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ABSTRACT

Graph neural networks (GNNs) are increasingly used in critical
human applications for predicting node labels in attributed graphs.
Their ability to aggregate features from nodes’ neighbors for ac-
curate classification also has the capacity to exacerbate existing
biases in data or to introduce new ones towards members from
protected demographic groups. Thus, it is imperative to quantify
how GNNs may be biased and to what extent their harmful effects
may be mitigated. To this end, we propose two new GNN-agnostic
interventions namely, (i) PFR-AX which decreases the separabil-
ity between nodes in protected and non-protected groups, and (ii)
PostProcess which updates model predictions based on a blackbox
policy to minimize differences between error rates across demo-
graphic groups. Through a large set of experiments on four datasets,
we frame the efficacies of our approaches (and three variants) in
terms of their algorithmic fairness-accuracy tradeoff and bench-
mark our results against three strong baseline interventions on
three state-of-the-art GNN models. Our results show that no single
intervention offers a universally optimal tradeoff, but PFR-AX and
PostProcess provide granular control and improve model confi-
dence when correctly predicting positive outcomes for nodes in
protected groups.
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1 INTRODUCTION

Classification on attributed graphs involves inferring labels for
nodes in the test set given a training set of labels along with at-
tributes and adjacency information for all the nodes. To address this
task, Graph Neural Networks (or GNNs, for short) have exploded in
popularity since they effectively combine attributes and adjacency
to build a unified node representation which can be used down-
stream as a feature vector [15, 36]. GNNs have found applications
in a variety of high-risk application domains (as defined, e.g., in the
proposed AI Act for Europe of April 20221), including credit risk
applications [10], and crime forecasting [17]. Here, nodes usually
represent individuals, and node attributes include sensitive infor-
mation indicating membership in demographic groups protected
by anti-discrimination regulations. In such cases, we ideally want
algorithmic models to predict labels accurately while ensuring that
the predicted labels do not introduce a systematic disadvantage for
people from protected groups. For instance, in the case of risk as-
sessment for credit, models should correctly infer whether a client
is likely to repay a loan, and should not introduce an unwanted
bias against applicants because of their national origin, age, gender,
or other protected attribute. An entire field has been devoted in
recent years to these algorithmic discrimination concerns [21, 30].

A key challenge in making predictions that are algorithmically
fair arises from the multimodal nature of graph data, i.e., attributes
and adjacency. Unlike traditional machine learning [39], delinking
the correlations of sensitive attributes to other attributes is insuf-
ficient; proximity to other nodes in the same protected group can
indirectly indicate membership and this may propagate into node
representations. Thus, reducing bias may additionally require learn-
ing to deemphasize correlations in adjacency information. While
numerous GNN architectures have been proposed to achieve state-
of-the-art accuracy on different datasets [23, 40], recent studies
show that they may algorithmically discriminate due to their ten-
dency to exacerbate existing biases in data or introduce new ones
during training [9]. This has motivated the design of GNN-agnostic
methods such as EDITS [9], which adversarially modifies graph
data via an objective function that penalizes bias and NIFTY [1],
which augments a GNN’s training objective through layer-wise
weight normalization to jointly reduce bias and improve stability.

However, such interventions from previous literature differ in
numerous ways making meaningful comparisons of their respective
efficacies difficult. First, different methods adopt different frame-
works and may optimize different metrics (e.g., EDITS uses Wasser-
stein and reachability distances [9], NIFTY uses counterfactual
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unfairness [1], GUIDE uses a group-equality informed individual
fairness criteria [31]). Second, dataset properties, training criteria,
hyperparameter tuning procedures, and sometimes, even low-level
elements of an implementation such as linked libraries are known
to significantly influence the efficiency and effectiveness of GNNs
on node classification [14, 41]. Third, while algorithmic discrim-
ination may be reduced at the expense of accuracy [24], specific
improvements and trade-offs depend on application contexts [28],
and need to be evaluated to understand what kinds of alternatives
may offer improvements over current approaches. Our goal is to
address these limitations by focusing on the following questions:

RQ1: How do we meaningfully benchmark and analyze the trade-
off between algorithmic fairness and accuracy of interven-
tions on GNNs across different graphs?

RQ2: Is there room for improving the fairness/accuracy tradeoff,
and if so, how?

Our Contributions. We categorize interventions designed to re-
duce algorithmic discrimination in terms of their loci in the ma-
chine learning pipeline: (a) pre-processing, before training, (b) in-
processing, during learning, and (c) post-processing, during in-
ference. Using a standardized methodological setup, we seek to
maximally preserve accuracy while improving algorithmic fairness.
To this end, we introduce two new, unsupervised (independent of
ground-truth labels), model-agnostic (independent of the underly-
ing GNN architecture) interventions; PFR-AX that debiases data
prior to training, and PostProcess that debiases model outputs
after training (before issuing final predictions).

In PFR-AX, we first use the PFR method [22] to transform node at-
tributes to better capture data-driven similarity for operationalizing
individual fairness. Then, we construct a DeepWalk embedding [29]
of the graph, compute its PFR transformation, and reconstruct a
graph from the debiased embedding using a method we call Em-
beddingReverser. To our knowledge, this is a novel application of
a previously known method with suitable augmentations.

In PostProcess, we randomly select a small fraction, referred to
as γ , of nodes from the minority demographic for whom the model
has predicted a negative outcome and update the prediction to a
positive outcome. This black-box policy aims to ensure that error
rates of a model are similar across demographic groups. This is a
simple and natural post-processing strategy which, to the best of
our knowledge, has not been studied in the literature on GNNs.

We conduct extensive experiments to evaluate the efficacies of
interventions grouped by their aforementioned loci. To measure ac-
curacy, we use AUC-ROC; to measure algorithmic fairness, we use
disparity and inequality (cf. Section 3). We compare the accuracy-
fairness tradeoff for PFR-AX and PostProcess (plus three addi-
tional variants) against three powerful baseline interventions (two
for pre-training, one for in-training) on three widely used GNN
models namely, GCN, GraphSAGE, and GIN [37]. Our experiments
are performed on two semi-synthetic and two real-world datasets
with varying levels of edge homophily with respect to labels and
sensitive attributes, which is a key driver of accuracy and algorith-
mic fairness in the studied scenarios. We design ablation studies
to measure the effect of the components of PFR-AX and the sensi-
tivity of PostProcess to the γ parameter. Finally, we analyze the

impact of interventions on model confidence. Our main findings
are summarized below:

• No single intervention offers universally optimal tradeoff
across models and datasets.
• PFR-AX and PostProcess provide granular control over

the accuracy-fairness tradeoff compared to baselines. Fur-
ther, they serve to improve model confidence in correctly
predicting positive outcomes for nodes in protected groups.
• PFR-A and PFR-X that debias only adjacency and only at-

tributes respectively, offer steeper tradeoffs than PFR-AX
which debiases both.
• When imbalance between protected and non-protected groups

and model bias are both large, small values of γ offer large
benefits to PostProcess.

2 RELATEDWORK

Legal doctrines such as GDPR (in Europe), the Civil Rights Act (in
the US), or IPC Section 153A (in India) restrict decision-making
on the basis of protected characteristics such as nationality, gen-
der, caste [32]. While direct discrimination, i.e., when an outcome
directly depends on a protected characteristic, may be qualita-
tively reversed, addressing indirect discrimination, i.e., discrimi-
nation brought by apparently neutral provisions, requires that we
define concrete, quantifiable metrics in the case of machine learn-
ing (ML) that can be then be optimized for [39]. Numerous notions
of algorithmic fairness have been proposed and studied [16]. Two
widely used definitions include the separation criteria, which re-
quires that some of the ratios of correct/incorrect positive/negative
outcomes across groups are equal, and the independence criterion,
which state that outcomes should be completely independent from
the protected characteristic [2].

Algorithmic Fairness-Accuracy Tradeoffs. However, including fair-
ness constraints often results in classifiers having lower accuracy
than those aimed solely at maximizing accuracy. Traditional ML
literature [21, 38] has extensively studied the inherent tension
that exists between technical definitions of fairness and accuracy:
Corbett-Davies et al. [5] theoretically analyze the cost of enforcing
disparate impact on the efficacy of decision rules; Lipton et al. [26]
explore how correlations between sensitive and nonsensitive fea-
tures induces within-class discrimination; Fish et al. [13] study the
resilience of model performance to random bias in data. In turn,
characterizing these tradeoffs has influenced the design of miti-
gation strategies and benchmarking of their utility. Algorithmic
interventions such as reweighting training samples [18], regular-
izing training objectives to dissociate outcomes from protected at-
tributes [27], and adversarially perturbing learned representations
to remove sensitive information [12] are framed by their ability to
reduce bias without significantly compromising accuracy.

Algorithmic Fairness in GNNs. The aforementioned approaches
are not directly applicable for graph data due to the availability of
adjacency information and the structural and linking bias it may
contain. GNNs, given their message-passing architectures, are par-
ticularly susceptible to exacerbating this bias. This has prompted at-
tention towards mitigation strategies for GNNs. For instance, at the
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pre-training phase, REDRESS [8] seeks to promote individual fair-
ness for the ranking task, and at the in-training phase, FairGNN [6]
estimates missing protected attribute values for nodes using a GCN-
estimator for adversarial debiasing and GUIDE [31] proposes a
novel GNN model for a new group-equality preserving individual
fairness metric. We do not compare against these since they are
designed for a different task than ours, operate in different settings
altogether, and since FairGNN (in particular) exhibits a limited
circular dependency on using vanilla GNN for a sensitive task to
overcome limitations of a different GNN for classification. We refer
the reader to Dai et al. [7] for a recent survey. More relevant to
our task, EDITS [9] reduces attribute and structural bias using a
Wasserstein metric and so we use it as a baseline for comparison.
At the in-training phase, NIFTY [1] promotes a model-agnostic
fair training framework for any GNN using Lipschitz enhanced
message-passing. However, an explicit fairness-accuracy tradeoff
analysis is lacking from literature which, along with methodolog-
ical differences, makes it difficult to benchmark the comparative
utilities of these approaches. Therefore, we include these as base-
lines. We frame our study in the context of such an analysis and
design one pre-training and one post-training intervention that
offer different, but useful tradeoffs.

3 PROBLEM SETUP

Graphs. Let G = (V, E) be an unweighted, undirected graph
where V is a set of n nodes and E is a set of m edges. Denote
A = [auv ] ∈ {0, 1}n×n as its binary adjacency matrix where each
element auv indicates the presence or absence of an edge between
nodes u and v . Define D = diag (δ1,δ2, . . . ,δn ) to be a diagonal
degree matrix where δu =

∑
v auv . Let each node u in G be as-

sociated with one binary sensitive attribute variable su indicating
membership in a protected demographic group along with d − 1 ad-
ditional real or integer-valued attributes. Together, in matrix form,
we denote node attributes as X ∈ Rn×d . Lastly, ∀u ∈ V , its binary,
ground-truth, categorical label is depicted as yu .

Graph Neural Networks. Typically, GNNs comprise of multiple,
stacked graph filtering and non-linear activation layers that lever-
age X and A to learn joint node representations (see, e.g., Kipf and
Welling [20]). Such a GNN with L layers captures the L-hop neigh-
borhood information around nodes. For each v ∈ V and l ∈ [L], let
h(l )v denote the representation of node v at the l-th GNN layer. In
general, h(l )v is formulated via message-passing as follows:

h(l )v = CB(l )
(
h(l−1)
v , AGG(l−1)

({
h(l−1)
v : u ∈ N (v)

}))
(1)

whereN (v) is the neighborhood ofv , h(l−1)
v is the representation of

v at the (l − 1)-th layer, AGG is an aggregation operator that accepts
an arbitrary number of inputs, i.e., messages from neighbors, and
CB is a function governing how nodes update their representations
at the l-th layer. At the input layer, h(0)v is simply the node attribute
xv ∈ X and h(L)v is the final representation. Finally, applying the
softmax activation function on h(L)v and evaluating cross-entropy
error over labeled examples, we can obtain predictions for unknown
labels ŷv . In this paper, we use AUC-ROC and F1-scores (thresh-
olded at 0) to measure GNN accuracy.

Algorithmic Fairness. We measure the algorithmic fairness of
a GNN model using two metrics. First, Statistical Disparity (∆SP),
based on the independence criterion, captures the difference between
the positive prediction rates between members in the protected and
non-protected groups [11]. Formally, for a set of predicted labels Ŷ:

∆SP =

���� Pr
[
Ŷ = 1 |s = 1

] − Pr
[
Ŷ = 1 |s = 0

] ���� (2)

Second, Inequal Opportunity (∆EO), which is one separation criterion,
measures the similarity of the true positive rate of a model across
groups [16]. Formally:

∆EO =

���� Pr
[
Ŷ = 1 |s = 1, Y = 1

] − Pr
[
Ŷ = 1 |s = 0, Y = 1

] ���� (3)

Equation (3) compares the probability of a sample with a positive
ground-truth label being assigned a positive prediction across sen-
sitive and non-sensitive groups. In the following sections, we refer
to ∆SP as disparity and ∆EO as inequality to emphasize that lower
values are better since they indicate similar rates.

Having defined the various elements in our setting, we formally
state our task below:

Problem 1 (Algorithmically Fair Node Classification). Given
a graph G as an adjacency matrix A, node features X including sen-
sitive attributes s, and labels YV for a subset of nodes V ⊂ V , debias
GNNs such that their predicted labels YV\V are maximally accurate
while having low ∆SP and ∆EO.

4 ALGORITHMS

In this section, we propose two algorithms for Problem 1: PFR-AX
(pre-training) and PostProcess (post-training).

4.1 PFR-AX

Our motivation for a data debiasing intervention arises from re-
cent results showing that GNNs have a tendency to exacerbate
homophily [41]. Final node representations obtained from GNNs
homogenize attributes via Laplacian smoothing based on adjacency.
This has contributed to their success in terms of classification accu-
racy. However, it has also led to inconsistent results for nodes in
the protected class when their membership status is enhanced in
their representations due to message-passing [9, 19], particularly
in cases of high homophily. Lahoti et al. [22] design PFR to trans-
form attributes to learn new representations that retain as much
of the original data as possible while mapping equally deserving
individuals as closely as possible. The key benefit offered by PFR is
that it obfuscates protected group membership by reducing their
separability from points in the non-protected group. Therefore, we
directly adapt PFR for graph data to debias attributes and adjacency.
Algorithm 1 presents the pseudocode for PFR-AX.

Debiasing Attributes. In order to transform attributes X using
PFR, we build two matrices. The first, denoted byW X , is an adja-
cency matrix corresponding to a k-nearest neighbor graph over X
(not including s) and is given as:

W X
uv =

{
exp

(−∥xu−xv ∥2
t

)
, if u ∈ Nk (v) orv ∈ Nk (u)

0, otherwise
(4)
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Algorithm 1: PFR-AX
Input: Graph G = (V, E) as adjacency matrix A; Degree matrix
D; Node attributes X; Sensitive attributes s; Ranking variable Z ;
Number of rounds TSC;
Output: Debiased attributes X̂; Debiased graph G̃;
/* Debias Attributes */
X̂← PFR (X,Z , s) . . .Solve Equation 6
/* Debias Adjacency */
U ← DeepWalk (A) . . .cf. Equation 7
Û ← PFR

(
U,Z , s

)
. . .Solve Equation 6

▷ EmbeddingReverser
M ← 0
G̃ ← Initialize empty graph
for u inV do

d [u] ← 0, completed [u] ← False
end for

for t in TSC rounds do
for u inV do

if completed [u] is False then
Nδu (u) ← δu nearest neighbors of u in Û
for v in Nδu (u) do

Nδv (v) ← δv nearest neighbors of v in Û
if completed [j] is False and u ∈ Nδv (v) then

Add edge (u,v) to G̃
Increment M
if M ≥ |E|, break
if d [u] ≥ δu , then completed [u] ← True
if d [v] ≥ δv , then completed [v] ← True

end if

end for

end if

end for

end for

where t is a scaling hyperparameter and Nk (v) is the set of k near-
est neighbors of v in Euclidean space. We first normalize X using
Min-Max scaling to ensure that all attributes contribute equally
and then computeW X as per Equation 4. The second matrix, de-
noted byW F , is the adjacency matrix of a between-group quantile
graph that ranks nodes within protected and non-protected groups
separately based on certain pre-selected variables and connects
similarly ranked nodes. In the original paper, Lahoti et al. [22] use
proprietary decile scores obtained from Northpointe for creating
rankings. However, in the absence of such scores for our data, we
use one directly relevant attribute for the task at hand. For instance,
in the case of a credit risk application, we define rankings based on
the loan amount requested. Formally, this matrix is given as:

W F
uv =

{
1, if u ∈ Xp

su andv ∈ Xp
sv , su , sv

0, otherwise
(5)

whereXp
s denotes the subset of nodes with sensitive attribute value

s whose scores lie in the p-th quantile. Higher number of quantiles
leads a sparserW F . Thus,W F is a multipartite fairness graph that
seeks to build connections between nodes with different sensitive

attributes based on similarity of their characteristics even if they are
not adjacent in the original graph. Finally, a new representation of
X, denoted as X̃, is computed by solving the following problem [22]:

minimizeX̃ (1 − α)
n∑
u,v
∥x̃u − x̃v ∥2W X

uv

+ α
n∑
u,v
∥x̃u − x̃v ∥2W F

uv

s.t. X̃⊤X̃ = I

(6)

where α controls the influence ofW X andW F on X̃.

Debiasing Adjacency. To reduce linking bias from A, we apply a
three-step process. First, we compute an unsupervised node embed-
ding of the graph using a popular matrix factorization approach
named DeepWalk [29]. Formally, this is computed as follows:

U = log
(
vol (G)

(
1
C

C∑
c=1

(
D−1A

)c )
D−1

)
− logb (7)

where vol (G) = 2m/n is the volume of the graph, C represents the
length of the random walk, and b is a hyperparameter controlling
the number of negative samples. Second, using the same afore-
mentioned procedure for debiasing X, we apply PFR on U. Third,
we design a new algorithm to invert this debiased embedding to
reconstruct a graph with increased connectivity between nodes
in protected and non-protected groups. This algorithm, which we
refer to as EmbeddingReverser, proceeds as follows. We initialize
an empty graph of n nodes and locate for each node u, its δu closest
neighbors in the embedding space denoted as Nδu (u) where δu is
the degree of u in the original graph. Starting from the first node
(say) v , for every w ∈ Nδv (v), we check if v is present in w’s δw
closest neighbors. If so, we add an edge between v andw and incre-
ment counters corresponding to the current degrees for v and w .
We also increment a global counter maintaining the number edges
added so far. If the current degree for any node (say) u reaches δu ,
we mark that node as completed and remove it from future con-
sideration. This continues either for TSC rounds where each round
iterates over all nodes or untilm edges have been added. Thus, we
seek to maximally preserve the original degree distribution.

4.2 PostProcess

Model Predictions. LetM be a GNN model trained on a set of
nodes V ∈ V . Let V ′ = V \ V represent nodes in the test set
and let sV ′ be their sensitive attribute values. For any u ∈ V ′,
denote r (u) ∈ R as the original output (logit) score capturing the
uncalibrated confidence ofM. In our binary classification setting,
we threshold r (·) at 0 and predict a positive outcome for u, i.e.
ŷu = 1, if r (u) ≥ 0. Otherwise, we predict a negative outcome.
Denote ŶV ′ as the set of labels predicted byM.

Do-No-Harm Policy. Next, we present our model-agnostic post-
training intervention called PostProcess which operates in an
unsupervised fashion independent of ground-truth labels. Different
from prior interventions, especially Wei et al. [35], PostProcess
seeks to relabel model predictions following a do-no-harm policy, in
which protected nodes with a positive outcome are never relabeled
to a negative outcome. We audit ŶV ′ and sV ′ to identify all the nodes
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Algorithm 2: PostProcess
Input: Test set V ′; Sensitive attribute values sV ′ ; Model
predictions ŶV ′ ; Model output scores r (·) for V ′; Flip parameter
γ ; confidence (uncalibrated) MAX-SCORE;
Output: Updated model predictions ŶV ′ ; Updated model output
scores r (·);
S1-Y0← ∅
for u in V ′ do

if su = 1 and ŷu = 0 then

S1-Y0← S1-Y0 ∪ {u}
end if

end for

P ← Randomly select γ fraction of nodes from S1-Y0
for v in P do

ŷv ← 1
r (v) ← MAX-SCORE

end for

in the test set belonging to the protected class (s = 1) that have
been assigned a negative outcome (ŷ = 0). Denote this set as S1-Y0
(and so on for S1-Y1, etc.). For a fixed parameter γ ∈ [0, 1], we
randomly select a γ fraction of nodes from S1-Y0 and change their
predicted label to a positive outcome, i.e., ŷ = 1. Then, we update
M’s scores for these nodes to a sufficiently large (uncalibrated)
positive value. That is, we post-processM to be confident about
its new predicted labels. Predictions for all other nodes in the test
set remain unchanged. Algorithm 2 describes the pseudocode.

Choice of γ . Determining a useful value for γ depends on two
factors: (i) imbalance in the test set with respect to the number of
nodes in the protected class, and (ii) bias inM’s predictions towards
predicting negative outcomes. If imbalance and bias are large, small
γ values may be sufficient to reduce disparity. If imbalance is low
and bias is large, then large γ values may be required. Let n̂S1-Y1
denote the number of nodes in S1-Y1, and similarly for S1-Y0, etc.
Then, disparity (Equation 2) is rewritten as:

∆SP =

���� n̂S1-Y1
n̂S1-Y1 + n̂S1-Y0

− n̂S0-Y1
n̂S0-Y1 + n̂S0-Y0

����
Our do-no-harm policy reduces n̂S1-Y0 and increases n̂S1-Y1.

n̂S1-Y1 + n̂S1-Y0 remains constant. Thus, the first term in the equa-
tion above increases while the second remains the same. If the
difference between the first and second terms is small, then Post-
Process will increase disparity. Conversely, if the difference is large,
then PostProcess will reduce disparity. If n̂S1-Y1 >> n̂S1-Y0, then
PostProcess will have marginal impact on disparity. The effect on
∆EO follows equivalently, but may not be correlated with ∆SP.

Note, the impact of γ on accuracy cannot be determined due to
the unavailability of ground-truth label information during this
phase. So, in Section 5.3, we empirically analyze the impact of γ on
accuracy, averaged over T trials for smoothening.

5 EXPERIMENTS

In this section, we describe the datasets and the methodology used
in our experimental study and report our findings.

Table 1: Dataset Statistics: number of nodes (|V|), number

of edges (|E |), sensitive attribute s, label l , sensitive attribute
homophily

2
(hs ), label homophily (hl ).

Dataset

Size Properties

|V| |E | s l hs hl

German 1K 21K Gender Good Risk 0.81 0.60
Credit 30K 1.42M Age No Default 0.96 0.74
Penn94 41K 1.36M Gender Year 0.52 0.78
Pokec-z 67K 617K Region Profession 0.95 0.74

5.1 Datasets

We evaluate our interventions on four publicly-available datasets
ranging in size from 1K to 67K nodes. For consistency, we binarize
sensitive attributes (s) and labels in each dataset. s = 1 indicates
membership in the protected class and 0 indicates membership
in the non-protected class. Similarly, label values set to 1 indicate
a positive outcome and 0 indicate a negative outcome. Table 1
presents a summary of dataset statistics.

Semi-Synthetic Data. German [10] consists of clients of a Ger-
man bank where the task is to predict whether a client has good
or bad risk independent of their gender. Credit [34] comprises of
credit card users and the task is to predict whether a user will default
on their payments. Here, age is the sensitive attribute. Edges are con-
structed based on similarity between credit accounts (for German)
and purchasing patterns (for Credit), following Agarwal et al. [1].
We add an edge between two nodes if the similarity coefficient be-
tween their attribute vectors is larger than a pre-specified threshold.
This threshold is set to 0.8 for German and 0.7 for Credit.

Real-world Data. In Penn94 [33], nodes are Facebook users,
edges indicate friendship, and the task is to predict the graduation
year [25] independent of gender (sensitive attribute). Pokec-z [6] is
a social network of users from Slovakia where edges denote friend-
ship, region is a sensitive attribute, and labels indicate professions.

5.2 Methodology

Processing Datasets. Agarwal et al. [1] and Dong et al. [9] utilize
a non-standardized method for creating dataset splits that does not
include all nodes. Following convention, we create new stratified
random splits such that the label imbalance in the original data is
reflected in each of the training, validation, and test sets. For Ger-
man, Credit, and Pokec-z, we use 60% of the dataset for training,
20% for validation, and the remaining 20% for testing. For Penn94,
we use only 20% for training and validation (each) because we find
that is sufficient for GNNs, with the remaining 60% used for testing.
Additionally, we adapt the datasets for use by PFR as described
previously (cf. Section 4.1). 3 For computing between-group quan-
tile graphs, we choose Loan Amount, Maximum Bill Amount Over
2Homophily in relation to an attribute is defined as the ratio of number of edges with
both end-points having the same value to the total number of edges.
3Unlike ours, Song et al. [31] compare with PFR without employing ranking variables.
Further, they set both W F and W X to the (normalized) adjacency matrix to fit-
transform node attributes which is different from the prescribed specifications by
Lahoti et al. [22]. URL: https://github.com/weihaosong/GUIDE (retrieved April 2023).

https://github.com/weihaosong/GUIDE
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Figure 1: Accuracy (X-axis, larger is better) measured using AUC-ROC versus algorithmic discrimination (Y-axis, smaller is

better) measured using Disparity (top row) and Inequality (bottom row) reported as percentages. The optimal is towards the

bottom right in all plots which denotes higher AUC-ROC and lower Disparity and Equality.

Last 6 Months, Spoken Language, and F6 as ranking variables for
German, Credit, Pokec-z, and Penn94 respectively.

Interventions. Each intervention in our study is benchmarked
against the performance of three vanilla GNNs namely, GCN, Graph-
SAGE, and GIN, referred to as Original. We construct PFR-AX
to debias X and A as per Section 4.1. For ablation, we consider
two variants: (i) PFR-X that only applies PFR on X, (ii) PFR-A that
applies only PFR on a DeepWalk embedding and reconstructs a
graph using EmbeddingReverser.

We varyγ from 0.1 (1%) to 0.4 (40%) in increments of 0.1. For each
γ , we use the same hyperparameters that returned the maximum
accuracy for vanilla GNNs and post-process their predictions as per
Algorithm 2. For each seed and γ , we randomly select γ fraction of
nodes from the protected class with a predicted negative outcome
and smoothen over 20 trials. We define heavy and light versions
of PostProcess namely, (i) PostProcess+ and (ii) PostProcess-,
in terms of γ . PostProcess+ is defined at that value of γ where
disparity is lowest compared to Original and PostProcess- is set
halfway between the disparity of Original and PostProcess+.

We compare these with three baselines: (i) Unaware (that naively
deletes the sensitive attribute column from X), (ii) EDITS [9], and
(iii) NIFTY [1]. Previous studies do not consider Unaware which is
a competitive baseline according to our results (see below).

Training. We set k = 128 dimensions for DeepWalk. Depending
on the dataset and interventions, we allow models to train for 500,
1000, 1500, or 2000 epochs. As per convention, we report results
for each model/intervention obtained after T epochs and averaged
over 5 runs. This is different from previous studies such as NIFTY

that train for (say) T epochs and report results for that model in-
stance that has the best validation score from upto T epochs. This,
combined with our stratified splits, is a key factor for observing ma-
terially different scores from those reported by the original authors.
To ensure fair comparison, we tune hyperparameters for each in-
tervention and model via a combination of manual grid search and
Bayesian optimization using WandB [3]. The goal of this hyperpa-
rameter optimization is to find that setting of hyperparameters that
results in a model with a maximal AUC-ROC score while aiming to
have lower disparity and equality scores than Original.

Implementation. We implement our models and interventions
in Python 3.7. We use SNAP’s C++ implementation for DeepWalk.
EDITS4 and NIFTY5 are adapted from their original implementa-
tions. Our experiments were conducted on a Linux machine with
32 cores, 100 GB RAM, and an V100 GPU. Our code is available at
https://github.com/arpitdm/gnn_accuracy_fairness_tradeoff.

5.3 Results

Algorithmic Fairness-Accuracy Tradeoff. Figure 1 presents AUC-
ROC (X-axis) against disparity (Y-axis) in the first row and inequal-
ity (Y-axis) in the second row achieved by various interventions for
the four datasets (cf. RQ1). We represent the vanilla GCN model
as an orange square and use different orange markers for differ-
ent interventions on GCN. GraphSAGE is similarly illustrated in
green. Interventions that cause a > 5% (multiplicative) decrease in
AUC-ROC compared to the vanilla model are omitted from the plot.

4https://github.com/yushundong/EDITS (retrieved April 2022)
5https://github.com/chirag126/nifty (retrieved April 2022)

https://github.com/arpitdm/gnn_accuracy_fairness_tradeoff
https://github.com/yushundong/EDITS
https://github.com/chirag126/nifty
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Figure 2: AUC-ROC as a function of Disparity (red) and Inequality (purple) for varying levels of the γ parameter of PostPro-

cess on the Credit dataset. Higher values of γ are depicted by larger marker shapes and darker colors and indicate heavier

interventions. As γ increases, AUC-ROC always decreases and Equality increases. Disparity first decreases upto an inflection
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Figure 3: Runtime in seconds (log-scale) of various interventions onGCN,GraphSAGE, andGIN forGerman,Credit,Penn94,

and Pokec-z increasing with dataset size. PostProcess is fastest because updating model inference is inexpensive.

Since higher values of AUC-ROC and lower values of ∆SP and ∆EO
are better, the optimal position is towards the bottom right in each
plot (cf. RQ2). For ease of presentation, we defer full results for GIN
and all interventions to Table 2 in Appendix A.

Across datasets, GraphSAGE and GIN are more accurate than
GCN but GraphSAGE displays higher disparity and inequality
while GIN displays lower. PFR-AX and PostProcess- offer bet-
ter tradeoffs than other baselines for German and Credit across
models. This translates to upto 70% and 80% lower disparity than
Original at less than 5% and 1% decrease in accuracy on German,
respectively. In comparison, NIFTY offers 60% lower disparity (2.18%
vs. 5.16% on German) at a 4.22% reduction in AUC-ROC. The lack
of correlation between decreases in disparity and inequality may be
explained in part by the impossibility theorem showing that these
two criteria cannot be optimized simultaneously Chouldechova
[4]. In Penn94 and Pokec-z, PFR-A and PFR-X are more effective
than PFR-AX (cf. Table 2). We caveat the use of PostProcess in
these datasets because choosing nodes randomly displays unin-
tended consequences in maintaining accuracy without promoting
fairness. Unaware proves effective across models and is especially
optimal for Pokec-z. EDITS proves a heavy intervention causing
large reductions in accuracy for relatively small gains in disparity.

Sensitivity to γ . Figure 2 trades off AUC (X-axis), disparity (left
Y-axis, red points), and inequality (right Y-axis, purple points) for

GCN, GraphSAGE, and GIN on Credit as a function of γ . Due to
large label imbalance in Credit and small number of nodes with
negative predicted outcomes from the protected class, varying γ
by 1% translates to changing predictions for 7 nodes. PostProcess
thus offers granular control. As γ increases, AUC-ROC decreases
while ∆SP first reduces and then increases again. This inflection
point indicates that the post-processing policy is overcorrecting
in favour of the protected class resulting in disparity towards the
non-protected class. Conversely, such improvements are absent in
Pokec-z since vanilla GNNs themselves are inherently less biased.

Runtime. Figure 3 depicts the total computation time in seconds
(on log-scale) for each intervention on the four datasets for GCN,
GraphSAGE, and GIN. We observe similar trends for all three GNN
models. As expected, the larger the dataset, the higher the runtime.
Updating a model’s predictions at inference time is inexpensive
and the resulting overhead for PostProcess is thus negligible. The
running time for PFR-AX increases significantly with increasing
dataset size. The key bottlenecks are very eigenvalue decomposi-
tions for sparse, symmetric matrices in PFR requiring O (

n3) time
and constructing DeepWalk embeddings. For instance, in the case
of Pokec-z, PFR required (on average) 47 minutes in our tests
while EmbeddingReverser and GNN training required less than 5
minutes each. For comparison, NIFTY required approximately 22
minutes while EDITS did not complete due to memory overflow.
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Figure 4: Density of logit scores of GCN (first row), GraphSAGE (second row), and GIN (third row) after applying different al-

gorithmic fairness interventions for users in the protected class in theCredit dataset. The vertical dashed (black) line depicts

the threshold used for label prediction (positive scores indicate positive outcomes). The colored dashed curves indicate the

density of output scores of Original. PFR-AX and PostProcess- improve model confidence (density) for correctly predicting

a positive label for users in the protected class.

Model Confidence. In Figure 4, we display the impact of fairness
interventions on a model’s confidence about its predictions, i.e., un-
calibrated density (Y-axis), compared to its logit scores (X-axis) on
the Credit dataset. The plots in the top, middle, and bottom rows
corresponds to GCN, GraphSAGE, and GIN, respectively. Larger
positive values imply higher confidence about predicting a positive
outcome and larger negative values imply higher confidence for a
negative outcome prediction. While there isn’t a universal desired
outcome, an intermediate goal for an intervention may be to ensure
that a model is equally confident about correctly predicting both pos-
itive and negative labels. Blue regions show normalized density of
logit values for nodes in the protected class with a positive ground-
truth label (S1-Y1) and green regions show the same for nodes in
the protected class with a negative outcome as ground-truth. The
dashed colored lines indicate density values for these groups of
nodes for the Original model. PostProcess and Unaware induce
small changes to GNN’s outputs while EDITS is significantly dis-
ruptive. PFR-AX nudges the original model’s output for nodes in
S1-Y1 away from 0 making it more confident about its positive
(correct) predictions while NIFTY achieves the reverse.

6 CONCLUSION

We presented two interventions that intrinsically differ from ex-
isting methods: PFR-AX debiases data prior to training to connect
similar nodes across protected and non-protected groups while
seeking to preserve existing degree distributions; PostProcess up-
dates model predictions to reduce error rates across protected user
groups. We frame our study in the context of the tension between
disparity, inequality, and accuracy and quantify the scope for im-
provements and show that our approaches offer intuitive control
over this tradeoff. Given their model-agnostic nature, we motivate
future analysis by combining multiple interventions at different
loci in the learning pipeline.
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A ADDITIONAL EXPERIMENTAL RESULTS

Table 2: Accuracy (AUC-ROC) and algorithmic fairness (Disparity and Inequality) scores for 8 interventions for GCN, Graph-

SAGE, andGINmodels on four datasets. Results are averaged across five runs. Higher values of AUC (fraction between 0 and 1)

indicate higher performance. Lower values of disparity (∆SP) and inequality (∆EO) in percentage indicate higher algorithmic

fairness. No single intervention dominates all others across datasets and models. However, PostProcess- generally offers a

gentle accuracy-fairness tradeoff. A dashed line denotes out-of-memory.

Dataset Model Metric Original Unaware EDITS PFR-A PFR-X PFR-AX NIFTY PostProcess+ PostProcess-

German

GCN
AUC-ROC 0.687 0.688 0.695 0.643 0.698 0.638 0.658 0.670 0.682

Parity 5.156 2.878 3.625 2.068 4.204 3.878 2.182 1.082 3.250
Equality 1.260 1.690 2.215 1.54 2.612 2.112 3.094 3.668 2.242

GraphSAGE
AUC-ROC 0.688 0.685 0.691 0.665 0.708 0.708 0.653 0.680 0.685

Parity 4.450 5.034 4.582 2.856 3.072 2.758 3.976 0.970 2.864
Equality 3.974 3.748 3.566 2.804 5.174 4.348 3.036 1.482 2.576

GIN
AUC-ROC 0.709 0.707 0.675 0.664 0.619 0.59 0.654 0.680 0.696

Parity 8.600 1.496 5.61 2.714 1.218 2.602 2.118 2.882 6.058
Equality 2.168 4.260 2.824 1.6 1.362 4.476 3.278 2.216 1.624

Credit

GCN
AUC-ROC 0.720 0.681 0.704 0.721 0.735 0.727 0.715 0.713 0.718

Parity 2.518 6.194 2.12 3.094 0.316 1.344 3.614 1.396 1.962
Equality 1.332 4.550 0.944 1.274 0.444 0.762 0.610 1.890 1.430

GraphSAGE
AUC-ROC 0.737 0.739 0.744 0.72 0.751 0.747 0.726 0.725 0.731

Parity 4.484 3.876 3.9 3.866 2.746 2.67 4.112 0.218 2.298
Equality 0.806 0.302 0.276 1.184 0.366 0.98 1.042 0.828 0.436

GIN
AUC-ROC 0.739 0.713 0.707 0.724 0.742 0.716 0.716 0.735 0.737

Parity 2.016 0.686 0.86 1.32 0.612 1.616 3.268 0.194 1.142
Equality 0.486 0.296 0.494 1.204 0.776 0.416 0.440 0.358 0.224

Penn94

GCN
AUC-ROC 0.761 0.765 0.78 0.69 0.796 0.734 0.771 0.758 0.760

Parity 1.858 1.806 2.208 1.856 1.21 1.44 1.014 2.820 2.340
Equality 0.650 1.086 0.982 3.046 2.254 3.264 1.088 1.016 0.818

GraphSAGE
AUC-ROC 0.838 0.841 0.854 0.732 0.83 0.807 0.782 0.832 0.835

Parity 3.762 3.908 5.09 2.54 4.326 4.734 1.998 5.154 4.456
Equality 2.090 2.432 3.74 0.922 1.692 0.514 0.436 2.864 2.456

GIN
AUC-ROC 0.789 0.778 0.776 0.717 0.694 0.731 0.769 0.784 0.786

Parity 1.546 1.058 1.474 1.081 1.670 1.182 0.862 3.116 2.320
Equality 2.358 1.732 3.306 4.584 2.672 2.368 1.966 1.130 1.732

Pokec-Z

GCN
AUC-ROC 0.701 0.701 – 0.66 0.616 0.615 0.627 0.700 0.701

Parity 0.530 0.378 – 0.235 0.216 0.502 0.700 0.582 0.530
Equality 0.458 0.306 – 0.412 0.078 0.486 0.582 0.484 0.458

GraphSAGE
AUC-ROC 0.828 0.830 – 0.827 0.775 0.778 0.806 0.827 0.828

Parity 0.860 0.384 – 0.954 0.33 0.327 0.374 1.014 0.928
Equality 0.848 0.372 – 0.634 0.464 0.458 0.378 0.936 0.890

GIN
AUC-ROC 0.712 0.710 – 0.651 0.623 0.641 0.669 0.712 0.712

Parity 0.406 0.136 – 0.721 0.181 0.673 0.156 0.456 0.406
Equality 0.398 0.076 – 1.898 1.439 1.887 0.114 0.438 0.398
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