2.

6 RESULTS

6.1 Outcome variables

6.1.1 Predictive accuracy. Figure 3 shows the average AUC and corresponding confidence intervals7 for each experi-
mental group. This data can also be found in Supplementary Material C.1. For R1 we observe no difference in the initial
predictions across control and treatment groups, which have AUC between 0.58 and 0.61. However, for R2 we find a
significant difference (p<0.1) with a higher AUC for the control group (0.65) than for the initial prediction of treatment
group G1 (0.58) with the absolute scale.

Despite the small number of participants in the targeted group, we observe important differences compared to
the previous groups. The predictive accuracy of the initial prediction is higher (+0.02 to +0.09 AUC points) than any
crowdsourced group. For the targeted group G1 (absolute scale) this difference is significant at 𝑝 < 0.1 against R2’s G2
and even at 𝑝 < 0.05 against the initial predictions of the other crowdsourced groups (see Supplementary Material C.1).
Participants from a data science background and domain experts have similar initial AUCs.

The resulting AUC is comparable to previous forensic studies that achieved AUCs on average in the range of 0.65−0.78
using non-algorithmic RAIs [19, 21, 59].

6.1.2 Prediction changes due to the RAI. The observed probability of a participant changing a prediction after observing
the machine prediction is 20% (19% in G1 and 21% in G2). Crowdsourced participants revised their prediction in about
26% of the cases they examined (27% in G1, 25% in G2). Domain experts revised their prediction in 37% of the cases, and
data scientists in only 13% of the cases.

7Confidence intervals in Figure 3 are computed under normal assumption but we test statistical significance of the differences using a permutation t-test
(see Table 4)
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Figure 4 shows the average difference in risk predictions by human and algorithm for each case. Targeted participants
started with predictions that were in general as high as those of the crowdsourced groups and equally far from those of
the RAI. As they progress through the evaluation tasks, participants tend to align more and more their predictions with
the machine predictions (even in their initial predictions) and the difference between initial and revised predictions
diminishes. For the last three cases, the crowdsourced group’s predictions, which are already close to the machine
predictions, do not change, while the targeted group maintains a larger difference between initial and revised predictions.

By comparing the average AUC in Figure 3 and Table 3, we can see that revised predictions from crowdsourced
groups tend to be more accurate than their initial ones in terms of AUC. This difference is significant for R1’s G2
(𝑝 < 0.1) and for R2’s G1 (𝑝 < 0.05), as shown in Table 4 (in Supplementary Material C.1). For the targeted groups, we
see an improvement in the range from +0.01 to +0.09 AUC points on average. In almost all cases, revised predictions
by the treatment groups are more accurate than those of the control groups. However, few of these differences are
statistically significant.

In general, the average self-reported confidence is in the range 3.5-3.9 out of 5.0 (1.0=least confident, 5.0=most
confident), and basically does not change from the initial to the final prediction. The self-reported confidence of
crowdworkers is, by a small but statistically significant margin (𝑝 < 0.001), higher than the one of targeted participants
(see Supplementary Material C.3).

6.1.3 Preferred level of automation. As shown in Figure 6, most participants prefer an intermediate level of automation,
between levels 2-4 on a scale of 5 levels. While data scientists had an initial level of acceptance with a broader range
(levels 1-4), domain experts limited their answers to a more narrow set of choices in intermediate levels of acceptance
(levels 2-3). The same figure also shows that most of the treated groups reduce their preferred level of automation after
the experiment, meaning they prefer more expert involvement and less reliance on machine predictions.

On average, however, the desired level of acceptance for targeted groups concentrated in the middle-low part of the
scale: 32% of the data scientists and 48% of the domain experts selected level 3 (“the computational system suggests one
option, but the expert can provide an alternative option”). Level 2 (“the computational system suggests some options,
but it is the expert who defines the risk level”), was the option selected by 36% of the surveyed data scientists and 38%
of the domain experts. Details can be found in Supplementary Material C.2, and the description of the automation levels
can be found in Supplementary Material B.1.
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6.2 Independent variables

6.2.1 Self-reported importance of risk items. Having asked to select the top 3 items (risk factors) that participants
considered in their risk prediction, we find that crowdsourced and targeted participants tend to select the same 10-11
(out of 23) items as more important than the rest. However, among these top 10 items we find that domain experts
prefer dynamic factors (i.e., factors that can change), such as “limited response to psychological treatment”, while data
scientists and crowdsourced participants refer more often than domain experts to static factors (i.e., factors that cannot
change), such as “history of violence” (details are in Figure 11 and Table 9 in Supplementary Material C.5).

6.2.2 Numerical information (R1). According to Figure 3, adding numerical values to the categorical scale does not
change the AUC. In G1, where only categorical information is shown, the AUC of revised predictions is slightly higher
than the revised predictions in G2, where categorical and numerical values are shown: 0.62 against 0.61 AUC.

6.2.3 Risk scales (R2 and Targeted). The results of R2 show that for the initial prediction, the absolute scale (G1) leads
to slightly lower AUC compared to the relative scale (G2) (0.58 against 0.61 AUC). However, with algorithmic support,
the absolute scale leads to higher AUC than the relative scale (0.67 against 0.62 AUC). Neither of these differences is
statistically significant. Additionally, the average AUC of the R2 control group (0.65) is fairly high, and the only higher
AUC observation is in the revised predictions using the absolute scale (0.67). The revised and some initial predictions of
the targeted participants using the absolute scale significantly outperform all the R1 groups, as well as the R2 groups
(𝑝 < 0.05, see Table 4 in Supplementary Material C.1).

6.2.4 Additional variables. With respect to numeracy, over 60% of the crowdsourced participants answered correctly 2
or 3 out of the 3 test questions. The targeted group had more respondents answering all 3 numeracy questions correctly
than crowdworkers, as shown in Table 1: 96% of data scientists obtained results in the highest scores (68% in the top
score), while only 59% of domain experts obtained similar results (52% in the top score). We find no correlation between
participants’ numeracy and their accuracy. The correlation between decision making style and emotional state with
accuracy is not significant either (results are in Supplementary Material C.4).

7 QUALITATIVE STUDY

The last study is a qualitative study using focus groups, i.e., groups of participants having a focused discussion on a
particular topic [50]. The focus groups help us interpret the quantitative results from the targeted study, by listening to
and learning from participants’ experiences and opinions.

7.1 Participants and procedure

Participants (9 women, 4 men) were recruited from the targeted experiment, and due to their busy schedules, divided
into four groups (FG1-FG4) as follows: FG1 (N=3) data scientists; FG2 (N=4) domain experts, students from criminology
in undergraduate and master levels; FG3 (N=2) and FG4 (N=4) domain experts working with the Department of Justice,
most of them psychologists.

While we did not want to give too much structure to the conversation, to try to uncover new perspectives that
we had not thought about, we did prepare a series of questions to stimulate a discussion (available in Supplementary
Material B.2). The questions address participants’ experience with algorithmic predictions and RAIs, their opinion
about different scales and categorical/numerical presentation, their understanding of risk factors, and their desired level
of automation. Each session lasted between 60 and 90 minutes and was held online. Following the protocol approved by
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our Ethics Review Board, participants were asked for their consent to participate and to have the meeting recorded and
transcribed. The language of the focus group was the local language spoken in Country; the quotes we present in the
next section were taken from our transcriptions and paraphrased in English.

7.2 Findings

We focus on our research questions, but note that there were many other insightful comments during the focus groups.

7.2.1 Professional background. All participants were aware that some demographics are over/under represented among
prison populations, and thus expected that a RAI trained on such data may lead to discriminatory outcomes. However,
the way in which data science participants approached risk prediction was to a large extent based on considering a set
of “anchors” or prototypes [57, p. 13]: “I think about a maximum and a minimum risk. The minimum would be like
a person who stole for the first time [...] the maximum would be a killer” (FG1.1). In general, data scientists did not
question the presented case characteristics, but domain experts did. Participants in FG3 and FG4 indicated that the
risk items, which in RiskEval only have three levels (Yes/Maybe/No), do not accurately represent the reality of inmates
and they were missing the ability to explore or negotiate the risk items during the case evaluations. Furthermore, they
indicated that, during the assignment of levels to risk factors, they sometimes “compensate” higher values in one item
with lower values in other items, such that the final risk score matches what they would consider appropriate for
the evaluated person. One participant (FG4.1) said that personal biases may also affect the coding of items, as some
professionals adopt a more punitive approach, while others take a more protective or rehabilitative approach. Other
domain experts agreed with this perspective. Therefore, most professionals expressed the need for teams reviews and
validation mechanisms for risk factor codings.

Among domain experts, the psychologists we interviewed were the most concerned about the evidence they collect
and the representation of the actual risk. To them, RAIs are tools that add objectivity to their case reports, but their focus
was on how to present evidence to judges, since these might discard professional reports in favor of the RAI’s outcome.
Overall, for domain experts RAIs such as RiskEval should be used by a group of experienced evaluators checking one
another, and not by one professional alone.

7.2.2 Interpreting numbers. All participants had some training in statistics, and stated that they understand numerical
expressions well. Generally, participants preferred a relative scale (e.g., 3.7/10.0) over an absolute scale (e.g., 37%).

It is noteworthy how domain experts interpret probabilities. First, extremely low risks were considered unlikely in
practice, since almost everyone can commit a crime at some point. Second, all interviewed domain experts stated that
recidivism risk cannot be eliminated but it could be reduced to an acceptably low level (e.g., reducing the risk from 37%
to 20%). This emphasis on risk reduction is in line with the “interventions over predictions” debate in the literature [5].
Third, domain experts consider a recidivism risk of above 30% as high, and a reason for concern. A risk above 50%
was considered difficult -but not impossible- to reduce by treatment/interventions. Overall, domain experts thought of
different ranges on the risk spectrum along which inmates are placed. Data scientists, too, considered different risk
ranges, and for some of them even a 50% recidivism risk was not considered “high.”

7.2.3 Interaction with machine predictions and calibration. Many participants admitted that they went quickly, and
without giving it much thought, through the first few evaluations. However, they also noticed that they slowed down
to rethink when they felt contested by the algorithm, i.e., when their risk assessment was far from the algorithm’s
prediction. Data scientists indicated that they reacted to such differences by simply adjusting the risk to half-way
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between their initial prediction and the one of the algorithm. Domain experts indicated to react similarly in some cases,
but they also stressed that they kept their initial prediction when they felt confident about it.

Some of the domain experts believed that they were interacting with exactly the same RiskEval algorithm they use,
despite a clear indication in the introduction of the study that this was another algorithm. We believe their experience
with the real RiskEval affected their disposition to rely on the machine predictions we presented.

7.2.4 Preferred level of automation. Overall, domain experts and data scientists differed in the level of automation
they would prefer, with data scientists being more open to automation. For instance, participant FG1.2 believed that an
algorithm could improve enough to make almost-autonomous decisions “in the future.” This participant considered
the errors that could be made by the algorithm were “acceptable.” In contrast, e.g., FG1.3 was sceptical about using an
algorithm for automated decision-making because of the impossibility to solve all algorithm-specific errors.

All participants agreed that algorithmic support is useful in many instances, e.g., to contrast their own predictions,
to give them a chance to rethink them, or to provide reassurance about them. Domain experts also considered them
useful to train new case workers in writing evaluations. In that regard, participants from FG1 and FG2, expressed
that the “objectivity” of the algorithm could help reduce the effect of the “emotional” response to the evidence by the
professional who is evaluating.

Participants also acknowledged the risk of “relying too much” on the algorithm, leading to reduced professional
responsibility: “The decision you make is yours, it is yours with your biases and everything, which also brings experience
because it sometimes helps you to be aware and review your own prejudices” (FG2.1). Another drawback of using a
RAI noted by participants was the concern that it may reproduce potentially outdated societal prejudices. To address
this concern, domain experts expected frequent updates to the algorithms.

8 DISCUSSION

RQ1: Under which conditions do participants using a RAI to predict recidivism achieve the highest predic-
tive accuracy?

Overall, our findings suggest that human decision makers achieve higher accuracy for their risk-assessment when
they are supported by an algorithm. Almost all treatment groups achieve a higher AUC than their corresponding control
group after the treatment, although some of these differences are not statistically significant, particularly in the case of
crowdsourced participants (Figures 3 and 5). The algorithm also influences human predictions for each decision and
over time, as shown in Figure 4. This further suggests that algorithmic support establishes reference points to human
predictions. The lower accuracy of the initial predictions of treatment group participants compared to control group
participants is noteworthy. One possible explanation for this is that treated participants put less effort in their initial
predictions in anticipation of algorithmic support and a potential opportunity to revise their initial prediction.

The finding that targeted participants (domain experts and data scientists) outperform crowdsourced participants
contradicts the idea that crowdsourced participants are comparable to domain experts or professionals when testing
RAIs. This highlights the importance of testing RAIs in the context of professional knowledge, training and usage.

Finally, using an absolute rather than a relative scale leads to more accurate predictions. The focus group further
confirmed the preference of professionals for the absolute scale as the one closer to the real application. Our findings
agree with Hilton et al. [69], who found that risk categories are generally hard to agree upon across professions
and individuals, and also with Hanson et al. [34], who found that categories can be effective following a common
agreement in correspondence to ranges of the absolute probability of recidivism. Thus, further studies should focus
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on the underlying support of numerical information in helping ground categorical distinctions for predictive risk
assessment.
RQ2: To what extent do participants rely on the RAI to predict recidivism?

In line with previous studies (e.g., [64]) humans and algorithms tend to agree on very low and very high risk cases
(see Supplementary Material A.3, particularly Figure 7), but there are cases that are difficult to predict for humans, for
algorithms, or for both. A promising next step would be to identify cases that are clearly difficult for the machine, and
or are potentially difficult to humans. In these cases one could more safely defer to humans, or ask them to invest more
time in a specific evaluation, improving efficiency in the design of human-algorithm decision processes.

Our findings show that participants prefer a partially automated assistance with a large degree of human discretion.
In addition, all experimental groups tend to downgrade the acceptable level of automation after the experiment (see
Figure 6). Explanations for this could be that the differences between human and machine predictions caused the
participants to realize strong human oversight was more necessary than what they initially thought.

Finally, the focus group discussions revealed that professionals’ reliance in an algorithm could be increased when the
algorithm providers ensure good prediction performance and frequent system updates corresponding to new societal
and institutional developments. This suggests that RiskEval and possibly other RAIs are elements of negotiation that
should be taken with care and without assuming its outcome as objective, and that need frequent updates and audits.

9 LIMITATIONS AND FUTUREWORK

This paper has to be seen in light of some limitations. First, the dataset used for training the algorithm has some
drawbacks. It has only about 597 cases, which may affect the algorithm’s accuracy; however, we note that its AUC-ROC
is in line with that of most recidivism prediction tools. We also note that in this dataset the ground-truth label is
re-arrest and not re-offense, and re-arrest is not necessarily a good proxy for re-offense and further exhibits racial and
geographical disparities [25]. Since the focus of this study is the assessment of user behaviour (not the algorithm), we
do not expect these drawbacks to notably affect our main results. Second, in line with previous work, this study focuses
on accuracy as a measure of algorithmic performance. However, decision support algorithms can be evaluated in many
different ways [54]. Third, Figure 4 shows that participants are still calibrating their predictions after the training phase
as they progress through the evaluation tasks, suggesting that the initial training phase may have been to short. The
impact should be limited as the majority of the cases are evaluated after this learning curve has flattened.

The generalization of this work to other contexts is restricted by other factors. As usual in experimental user
studies, the crowdsourced participants are not representative of the overall population. Table 1 shows that most have
university-level education and good numeracy. Further, we only recruited participants in a single country. Thus, the
pool of users might not exhibit a large cultural diversity, a factor that could bias outcomes [8, 45]. However, we also
remark that crime and recidivism is different in different criminal systems and jurisdictions, and hence RAIs should be
evaluated with careful attention to their context [58]. Sample size may be another limitation. While the size of our
participant pool in the crowdsourced study (N=247, N=146) is in line with previous work, the number of participants in
the targeted study (N=54) is relatively small. Despite these limitations in sample size, our results suggest consistent and
in some cases statistically significant differences in the outcomes between crowdsourced and targeted participants.

Future research is needed to explore the reasons and conditions of these differences. This is particularly important in
the public sector, where there is a lack of evidence on how algorithms affect public policies [70]. There is a clear need
to pay attention to the usage contexts and the ways in which RAIs are deployed, to reduce the risks of automation and
understand better in which conditions the assistance of an algorithm can be most helpful.
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SUPPLEMENTARY MATERIAL

A ADDITIONAL INFORMATION ABOUT OUR APPROACH

A.1 Experimental groups

The number of participants in each experimental group is shown in Table 2.

Type → Crowdsourced Crowdsourced Targeted
Group ↓ N Round 1 N Round 2 N
Control 48 Abs. scale 17 Abs. scale - -
G1 100 Abs. scale / categorical 66 Abs. scale / cat. and num. 36 Abs. scale / cat. and num.
G2 99 Abs. scale / cat. and num. 63 Rel. scale / cat. and num. 18 Rel. scale / cat. and num.
Total 247 146 54

Table 2. Characteristics of the experimental groups. The control groups received no machine predictions. The treatment groups
received machine predictions. G1 used an absolute scale indicating a probability (0% to 100%); G2 used a relative scale indicating a
score (0 to 10).

A.2 Designing the algorithm

We use logistic regression to predict violent recidivism. The features given as input are the 23 items that determine the
REVI score in RiskEval, plus three demographic features (age, gender, and nationality). The evaluation was done by
𝑘-fold cross-validation, i.e., dividing the data into 𝑘 parts, training on 𝑘 − 1 parts and evaluating on the remaining part.
The accuracy of the model is 0.76 in terms of AUC-ROC which is the average result over the 𝑘 runs. Finally, the logistic
regression estimates were calibrated, which means that they were transformed to correspond to an estimate of the
probability of the outcome.

A.3 Datasets

An original dataset with 597 cases was used for creating the algorithm as described above. The dataset is anonymized
and shared through a formal collaboration agreement between our university and the Department of Justice of Country.
This agreement indicates that no personal data is shared with the university.

A.3.1 Semi-synthetic case pool (90 cases). Although the original dataset did not include personal information, we wanted
to make sure that participants never had access to the features of one person. Hence, we created 90 semi-synthetic
cases by doing a cross-over of features within a group of similar cases. Each group of cases was selected so that the
difference in computed RiskEval between the highest and lowest risk was at most 0.1. The generated case differs by a
minimum of one and a maximum of three features from any case in the group, and has a RiskEval risk level within the
same risk range of the cases in each group. A preliminary experiment with 31 crowdsourced participants, in which no
machine assistance was shown, was used to estimate the difficulty of human risk assessment (i.e., how distant was the
prediction from the ground truth) for each case.

A.3.2 Case selection (11 cases). From 90 semi-synthetic cases, 11 cases were selected to be evaluated by participants.
This selection was done by sampling 8 non-recidivists and 3 recidivists to have a recidivism rate close to what is
observed in Country. To perform this sampling, we stratified the cases by human difficulty and machine difficulty into
three groups (easy, medium, hard). “Difficulty” means how far, on average, is the prediction from the ground truth. This
Manuscript submitted to ACM
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Fig. 7. Comparison of human predictions distribution on 11 experimental cases, on absolute scale setting (G1, in green) and relative
scale setting (G2, in orange). The yellow dot indicates the machine prediction for each case. The first 8 cases are non-recidivists (left)
and the last 3 are recidivists (right). We remark that all 11 cases were shown in random order to each participant.

yields nine classes of difficulty (e.g., “easy” for humans and “hard” for the model) from which we sampled the 11 cases.
As we explained in Section 4, we exchanged two cases to increase the general AUC-ROC of the entire dataset.

The resulting 11 cases are depicted in Figure 7, where cases are grouped by ground truth and their risks are predicted
by crowdsourced (R2) and targeted studies combined. It can be noticed that the accuracy of human predictions differs
for different cases, and that in some cases, answers are more spread.

B SURVEYS

B.1 Level of automation survey

This survey was based on the levels of automation proposed by Cummings [15]. Cummings proposed ten levels going
from “the computer decides everything and acts autonomously, ignoring the human” (level 10) to “the computer offers
no assistance: a human must take all decisions and actions” (level 1). We reduced the ten levels to five, to make it more
understandable and easier to answer for participants.
Question: Would you use a computer system, developed at a university, and based on statistics, to predict
the level of risk of violent criminal recidivism?

• Level 1: No, the expert should decide the risk level by himself/herself
• Level 2: Only if the computational system suggests some options, but it is the expert who defines the risk level
• Level 3: Only if the computational system suggests one option, but the expert can provide an alternative option
• Level 4: Only if the computational system suggests one option and the expert can decide to take it or not
• Level 5: Yes, the computational system should decide the risk level by itself
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B.2 Questions for the focus groups

Questions were used to stimulate the discussion, but we invited participants to comment on any aspect of the experiment.

• Q1: What is your general opinion on Risk Assessment Instruments [explain to participants] in criminal justice
settings?

• Q2: How do you think the machine prediction in this study works? Could you explain it?
• Q3: Do you think that one of these two scales [show them to participants] would be better than the other? Why?
• Q4: From the list of case characteristics [show to participants], which were the ones that helped you the most to
make a decision about the risk of recidivism?

• Q5: Explain, why do you think that these features can help define the prediction of these cases?
• Q6:What does a 10% risk mean to you in the context of this study?
• Q7:What does a 2 over 10 risk mean for you in the context of the study?
• Q8: Despite an improvement in the accuracy, participants tended to rely less on the machine prediction after the
experiment, why do you think that it happens? What was your experience?

• Q9: Suppose that you can decide to use an algorithm-supported decision making system in this context. What
would be the advantages and disadvantages of it?

B.3 Assessment Interface

Figure 8 shows the first page of each evaluation, which is the same for the control and treatment groups. Participants
can see each of the risk factors with their variables and select those 3 that they believe are more important to define
their prediction. They are asked to define their probability moving the marker on the bar, having as a reference the five
levels of risk that depend on the type of scale used. Before moving to the next page they have to assign a value to their
confidence in their answer. Figure 9 shows the second page with the machine assistance, which only the treatment
groups see. It shows the algorithm prediction in a similar bar/scale, compared to the participant’s prediction. Then, the
participant has the possibility to change their own prediction and provide a confidence score.

Figure 10 shows the alternatives in the crowdsourced R1 study. The control group only sees their own prediction
without any feedback. The G1 (bottom) is able to see their prediction compared with the algorithm’s prediction, while
G2 (middle) is able to see also the most important features that defines the algorithm’s prediction (explainers).
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Fig. 8. Evaluation session first page: User prediction and
selection of risk factors.

Fig. 9. Evaluation session second page: Algorithm prediction
and user confirmation.

Fig. 10. Alternative treatment groups in crowdsourced R1 study

Manuscript submitted to ACM



24 Portela et al.

Groups→ Control R1G1 R1G2 | R2G1 | TG1 R2G2 | TG2
Treatment → Absolute Absolute & non-numerical Absolute & percentage Relative & score
Participant type ↓ Before After Before After Before After

Crowdsourced R1 - N=247 0.599 (0.277) 0.598 (0.273) 0.621 (0.271) 0.576 (0.291) 0.607 (0.280) - -
Crowdsourced R2 - N=146 0.652 (0.262) - - 0.582 (0.265) 0.665 (0.240) 0.606 (0.271) 0.622 (0.269)

Data science (students) - N=14 - - - 0.652 (0.229) 0.690 (0.203) 0.589 (0.269) 0.667 (0.266)
Data science (professionals) - N=11 - - - 0.736 (0.219) 0.729 (0.218) 0.667 (0.269) 0.719 (0.267)
Domain experts (students) - N=4 - - - 0.771 (0.211) 0.833 (0.169) 0.750 (0.264) 0.729 (0.264)
Domain experts (professionals) - N=25 - - - 0.636 (0.236) 0.773 (0.191) 0.637 (0.270) 0.673 (0.267)

Table 3. AUC-ROC (and Brier score in gray) before and after algorithmic support by experimental group, type of risk scale and
numerical expression.

C ADDITIONAL RESULTS

C.1 Accuracy results per sub-group

In Table 3 we present the results from different groups, including targeted groups of data scientists and domain experts,
separating students and professionals. In the table we also include the Brier Score (lower is better), which is consistent
with the AUC-ROC results (higher is better).

In addition, in Table 4 we show results from a t-test to show differences between crowdsourced and targeted groups.

C.2 Preferred level of automation and experience

In addition to the level of automation question, we asked participants about their previous experience with Risk
Assessment Instruments (RAI) on a scale from 1 (This is the first time I heard or read about risk assessment instruments)
to 5 (I have used this kind of tools more than one time). In Table 5 we can see that targeted participants report more
previous experience than crowdsourced participants. We can also see that the preferred level of automation is in general
lower at the end of the experiment than at the beginning, in all cases except for the control groups.

C.3 Self-reported confidence

We observe that self-reported confidence is stable across all subgroups. For each case evaluation, participants had to
answer their level of confidence on a likert scale (1 to 5). After seeing the algorithm prediction and with the opportunity
to change their prediction or not, they are asked about their confidence level again. Results are shown in Table 6.

C.4 Decision-making style and emotional state results

During the survey we included two surveys to measure the current emotional state (e.g., joyful, sad, anger) and decision
making style (e.g., rational, intuitive). We used VAS [52] for the emotional state, and GDMS [55] for the decision making
style.

Results reflected in Table 8 are similar across subgroups. Common emotional states reported are joyful, relaxed, and
energized. In general, intuitive and spontaneous decision making appears with higher levels than rational.

C.5 RiskEval items considered as most important

As explained in subsection 6.2.1, the top items (features) selected as important for most participants tend to be the same
(Figure 11). Targeted groups of data scientists and domain experts selected the same top five items, albeit in a different
ordering, and their top items overlap to some extent with those of crowdsourced participants (Table 9).
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Group 1 Relation Group 2 p-value
Crowd R1- Control < Targeted - G1 Before 0.018
Crowd R1- Control < Targeted - G1 After 0.002
Crowd R1- Control < Targeted - G2 After 0.016
Crowd R1 - G1 Before < Targeted - G1 Before 0.002
Crowd R1 - G1 Before < Targeted - G1 After 0.002
Crowd R1 - G1 Before < Targeted - G2 After 0.006
Crowd R1 - G2 Before < Targeted - G1 Before 0.004
Crowd R1 - G2 Before < Crowd R1 - G1 After 0.020
Crowd R1 - G2 Before < Crowd R1 - G2 After 0.092
Crowd R2- Control > Crowd R2 - G1 Before 0.082
Crowd R2- Control < Targeted - G1 After 0.010
Crowd R2 - G1 Before < Targeted - G1 Before 0.004
Crowd R2 - G1 Before < Crowd R2 - G1 After 0.012
Crowd R2 - G1 Before < Targeted - G1 After 0.002
Crowd R2 - G1 Before < Targeted - G2 After 0.018
Crowd R2 - G2 Before < Targeted - G1 Before 0.042
Crowd R2 - G2 Before < Crowd R2 - G1 After 0.044
Crowd R2 - G2 Before < Targeted - G1 After 0.002
Crowd R2 - G2 Before < Targeted - G2 After 0.034
Targeted - G1 Before > Crowd R2 - G2 After 0.088
Targeted - G1 Before < Targeted - G1 After 0.026
Targeted - G2 Before < Targeted - G1 After 0.004
Crowd R2 - G1 After < Targeted - G1 After 0.020
Crowd R2 - G2 After < Targeted - G1 After 0.002
Targeted - G1 After > Targeted - G2 After 0.058

Table 4. Permutation t-tests for differences between AUC-ROC of subgroups, showing only differences that are significant at 𝑝 < 0.1.
In most cases the relation is that crowdsourced groups are less accurate than targeted groups, and predictions before machine
assistance are less accurate than predictions after machine assistance. Cases where this relationship is inverted are more rare. The
relationship signs (<,>) indicate which group has a higher AUC.

Experimental Groups Experience Preferred level of automation
(1=least, 5=most) (1=no automation, 5=fully automated)

Start End

Crowd R1 - Control 1.62 ± 0.76 2.88 ± 1.02 2.96 ± 1.03
Crowd R1 - G1 1.79 ± 0.99 3.08 ± 1.07 3.01 ± 1.05
Crowd R1 - G2 1.70 ± 0.82 3.01 ± 1.08 2.87 ± 1.10
Crowd R2 - Control 1.29 ± 0.47 2.82 ± 1.07 2.59 ± 1.00
Crowd R2 - G1 1.48 ± 0.67 2.61 ± 1.03 2.48 ± 1.06
Crowd R2 - G2 1.70 ± 0.85 3.00 ± 1.03 2.60 ± 0.91
Targeted G1 3.02 ± 1.43 2.75 ± 0.90 2.68 ± 0.84
Targeted G2 3.16 ± 1.44 3.11 ± 0.83 3.05 ± 0.87

Table 5. Users’ experience with RAIs (scale of 1 to 5) and preferred level of automation (scale of 1 to 5, as described in §B.1) at the
start and at the end of the study, including standard deviation values.
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Study Group Before After

Crowd (R2) G1 3.89 ± 0.89 3.82 ± 0.98
Crowd (R2) G2 3.90 ± 0.77 3.82 ± 0.95
Targeted G1 3.48 ± 0.71 3.45 ± 0.85
Targeted G2 3.57 ± 0.81 3.52 ± 0.97

Targeted Domain Experts 3.47 ± 0.73 3.52 ± 0.82
Targeted Data Scientists 3.55 ± 0.76 3.43 ± 1.04

Table 6. Average self-reported confidence by subgroup, with stan-
dard deviation values, before and after seeing the machine predic-
tion. 1=least confident, 5=most confident.

Group 1 Group 2 p-value

Crowd R2 - G1 Initial Targeted - G1 Initial <0.001****
Crowd R2 - G2 Initial Targeted - G2 Initial <0.001****
Crowd R2 - G2 Initial Targeted - G1 Initial <0.001****
Crowd R2 - G2 Initial Targeted - G2 Initial <0.001****
Crowd R2 - G2 Initial Targeted - G2 Final <0.001****
Crowd R2 - G1 Initial Targeted - G1 Final <0.001****
Crowd R2 - G1 Initial Targeted - G2 Final <0.001****
Crowd R2 - G2 Initial Targeted - G1 Final <0.001****

Table 7. Paired t-test for self-reported confidence, only only
p <0.001is shown.

Table 8. DGMS and VAS results

Survey Crowd. (R1) Crowd. (R2) Targeted
GC G1 G2 GC G1 G2 G1 G2

VAS
Joy 3.27 3.51 3.45 3.59 3.55 3.92 3.89 3.72
Sad 2.29 2.08 2.24 2.29 2.17 1.63 1.97 2.11
Angry 1.60 1.65 1.59 1.71 1.83 1.46 1.56 1.22
Surprise 1.75 1.77 1.86 1.71 1.86 2.13 1.72 2.06
Relax 3.79 3.59 3.74 3.47 3.55 3.94 3.33 3.50
Energy 2.94 3.05 2.80 2.88 3.09 3.32 3.31 3.00

GDMS
Rational 0.61 0.61 0.64 0.63 0.60 0.62 0.58 0.59
Intuitive 0.72 0.72 0.71 0.72 0.75 0.74 0.71 0.68
Dependent 0.59 0.59 0.64 0.55 0.58 0.59 0.57 0.53
Avoidant 0.59 0.59 0.64 0.61 0.59 0.61 0.57 0.54
Spontaneous 0.68 0.69 0.71 0.68 0.69 0.71 0.71 0.70
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Fig. 11. Amount of times that each item was selected as important to the decision, by participants with different backgrounds
(crowdsourced, data science and domain experts)
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Crowdsourced Targeted: Data Science Targeted: Domain Experts
1st History of violence Increase in frequency, severity

and diversity of crimes
Pro criminal or antisocial atti-
tude

2nd Violent base offense History of violence Increase in frequency, severity
and diversity of crimes

3rd Increase in frequency, severity
and diversity of crimes

Lack of viable plans for the fu-
ture

Limited response to psychologi-
cal/psychiatric treatment

4th Lack of viable plans for the fu-
ture

Limited response to psychologi-
cal/psychiatric treatment

Lack of viable plans for the fu-
ture

5th Pro criminal or antisocial atti-
tude

Pro criminal or antisocial atti-
tude

History of violence

Table 9. Top 5 items (features) listed as most important for making decisions by different background
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