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Abstract

People recommender systems may affect the exposure that
users receive in social networking platforms, influencing at-
tention dynamics and potentially strengthening pre-existing
inequalities that disproportionately affect certain groups.
In this paper we introduce a model to simulate the feed-
back loop created by multiple rounds of interactions between
users and a link recommender in a social network. This al-
lows us to study the long-term consequences of those par-
ticular recommendation algorithms. Our model is equipped
with several parameters to control: (i) the level of homophily
in the network, (ii) the relative size of the groups, (iii) the
choice among several state-of-the-art link recommenders, and
(iv) the choice among three different stochastic user behavior
models, that decide which recommendations are accepted or
rejected.
Our extensive experimentation with the proposed model
shows that a minority group, if homophilic enough, can get
a disproportionate advantage in exposure from all link rec-
ommenders. Instead, when it is heterophilic, it gets under-
exposed. Moreover, while the homophily level of the minor-
ity affects the speed of the growth of the disparate exposure,
the relative size of the minority affects the magnitude of the
effect. Finally, link recommenders strengthen exposure in-
equalities at the individual level, exacerbating the“rich-get-
richer” effect: this happens for both the minority and the ma-
jority class and independently of their level of homophily.

1 Introduction
Contact recommender algorithms (e.g., “People You May
Know” in Facebook or “Who to Follow” in Twitter) are rec-
ognized as key components in any on-line social network-
ing platform: they help the users extending their network
faster, thus driving engagement and loyalty (Ricci, Rokach,
and Shapira 2011; Barbieri, Bonchi, and Manco 2014; Xie
et al. 2016; Aiello and Barbieri 2017). As they affect the
“social capital” –the number of followers one user has on
these platforms– these algorithms determine to a great ex-
tent the exposure and the amount of attention a user receives,
potentially strengthening pre-existing inequalities and soci-
etal biases. Effects such as the “algorithmic glass ceiling”
(Stoica, Riederer, and Chaintreau 2018) and more generally,

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

inequalities in node rankings within and between groups of
users (Karimi et al. 2018, Fabbri et al. 2020), are phenomena
that may be exacerbated by the recommenders, especially
in presence of an homophilic behaviour. Given that people
recommenders are adopted not only in recreational social
networks, but also in spheres such as employment (Heap
et al. 2014; Liu et al. 2016b,a; Ha-Thuc et al. 2016; Domeni-
coni et al. 2016; Guy, Ronen, and Wilcox 2009) and edu-
cation (Vassileva, McCalla, and Greer 2016; Zhang et al.
2016), studying their potential biases is of great significance.

In our previous work we highlighted the harmful conse-
quences of link recommenders after one round of recom-
mendations (Fabbri et al. 2020). Such a static picture can
be limited as it does not study the consequential effects of
the user behaviour which, by accepting or rejecting the rec-
ommendations, can determine the future structure of the so-
cial network and thus the exposure distribution. Specifically,
multiple interactions between users and recommendation al-
gorithms tend to nourish a feedback loop: i.e., the output
generated by the recommendation algorithm is then fed as
future input for the next training of the recommender. In
our setting, the recommended new links which are accepted,
modify the structure of the network, thus constituting the
input for the next cycle of link suggestions. In the context
of items recommendation, recent simulation-based studies
interested in the side-effects of collaborative filtering algo-
rithms, show how a similar feedback loop (Mansoury et al.
2020) impacts over user preferences, stimulating the popu-
larity bias (Yao et al. 2021). Those works underline the im-
portance of providing models able to simulate the potential
scenarios which may be otherwise difficult to investigate.

Following a similar approach, but focusing on people rec-
ommendations, in this paper we tackle the following re-
search question: “which impact can link recommendation
algorithms have over the network structure and user expo-
sure along multiple rounds of recommendations?”

Our contribution towards answering this question is a
model able to simulate the long-term consequences of the
injection of new recommended links into the network, repro-
ducing the feedback loop triggered by the multiple interac-
tions between users and the link recommender. Figure 1 pro-
vides a bird’s eye view of our proposed simulation model.

Starting with a social network where the nodes are parti-
tioned in subgroups, e.g., by means of protected attributes
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Figure 1: Bird’s eye view of the simulation framework.

such as gender or race (§3.1), a set of different link rec-
ommenders are applied to the network to provide, at each
iteration, k link recommendations to each user (§3.2). The
user at this stage may then decide to accept or reject the rec-
ommendation. This decision is governed by three different
stochastic user behavior models (§3.3). The rejected links
are then discarded, while the new ones are included in the
social graph. The new augmented graph will then be the in-
put to the next round of training of the recommender. De-
spite our models does not consider the organic growth of the
social graph, the simulations show that the injection of new
links proposed by the recommendation algorithms can move
the social graph far from the initial configuration.
Contributions and findings. In this paper we propose a
simulation model able to utilize several network configura-
tions, user behaviors, and recommendation models in order
to study the long-term effects of people-recommender sys-
tems in social networks. We quantify the long-term disparate
exposure generated by different initial network topologies,
minority size and homophily level, and using different state-
of-the-art link recommenders, and different stochastic user
behavior models. Our work confirms and extends the pre-
liminary theoretical insights provided by Stoica, Riederer,
and Chaintreau (2018) and the empirical results of our pre-
vious work (Fabbri et al. 2020), which was limited to one
single round of recommendations.

Our findings are summarised as follows:

• Confirming the theoretical findings of Stoica, Riederer,
and Chaintreau (2018), our experiments show that, if the
minority class is homophilic enough, it can get an advan-
tage in exposure from all link recommenders. If the mi-
nority is heterophilic instead, it gets underexposed.

• While the previous observation is robust to all the recom-
menders, the speed and magnitude of the disparate expo-
sure along time differ across recommenders.

• While the homophily of the minority affects the speed of
the growth of disparate exposure, the size of the minority
affects its magnitude.

• The user behavior model (how recommendations are ac-
cepted or declined) does not impact significantly the evo-
lution of exposure as much as the initial network configu-
ration and the algorithm do.

• Some recommenders can strengthen exposure inequali-
ties at the individual level: after a few iterations, most
of the links are recommended towards a small subset of
“super-star” nodes. This happens for both the minority
and the majority class and independently of their level of
homophily. Hence, in the long-term, the “rich-get-richer”
effect is exacerbated .

2 Related Work
In this section we discuss the literature most related to our
work. We divide the presentation into two topics: work deal-
ing with inequalities in social networks, and simulation-
based studies in recommender systems.
Inequalities in social networks. In our previous work (Fab-
bri et al. 2020) we observed, in a “static” single round of rec-
ommendations, that homophily is a driving force in shifting
visibility distribution. In particular, we introduced the con-
cept of disparate visibility in a bi-populated network, show-
ing how effects such bias in rankings and rich-get-richer can
get amplified by homophilic networks. The main limitation
of our previous study is that it looks at one single round of
recommendations, missing the long-term effects.

Stoica, Riederer, and Chaintreau (2018) study the exis-
tence of a glass-ceiling (an invisible barrier that prevents
women from rising in higher rankings) effect amplified by
the combination of organic growth and a random walk rec-
ommenders. Their preliminary analytical findings inspired
us to study, through simulations, different recommenders
and distinct network topologies. The main limitation of
(Stoica, Riederer, and Chaintreau 2018) is that its theoret-
ical findings require many strong assumptions to hold, such
as, the existence of a power inequality between groups in-
degree distributions and the use of a specific, random-walk
based, recommender.

Lee et al. (2019) show that the perceptions about the size
of minority groups in social networks can be biased, often
exhibiting systematic over- or underestimation. Moreover,
these biases can be explained by the level of homophily
and by the size of the minority class. Our work, is inspired
by their insights, extending the analysis of the inequali-
ties while the network is injected with new links driven by
the recommendation output. We confirm their observations,
showing how the recommender algorithms can introduce
even more inequality along the time.

Tsioutsiouliklis et al. (2020) propose methods for
fairness-aware link analysis, introducing techniques able to
mitigate unfairness generated by Pagerank. Later, in §4, we
will show that another popular random-walk based recom-
mender (i.e., SALSA) can increase the unfairness in visibil-
ity in the long run, thus confirming the need to devise meth-
ods able to mitigate these effects.
Simulation-based studies in recommender systems. Ci-
nus et al. (2022) combine link recommendation and opinion-
dynamics models in a simulation-based framework, to as-
sess the effect of people recommenders on the evolution of
opinions in a social network. They show that, if the initial
network exhibits high level of homophily, people recom-
menders can help creating echo chambers and polarization.



In the context of collaborative-filtering-based methods,
Mansoury et al. (2020) show that popularity bias can be
stimulated by feedback loop, where popular items tend to
obtain more and more interactions if generated through rec-
ommendations. Jiang et al. (2019) propose a theoretical
framework to model the effects of “filter bubble”, i.e., the
tendency of the recommendation algorithm to drive the pref-
erences of the user towards a limited amount of items. Re-
cently, Yao et al. (2021) propose a simulation model for
measuring the impact of recommender systems over time,
analyzing the changes in the user experience with an appli-
cation designed for food recommender system.

Our work is motivated by the importance of studying al-
gorithmic bias in recommendations and rankings in the long
term, i.e., beyond the single round of algorithmic interven-
tion. In this regard, Ge et al. (2021) have recently introduced
the problem of long-term fairness, designing also solutions
able to account for algorithmic unfairness in the long-term in
movies recommendations. Shi et al. (2017) propose a simu-
lation model able to include multiple recommender systems
combined with different users choice models, proving that
the rich-get-richer effect tends to increase over time, stim-
ulated by the algorithm. In our study we analyze the evo-
lution of rich-get-richer effect in social networks, fueled by
the edges created thanks to the recommendation algorithms.

Nguyen et al. (2014) show how in the case of Movie-
Lens data, recommendations generated through a collabo-
rative filtering approach have not strengthen the filter bubble
effect. In our paper we go in the opposite direction, showing
how homophily may generate biased recommendations, to-
wards a smaller set of recommendations, reducing the diver-
sity of those. Sun et al. (2019) propose a mitigation strategy
to reduce popularity bias in recommendations through dif-
ferent methods based on active-learning. The methods pro-
posed are aimed at reducing popularity bias, which in our
setting can be related to rich-get-richer effect. Although this
paper may be used to propose mitigation strategies to reduce
inequality in exposure, the main weakness of their work re-
gards the lack of analysis of different input data distribution.
This kind of analysis may help to understand which kind of
distribution of user-item interactions may benefit more from
their method.

3 Model
We consider a social graph whose nodes are partitioned
by demographics (e.g. gender, age or other characteristics).
More formally, let G = (V,E, `) be the social graph, where
V is the set of nodes, E ⊆ V × V is the set of directed
edges, such that an edge (u, v) ∈ E indicates the fact that
u follows v. Finally ` : V → {Vm, VM} is a labeling func-
tion assigning each node to either the minority (Vm) or the
majority (VM ) class (with |Vm| < |VM |). We denote by
sm = |Vm|/|V | the fraction of nodes belonging to the class
less represented in the network, i.e., the minority, and by sM
the fraction of nodes belonging to the majority

Homophily. To capture the bias in the distribution of the
edges towards each group, we introduce a measure of ho-
mophily, expressed as the tendency of people in a a group to

connect to individuals in the same group. We model the ho-
mophily as the portion of edges distributed within the same
group discounted by the fraction observed in a random con-
figuration (Fabbri et al. 2020). More formally:

hi =
|Eii|
|Ei.|

− si (1)

where Eii = {(u, v) ∈ E|u ∈ Vi ∧ v ∈ Vi} and Ei. =
{(u, v) ∈ E|u ∈ Vi}. This measure ranges in the interval
(−si, 1 − si]. A group is called homophilic if the tendency
to connect to nodes of the same group is stronger than ex-
pected (hi > 0), heterophilic when this tendency is weaker
than expected (hi < 0), and neutral if the number of edges
within the group is comparable to the relative size of the
group (hi = 0).
Step-by-step. In our simulations we reproduce the multi-
ple interactions between the users and the recommendation
algorithm, where at each round, a set of new links is rec-
ommended to a portion of users randomly sampled from
the graph. This sampling represents the fact that only a set
of users are online at a certain time, helping reproducing a
more realistic scenario. Then the users accepts or rejects the
recommendations according to a given stochastic user be-
havior model. This process is iterated for a given number of
iterations.The graph grows accordingly to the new accepted
recommendations: neither organic growth, nor edge removal
are considered. Table 1 summarizes the simulation process
step-by step.

Table 1: Simulation steps.

1. Input. We start with an initial network configuration
with specified levels of homophily and size of the mi-
nority class (how this initial configuration is generated
by modifying a real-world social graph is presented in
§3.1). We also set parameters such as the number of
recommendations k that a user receives in a round, the
number of iterations T , the fraction α of users to sam-
ple, the link-recommendation algorithm A (presented
in §3.2), and the stochastic user behavior model B
(discussed in §3.3).

2. Recommendation round. A link recommender
model is trained over the current social graph by the
algorithm A. A portion α of users is sampled from the
network. Those sampled users receive their top-k rec-
ommendations each. The recommendations are links
never recommended before and are generated from the
set of missing edges at distance two (e.g. “friends of
friends”).

3. Graph update. Each user decide to accept or reject
each of the k recommended links, according to the
model B. The social graph is thus updated by adding
the newly accepted links. Each link rejected at this
stage is discarded and never recommended again.

4. Repeat. Steps 2 and 3 are repeated T times.

For all the results that we report in §4 we use T = 20,
α = 20% and k = 3.



(a) G0
(original)

(b) G1
(homophilic minority)

(c) G2
(one homophilic group)

(c) G3
(heterophilic minority)

(d) G4
(two homophilic groups)

Figure 2: Representation of a sample of each generated network, where the minority is indicated in red, while the majority in
blue. Each sample considers 5,000 nodes and those are the ones with highest degree in each group. Specifically for each group,
a total of si× 5,000 (i ∈ {m,M}) nodes are sampled.

We next present in more details the various key compo-
nents of our model.

3.1 Initial network configuration
In order to control the level of homophily and the size of
the minority class, while keeping a realistic network struc-
ture, we propose a novel data generation process which,
starting with a real-world bi-populated network, performs
just the minimum amount of node class-swappings and link
rewirings to match the requested levels of homophily and
size of the minority class. In this regard, our networks are
semi-synthetic. The process is explained in details next.

Our starting real-world network comes from Tuenti, a so-
cial network popular few years ago in Spain, which was
known as “the Spanish Facebook”. The dataset includes de-
mographic information about users as gender and age (Lani-
ado et al. 2016). The network has 8,983,560 nodes (users)
and 17,830,103 edges, where a generic edge (u, v) indi-
cates a user posting on another users’ wall. Along the paper,
we use a sample of the original network used in our previ-
ous work (Fabbri et al. 2020). This sample, which is also
the one from which we derive the other configurations, is
given by partitioning the users by age (16 as cut-off). We
call it G0: it contains 500,000 nodes and 2,813,744 edges,
with a relevant minority (sm = 0.30) and both groups (ma-
jority and minority) appearing to have some level of ho-
mophily. Starting from this network, we generate 4 different
semi-synthetic networks, ranging different values of h and
s. More in details, let Vm and VM be respectively the set
of minority’s and majority’s node in the input network and
Nm = |Vm|, NM = |VM |. Let also hm, hM indicate the ac-
tual homophily of each class, and finally sm and sM are the
relative size of both classes. The generation process takes
as input the desired level of homophily for both classes, de-
noted h∗m, h

∗
M and the desired proportion for the minority

class s∗m, and works as follows:

1. Change minority-majority size. Let N∗
m = (Nm +

NM )s∗m. If N∗
m < Nm, then Nm − N∗

m nodes are sam-
pled at random from the minority class Vm and their la-
bel is flipped to the majority. Otherwise, we sample of

Table 2: Table summarizing information about the generated
graphs. For each one we have: i) name, ii) scenario charac-
terizing the network

Graph Scenario sm hm

G0 original 0.3 0.42
G1 different sizes + homophilic minority 0.1 0.4
G2 same sizes + homophilic minority 0.45 0.5
G3 different sizes + heterophilic minority 0.3 -0.25
G4 different sizes + homophilic groups 0.3 0.6

N∗
m −Nm nodes are extracted from the majority VM and

their label flipped to the minority.

2. Change homophily. For each group i ∈ {m,M} we first
compute the difference between the initial and the final
homophily |h∗i − hi| = Bi. Then depending on the sign
of the difference h∗i − hi we define which edges need to
be rewired. Rewiring an edge (u, v) means substituting
(u, v) with an edge (u,w) such that `(v) 6= `(w). If h∗i −
hi > 0 a sample of edges beloning to Eij = {(u, v) ∈
E|u ∈ Vi ∧ v ∈ Vj} is selected and rewired towards
nodes in Vi. In this way we increase the set of nodes in
Eii, reaching the requested level of homophily. Viceversa,
if h∗i − hi > 0 the operation is the opposite: old edges
belonging to the subset Eii are rewired towards nodes in
Vj . In both cases, the final amount of edges rewired is
Ei. ×Bi.
Since some recent literature has shown that small subpop-

ulations within a social network can impact the whole graph
(Stoica, Riederer, and Chaintreau 2018; Fabbri et al. 2020;
Karimi et al. 2018), we generate networks with biased dis-
tributions for the minorities. Only for one case, to have a
comprehensive analysis, we modify the homophily level in
both minority and majority groups.

More in details, these are the configurations we focus on:

• G1. To analyze the effect of a small homophilic minority
we generate a graph with sm = 0.1 and hm = 0.4, with a
neutral majority.



• G2. To emphasize the role of homophily we also generate
a graph with comparable sizes between the two groups
(sm = 0.45) with the minority strongly homophilic
(hm = 0.5) and a majority still neutral.

• G3. This configuration is the unique with a small het-
erophilic minority (hm = −0.25) (and neutral major-
ity).

• G4. The the final configuration has both subpopula-
tions homophilic. In particular, we keep a small minority
(sm = 0.3) and both groups with high level of homophily
(hm = 0.6 and hM = 0.2).

G1 andG2 are a useful comparison againstG0, since they
present comparable level of homophily but different sizes of
the minority, while G3 is useful to explore the heterophilic
case and G4 resembles a scenario quite common in contexts
where phenomena such as polarization and filter bubbles
drive the network formation (Garimella et al. 2018). Table
2 summarizes the five networks used in our analysis, while
Figure 2 depicts a sample of each network.

3.2 Link recommenders
Link recommendation algorithms are selected accordingly
to state-of-the-art performance and popularity in the litera-
ture (Li, Fang, and Sheng 2017, Fabbri et al. 2020, Stoica,
Riederer, and Chaintreau 2018). In accordance with our data
model, all the methods recommend directed links (i.e., who
to follow).

ADA: Network Topology Based. Among the different
heuristics which aim to define similarity between nodes
looking at the graph topology, we select the directed ver-
sion of the Adamic-Adar coefficient (for short “ADA” in
the rest of the paper), method that penalizes connections
with high degree nodes (Zhao et al. 2020).

SLS: Random Walks Based. As representative of
random-walks based approaches, we use SALSA
(Stochastic Approach for Link-Structure Analysis; “SLS”
in the rest of the paper), which is at the basis of the
who-to-follow recommender at Twitter (Su, Sharma, and
Goel 2016). Recommendation of a generic link is defined
as the probability of the source node to jump to the target
one, rather than to any other node in the graph.

ALS: Collaborative Filtering Based. Connections among
nodes can be considered as implicit feedback in a collabo-
rative filtering approach. An Alternating Least Squares al-
gorithm (“ALS” in the rest of the paper) is selected to per-
form recommendations (Hu, Koren, and Volinsky 2008).
New links are suggested based on latent features extracted
from the adjacency matrix.

RND: Random baseline. As baseline, we consider a ran-
dom recommender (“RND” in the rest of the paper),
which picks recommendations uniformly at random from
the candidate nodes at distance 2.

3.3 User behavior models
In order to simulate the user feedback on the received recom-
mendation, we consider three stochastic user behavior mod-

els. The first two are adapted from a recent work simulat-
ing user-item interactions (Yao et al. 2021), while the third
one defines acceptance probability biased by the position in
the ranked list of recommendations. Through these stochas-
tic choice models the users add in expectation one edge per
recommended list.

• B-LZY - Lazy. The user accepts directly the first recom-
mendation:

P (u selects v at position i) =
{
1 if i = 1
0 otherwise

• B-RND - Random. The user picks in the top-k, one rec-
ommendation uniformly at random:

P (u selects v at position i) =
1

k

• B-PSB - Position Biased. This policy refers to the idea of
having user choices biased by the position bias of rank-
ings, where the user may accept or reject the recommen-
dation with probability based on its position (Craswell
et al. 2008). Hence, higher ranked suggestions are more
likely to be chosen:

P (u selects v at position i) =
1/ log (i+ 1)∑k
j=1 1/ log (j + 1)

.

• B-MIX - Mixed. In order to evaluate how heterogenous
user behaviors may affect the exposure distribution, we
also include B-MIX, which is a combination of the pre-
vious policies. Specifically, at each iteration, each user
first picks, uniformly at random, one of the three strate-
gies above, then follows it.

B-PSB model resembles the classical position bias, observed
as key factor for predicting clickthrough rates in search en-
gines (Craswell et al. 2008; Joachims 2002). The other two
user behavior resembles two extreme situations: i) B-RND
is the one less dependent by the order of the recommenda-
tion list; while B-LZY represents the case in which the user
relies completely on the order imposed by the recommenda-
tion algorithm.

4 Results
In this section we present the results of our experiments, fo-
cusing on the key measure that we call exposure of the mi-
nority, which is simply defined as the portion of total number
of recommendations which suggest a node of the minority,
and denoted Em. Note that the total number of recommen-
dations is constant and corresponds to k|V α|.

4.1 Exposure in the long-run
Figure 3 shows the trend of the exposure of the minority for
each of the four networks (G0 is omitted for space limitation
as it presents results almost indistinguishable from G4). For
each experiment, we track the exposure and the percentage
of new edges added at each iteration with respect the original
network. The dashed line represents in each plot the relative



Recommender
ALS SLS ADA RND

0 10 20 30 40 50 60
% Edges Added

0.0

0.1

0.2

0.3

m

0 10 20 30 40 50 60
% Edges Added

0.4

0.6

0.8

1.0

m

(a) G1 (b) G2

0 10 20 30 40 50 60
% Edges Added

0.1

0.2

0.3

0.4

m

0 10 20 30 40 50 60
% Edges Added

0.3

0.4

0.5

0.6

m

(c) G3 (d) G4

Figure 3: Exposure of the minority (Em) along time, for dif-
ferent recommenders and one fixed user behavior (B-PSB).

size of the minority and the user choice model is fixed to B-
PSB. In cases when the minority is homophilic (G1, G2 and
G4), generating recommendations through ALS and SALSA
leads to a positive trend of growth for the exposure of the
minority. For the other two recommenders (ADA and RND)
the effects described above are still present but less visible.

For the case in which the minority is heterophilic (G3) the
exposure decreases weakly, slightly benefitting the majority.
This is the only case when the exposure distributed to the mi-
nority is less than its relative size. It is also evident how the
collaborative filtering approach (ALS) and the random walk
based model (SLS) contribute more to reduce the exposure
allocated to the minority with respect the other two mod-
els (ADA and RND). For all the networks characterized by
an homophilic minority (G1, G2 and G4), the growth in the
case of the collaborative filtering approach (ALS) is faster
in the first steps and then stabilizes to a steady-state to the
rest of iterations. While, for the random walk solution (SLS),
the trend starts at similar values of exposure, but then grows
constantly.

Observation 1 The disparate exposure grows after
each iteration in favour of the minority, when it is ho-
mophilic. On the other hand, an heterophilic behavior
of the minority does not impact abruptly its exposure.
When both groups are homophilic, the recommender
still increases the exposure of the minority. The sever-
ity of all those effects is stronger when using ALS and
SLS and weaker for ADA and RND.

To further investigate the differences in growth of ex-
posure, we track Et/E1 for t ∈ {2, ..., T}, which is rela-
tive quantity of exposure measured with the respect to the
first iteration. In order to analyze the transition phases pre-
viously mentioned, we focus respectively on the iterations
t ∈ {2, 10, 20}. In Figure 5 we plot those values on the y-
axis and the iterations on the x-axis. As suggested by the
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Figure 4: Heatmaps describing the evolution of Et/E1 in
T = 20 iterations, computed over 9 configurations which are
small variants of G1, G2 and G3: emm ∈ {0.05, 0.5, 0.95}
(x-axis) and sm ∈ {0.1, 0.3, 0.45} (y-axis), all having neu-
tral majority hM = 0. ALS recommender (left-hand side),
SLS recommender (right-hand side).

previous plots, with the ALS recommender, when the mi-
nority is homophilic its exposure tends to increase faster in
the first iterations to then stabilize. On the other hand, SLS
presents a continuous increase, without slowing down the
process after 20 iterations. The stronger growth comes from
cases where the differences in sizes between minority and
majority is relevant (sm = 0.3) and the minorities are ho-
mophilic (G0, G1 and G4). This means that, even when also
the majority is homophilic, the effect is still present, show-
ing again that having both groups homophilic does not im-
ply a benefit for the majority. As already seen in Figure 3
and as expected, ADA and RND do not produce much expo-
sure disparity, even a slight advantage for the minority class
can be observed for the cases in which the minority is ho-
mophilic.

Observation 2 Different recommenders exhibit dif-
ferent influence on exposure along time. ALS in-
creases exposure inequality in the first iterations, then
stabilizing in a steady state. SLS instead keeps in-
creasing disparate exposure constantly.

We further extend this analysis, exploring a wider range
of initial configurations, with the aim of disentangling the
effects of size and homophily along time. For this purpose,
as the size of the minority sm is part of the definition of the
homophily hm (Eq. 1), we use directly the fraction of edges
which, starting from the minority, remain in the minority:
i.e.,

emm =
|Emm|
|Em.|

In particular, we produce 9 configurations which are small
variants of G1, G2 and G3: emm ∈ {0.05, 0.5, 0.95} and
sm ∈ {0.1, 0.3, 0.45} (all having neutral majority hM = 0).

Each box of the heatmaps in Figure 4 represents, for one
configuration, the evolution of Et/E1 along T = 20 itera-
tions.
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Figure 5: Evolution of exposure relative to the one observed at first iteration Et/E1, after 1, 10 and 20 iterations.

Analyizing the two heatmaps, comparing the boxes by
columns and posing the attention on a single row, we ob-
serve that both effects already observed in the previous ex-
periments, i.e. the steady-state generated by ALS and the
constant growth caused by SLS, change in terms of sever-
ity but not in timing. This means that the variation of Et/E1

can be less or more severe, depending on the distribution of
emm, but the pace to which process evolves is the same. An-
alyzing the heatmaps by rows, and posing the attention on a
single column, is evident how the size of the minority (rep-
resented here by smm) can influence the pace of the effects
but not the range of values (color intensity) of Et/E1.

Observation 3 The homophily of minority can im-
pact the speed at which the growth of exposure dis-
parity occurs. On the other hand, the severity of this
effect is mostly determined by the size of the minority.

4.2 Effect of user behavior models
In all the experiments presented so far we were adopting the
B-PSB (position bias) user behaviour model. We next anal-
ize the effect of different user behaviour models. Figure 6
reports the exposure of the minority tracked under three dif-
ferent policies on G0. Each plot represents a recommender
and each line in the plots represents the trend of Em for one
user behavior. For all the plots there is not such a significant
difference in trends between models. This means that in cir-
cumstances where user behavior is either homogenous (B-
LZY, B-PSB and B-RND) or heterogeneous (B-MIX), and
the organic growth of the network is not considered, the ef-
fect of the recommenders are consistent.
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Figure 6: Exposure of minority when using different accep-
tance policies, running on G0.

Observation 4 The different user behaviour models
do not impact the exposure in our simulations as much
as the type of recommender system and the initial con-
figuration of the network do.

4.3 Rich-get-richer effect
After having analyzed the inequality in exposure at the
group level, we now focus on the in-degree distribution at
the individual level, focusing on the relationship with the
popularity of the nodes (number of followers or in-degree).



As already observed in the literature, new links injected
in the network can alter the inequality in the distribution of
in-degree (Su, Sharma, and Goel 2016). For this reason, we
study here the evolution of the rich-get-richer effect within
the two groups, focusing the attention on how the in-degree
of nodes is altered by the recommended output in the long-
term. We compute the Gini coefficient to analyze the level of
concentration of in-degree within the two group of nodes, af-
ter each iteration. Although it was introduced in economics
to measure the income or wealth inequality, Gini coefficient
is widely used to measure inequalities in general (Halffman
and Leydesdorff 2010). It is defined as follows:

G =
1

N

(
N + 1− 2

∑N
i=1(N + 1− i)yi∑N

i=1 yi

)
.

In our context N is the number of nodes and yi is the in-
degree of the i-th node, which has been indexed in ascending
order by yi ≤ yi+1. The index ranges from zero to one,
where if all nodes receive the same amount of quantity (in-
degree) then it is 0, and 1 if only one node receive the total
amount. Thus, the higher the coefficient is, the higher the
inequality distribution is as well. Figure 7 reports the Gini
index in the long-run. Each row indicate the network, each
column of plots refers to a group (minority or majority) and
each line shows the Gini index after each iteration, when
using all the four recommenders and one user behavior (B−
PSB).

For all the networks we can observe a rich-get-richer ef-
fect in both the minority and the majority class: inequality
of in-degree, as expressed by the Gini index, keeps growing,
meaning that the high-degree nodes keep receiving more and
more recommendations. Among the recommenders, ALS
and SLS present a faster growth of the in-degree inequal-
ity, while ADA and RND are by far slower. When the two
groups have comparable size and only one of them is ho-
mophilic (G2), the non-homophilic group gets a less se-
vere effect. It is also evident that when the minority is het-
erophilic, the more impacted group is the majority, which
even if not presenting biased preferences (either homophilic
or heterophilic), experiences a stronger positive trend for the
growth of Gini index.

The homophily level of one group impacts, not only the
inequality in in-degree distribution inside the group, but in-
directly it affects also the inequality in the rest of the graph.

After having observed an exacerbation of the rich-get-
richer effect in the long-run, we next monitor the distribu-
tion of exposure between nodes in the two groups. We study
how subset of nodes, grouped by different in-degree, can be
exposed differently in the long-run. In Figure 8 we show the
cumulative distribution of exposure accumulated by nodes
ordered by their in-degree. In particular, each bar is divided
by colors, where starting from the bottom, it represents the
subset of nodes having at most the correspondent in-degree.
This means that, for example, the first three colors (from the
bottom) represents the first 5% of the nodes having the high-
est in-degree. On the y-axis we track the fraction of visibility
accumulated by the nodes.

For sake of space, in Figure 8 we focus only on two rec-
ommenders, but results are consistent also with the other
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Figure 7: Gini coefficient computed on the in-degree of both
minority and majority, for all the recommenders and net-
works, with B-PSB.

two models. In particular, we have similar findings for ALS
and SLS, while ADA results really close to RND. Figure 8
shows that, with graphs presenting either a homophilic or a
heterophilic minority (G1, G3), only a subset of nodes re-
ceives most of the exposure produced. What is also evident
is that after each iteration, the number of nodes getting most
of the exposure become smaller, confirming some recent an-
alytical results that point out how rankings can be biased
towards few individuals getting most of the exposure (Ger-
mano, Gómez, and Le Mens 2019). Specifically, this effect,
in the long-term, results faster for two specific groups: the
homophilic minority in G1 and the non-homophilic majority
in G3. In the first case, after only 5 iterations the nodes be-
longing to the top-1% acquires more than 75% of exposure.
While in G3, despite the majority group not being biased, af-
ter 15 iterations, only the top-3% of nodes is recommended.
Moreover, in both graphs, ADA does not present the same
increase in disparity in the long-term, but still, only a small
fraction of users (20%) receives consistently the 75% of the
exposure in both groups.
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Figure 8: Distribution of Exposure among nodes, where each
color delimitates the % of nodes with highest degree (best
seen in color).

Observation 5 When the minority presents non-
neutral preferences (either homophilic or het-
erophilic), ALS and SLS can increase disparity in both
exposure and in-degree: a small subset nodes benefits
in terms of exposure by the injection of new links, and
those are also the ones with highest degree. The car-
dinality of this subset of nodes becomes smaller after
each iteration.

4.4 Model evaluation
In the experiments seen so far, we used the same configu-
ration of k and α. To analyze how those input parameters
may affect the simulation outcome, we next produce con-
figurations presenting more sparse interactions (smaller α)
and longer lists of recommendations (larger k). In Fig. 9 we
present the exposure of the minority for G1, simulating the
user behavior using B-PSB. In the first figure (Fig. 9a) we
tune different values of α, which the smaller, the less the
number of users sampled to submit new recommendations.
The plot shows how the exposure tends to growth, as ex-
pected, but with a slower pace. This parameter can be tuned
looking at interactions generated by the social media plat-
form over time. Here the length of recommendations is fixed
to k = 3. In the case of longer lists of recommendations, the
length of recommendation output impacts even less on the
final output (Fig. 9b). The effect observed with the smaller
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Figure 9: Testing different values of α and k on G1, with
B-PSB.

recommendation list (k = 3) presents a trend close to all
the other configurations. In this case, α is fixed to the usual
value of 0.2.

5 Limitations and Implications
The main goal of this work is to improve our comprehen-
sion of the long-term consequences on the disparate expo-
sure of a minority in the recommendations provided by peo-
ple recommender systems in a social network. In this en-
deavor we need to take care of the interplay between the
recommender algorithm, user behavior in accepting the rec-
ommendations, and pre-existing conditions in the network
(e.g., the existence of an homophilic minority). However,
disentangling the consequences of these single components
remains challenging. Hence, we next discuss some limita-
tions of our study, proposing potential extensions for future
investigation.

Our analysis shows how the initial level of homophily
within a subpopulation in the graph can drive exposure in-
equalities that grow over time: this is obtained without con-
sidering organic growth of the network (i.e., new links are
created only if recommended by the algorithm) and assum-
ing a homogenous user behavior for accepting or rejecting
the link recommendations. In the future, we plan to extend
our framework, including organic network growth as part
of the simulation and allowing the users to have heteroge-
nous behaviors. In this way, we may study how homophily
evolving over time may impact the recommendation output.
Moreover, the user behavior models analyzed here do not
consider homophily as a potential factor. In our future ef-
fort we plan to investigate how homophily can impact user
choices when accepting or rejecting algorithmic recommen-
dations.



Our work analyzes the impact of human biases, such as
homophilic behavior, and link recommender algorithms on
the disparate exposure of a minority at the level of the whole
network. A more fine-grain analysis at the mesoscale level
of communities or subgraphs might be useful to better un-
derstand the phenomena at play.

Our work raises critical observations about the long-term
consequences of algorithms in online social networking plat-
forms and hints the need to design algorithms which keeps
in consideration existing biases and aim at mitigating the
long-term consequences, instead of exacerbating them. The
challenge is the usual trade-off between generating recom-
mendations which are still relevant for the users, while being
able to mitigate the disparate exposure between groups even
after repeated round of recommendations.

Moreover, designers of social network platforms, may
take benefit of using simulation framework to infer potential
harmful scenarios: the framework we present in this work
can be easily adapted to test new recommendation algo-
rithms, e.g., to shed the light on the consequences of intro-
ducing new features, before the deployment.

Finally, the results of the present study highlight the ur-
gency to include link recommendation algorithms among the
key elements when modeling network dynamics.
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Germano, F.; Gómez, V.; and Le Mens, G. 2019. The few-
get-richer: a surprising consequence of popularity-based
rankings? In Proceedings of the Web Conference 2019
(WWW), 2764–2770.
Guy, I.; Ronen, I.; and Wilcox, E. 2009. Do you know?:
recommending people to invite into your social network. In
Proceedings of the 14th International Conference on Intelli-
gent User Interfaces, 77–86.
Ha-Thuc, V.; Venkataraman, G.; Rodriguez, M.; Sinha, S.;
Sundaram, S.; and Guo, L. 2016. Personalized Expertise
Search at LinkedIn. In 2015 IEEE International Conference
on Big Data, 1238–1247.
Halffman, W.; and Leydesdorff, L. 2010. Is Inequality
Among Universities Increasing? Gini Coefficients and the
Elusive Rise of Elite Universities. Minerva 48(1): 55–72.
Heap, B.; Krzywicki, A.; Wobcke, W.; Bain, M.; and Comp-
ton, P. 2014. Combining Career Progression and Profile
Matching in a Job Recommender System. In Trends in Artifi-
cial Intelligence - 13th Pacific Rim International Conference
on Artificial Intelligence, 396–408.
Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative fil-
tering for implicit feedback datasets. In 2008 IEEE Interna-
tional Conference on Data Mining (ICDM), 263–272.
Jiang, R.; Chiappa, S.; Lattimore, T.; György, A.; and Kohli,
P. 2019. Degenerate feedback loops in recommender sys-
tems. In Proceedings of the 2019 AAAI/ACM Conference on
AI, Ethics, and Society, 383–390.
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the eighth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining (KDD), 133–142.
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