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Abstract. Decision support systems enhanced by Artificial Intelligence (AI) are
increasingly being used in high-stakes scenarios where errors or biased outcomes
can have significant consequences. In this work, we explore the conditions under
which Al-based decision support systems affect the decision accuracy of humans
involved in face matching tasks. Previous work suggests that this largely depends
on various factors, such as the specific nature of the task and how users perceive the
quality of the decision support, among others. Hence, we conduct extensive experi-
ments to examine how both task difficulty and the precision of the system influence
human outcomes. Our results show a strong influence of task difficulty, which not
only makes humans less precise but also less capable of determining whether the
decision support system is yielding accurate suggestions or not. This has implica-
tions for the design of decision support systems, and calls for a careful examination
of the context in which they are deployed and on how they are perceived by users.
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1. Introduction

Decision support systems are a key modality of use of Artificial Intelligence (AI). They
can be categorized by the extent to which the final decisions depend on them, from hav-
ing no influence whatsoever, to being fully autonomous, with most cases operating some-
where between these two extremes [1,2]. Ideally, these systems together with human op-
erator(s) create a hybrid human-machine intelligence that exploits the expertise of human
operators with the capacity to find patterns in historical data that yield better decisions.
This is particularly critical in applications that have significant effects on people, such
as those described as high risk by the European Al Act (EU Regulation 2024/1689) [3].
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In these applications, given the ethical and legal requirements for human oversight, it
is unlikely that fully automated systems are deployed in the near future. Instead, hybrid
systems combining human and machine intelligence are likely to become the norm.

When humans and machines work together, they should be evaluated together [4].
However, human-algorithmic behavior involves complex emerging patterns, uncertain-
ties, and a certain degree of unpredictability that is in tension with the goal of developing
safe and trustworthy systems. Modeling how human operators respond to recommenda-
tions produced by an algorithm is paramount.

This is an active research topic, and previous work (surveyed in §2) investigates
aspects such as the nature of the task for which decision support is provided, the way
in which machine assistance is framed, preconceptions that make users averse or over-
reliant on algorithms, and the accuracy or perceived accuracy of the algorithmic sugges-
tions, among other factors.

In this work, we study a face matching scenario in which a person is tasked with
determining whether two photos correspond to the same person, and uses a face match-
ing system as a decision support tool. Our work addresses a series of research questions
(§3) related to the extent to which a decision support system can enhance human accu-
racy, focusing on responses to both correct and incorrect suggestions and the effects of
fluctuating (increasing or decreasing) system accuracy.

We tackle these questions through a series of experiments (§4) conducted via crowd-
sourcing in which experimental variables include task difficulty, decision support accu-
racy, and whether a notification is given to users when decision support accuracy might
change.

Our results and discussion (§5-§6) show a strong influence of task difficulty, which
not only makes human annotators less accurate, but also makes them more prone to be
misled by inaccurate decision support and less aware of the accuracy of different decision
support systems. We also find important differences on human perceptions when decision
support errors appear at the beginning or end of the sequence of tasks, compared to when
they are randomly distributed throughout the sequence of tasks. The last section (§7)
presents our conclusions and outlines future work.

2. Related Work
2.1. Decision Support: The Nature of the Task

Previous work highlights how the nature of the task plays a crucial role in human-
machine interaction with a decision support system. One of the main axes of analysis is
the distinction between objective and subjective tasks. It has been shown that the more
objective the task is perceived to be, the more likely the human is to be influenced by the
machine [5]. However, we also find evidence that in some cases the distinction between
objective and subjective tasks does not play an important role in how people are influ-
enced by machine suggestions [6]. This apparent contradiction seems to be reconciled
in the work of Hou et al. [7], where the authors suggest that the really influential factor
is the machine competence perceived by the human. This, in turn, depends heavily on
how the decision support agent is presented: different framings of the same agent can
shape different human perceptions, leading to inconsistent outcomes. In a similar vein,
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Mahmud e? al. [8] highlight the moral nature and the complexity of the task at hand.
People tend to move away from the machine when it comes to making moral decisions,
such as those related to legal or medical issues [9,10,11]. Also, people tend to reject the
machine when it comes to tasks that do not require high computational skills [12,13].
Furthermore, it has been noted that when utilitarian results hold significant value, there
is a preference for Al recommenders instead of human ones, whereas when hedonic as-
pects are prioritized, there tends to be a resistance to Al recommenders in favor of human
decisions [14].

2.2. Behavioral Patterns in Human-Machine Interaction

Several patterns of behavior that emerge from the interaction between a human and a
machine have been extensively studied. Algorithmic aversion is defined as a negatively
biased perception of algorithms that manifests itself in a behavior of rejection towards
the algorithm with respect to human agents. This aversion is especially reinforced when
the human interacting with the machine observes that the machine makes mistakes [15].
In contrast, in the evaluation of hybrid resolutions of moral problems humans tend to
be evaluated more leniently than the machine, which is known as a human self-interest
bias [16]. Conversely, algorithmic appreciation is known as a positive dominance of the
algorithm that helps users avoid mistakes. However, this dominance might be detrimental
if humans become overly dependent on machine outcomes, which may lead to errors
[17]. Another cognitive bias, well-recognized in psychology but less explored within the
realm of human-machine interaction, is the tendency of humans to prefer information
that aligns with their existing beliefs [18].

2.3. Human-Machine Interaction in Facial Recognition

Prior decisions made by face recognition systems influenced subsequent face matching
decisions made by human operators. When face pairs were incorrectly labeled by the
machine, the precision of humans decreased by drawing attention away from face im-
ages, even when humans were warned that machine predictions could be inaccurate [19].
Furthermore, decision-deferral rates in human-machine systems influence both human
performance and trust during face-matching tasks [20]. It is well documented that human
face recognition accuracy can be improved by the wisdom of crowds: combined judg-
ment of many is better than the decision of an individual [21]. There is a similar bene-
fit to merging the performance of multiple algorithms [22]. When considering decisions
resulting from the fusion of human decision and machine decision, the results can lead
to large performance improvements compared to the human response or the algorithm
response alone [23].

Our work addresses task complexity, a subject that that has not been explored in as
much detail as other aspects in the surveyed literature [24], positioning it as a pivotal
element to be carefully considered in the design of decision support systems. Addition-
ally, in many real-world scenarios in which data evolves, and given that machine learn-
ing models should be trained and applied on data with identical distributions, keeping
models up to date is a critical task [25,26,27]. Updating the models produces variability
in performance, causing an effect on interaction patterns [28]. As far as we know, pre-
vious research has not thoroughly examined the effects of potential machine variability
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on human-machine interactions, nor has it been thoroughly studied the effects of how
errors are distributed along a sequence of tasks in machines of equal average accuracy. In
this paper we consider machines of varying accuracy and observe how these variations
affect human performance. We also study whether notifying the human operator each
time a variation in the machine occurs makes any difference in joint human-machine
performance.

3. Research Questions

Our experiments are designed to address the following research questions:

RQ1 Does an Al-based decision support system improve human performance in a face
matching task?
We test to what extent the support of a high-accuracy machine improves human
accuracy in solving a face-matching task, while testing whether this improvement
depends on the difficulty of the task.

RQ2 Does a low accuracy Al decision support system improve or deteriorate human
performance in a face matching task?
We test to what extent the support of a low-accuracy machine deteriorates human
accuracy, while testing whether this deterioration depends on the difficulty of the
task.

RQ3 Does a variable accuracy Al decision support system improve or deteriorate hu-
man performance in a face matching task?
We test to what extent the support of a variable-accuracy machine improves or de-
teriorates human accuracy, while testing whether this change depends on the dif-
ficulty of the task. We also test whether this change depends on human awareness
of this machine variability.

4. Experimental Setup

To investigate our research questions, we designed three experiments. We considered
three independent variables: (i) problem difficulty, (ii) machine accuracy, and (iii) change
notifications. Problem difficulty, described in §4.1, indicates the difficulty of the tasks
assigned to the participant. Machine accuracy, described in §4.2, indicates the accuracy
of the decision support assigned to the participant. Change notification indicates whether
the participant is notified or not when the decision support system changes, and only ap-
plies to the experiment in which the accuracy varies. We measured three dependent vari-
ables: accuracy, influence factor, and confirmation factor. The three dependent variables
are defined in §4.3.

Experiment 1: With / Without Decision Support This experiment works as our “control
experiment” and is designed for the purpose of investigating RQ1. Two groups of differ-
ent participants were compared. The control group solved the task without machine sug-
gestions. The experimental group of participants received, for every task, a suggestion
from a system having 95% accuracy.
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Experiment 2: With Degraded Decision Support This experiment is designed for the
purpose of investigating RQ2. Two experimental groups were compared. One of them
solved the face matching tasks while receiving suggestions from a 5% accuracy machine
and the other one while receiving suggestions from a 50% accuracy machine.

Experiment 3: With Variable Decision Support Machine This experiment is designed
for the purpose of investigating RQ3. Four groups of different participants were com-
pared. Two groups solved the tasks while receiving suggestions from an increasing accu-
racy machine (that we note INC machine). One of these groups was notified every time
the machine changed, and the other group was not. Conversely, two other groups solved
the tasks while receiving suggestions from a decreasing accuracy machine (DEC), and
similarly, one of them was notified of changes, while the other was not.

Our research plan was reviewed and approved by the Ethics Review Board of the
university of the lead author. The review included compliance with internationally ac-
cepted ethical principles in research, and with personal data protection, in particular by
the EU General Data Protection Regulation (2016/679).

4.1. Procedure

We performed an online user study, with the following structure.

Participant recruitment We recruited participants through a crowdsourcing platform
for experimentation named Prolific.> We considered four countries in continental Europe
in which Prolific has large user bases: France, Germany, Italy, and Spain, plus the United
Kingdom. We made sure that our sets of participants were gender balanced, a feature that
the platform provides based on participants’ disclosures of gender. In total, we recruited
320 participants, and each participant annotated 30 different pairs of images. In total, we
collected 9,600 participant’s annotations, and a total of 60 different pairs were annotated
under various conditions. Participants were paid 9.16 EUR per hour. Specifically, they
were paid 1,07 EUR for labeling 30 pairs of images, with an average completion time of
10 minutes. To encourage participants’ effort, we set a bonus: participants were warned
(and reminded during the study) that if they managed to correctly match more than 80%
of the pairs (more than 24 pairs) they would receive an extra payment of 30%.

Tasks selection  Each of the experiments was carried out twice. Once with a set of pairs
that we call Normal Set, and once with a different set of pairs that we call Hard Set. Both
sets consist of pairs from the DemogPairs testing database, and their classification as
Normal or Hard is based on a preliminary study in which a total of 540 pairs were tested
by a total of 162 participants (10 different pairs per participant, 3 different participants
per pair). These participants were paid the same as described previously. In this study,
participants rated these pairs by answering the question ‘Are they the same person?’ with
the options “No”, “Probably not”, “Not sure”, “Probably yes”, or “Yes”. This allows us
to categorize some of these pairs according to the difficulty experienced by participants
in solving the task. In this previous study, these 540 pairs were also evaluated by two
state-of-the-art models jointly. These two models are IR50+ArcFace and LightCNN, and
the joint accuracy over DemogPairs test dataset is above 95%. By “joint accuracy” we
mean the accuracy based on the mean response of both models. This ensemble machine
is the base decision support system we use in our experiments.

2www.prolific.co
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Machine suggestion: "Yes', with similarity = 100.0%

Your response is "Probably yes"

Your response is "Probably yes"

. . i ? N . P
Please, confirm your previous response or change it. Are they the same person? Please, confirm your previous response or change it. Are they the same person?

No Probably not Probably yes Yes No Probably not Probably yes Yes

(a) Control group (b) Experimental groups

Figure 1. Survey screenshots.

» Hard Set: We selected those pairs whose mean participant response was very close
to “Not sure”, and at least one of the three participants made a mistake. We also
selected those pairs where the mean response is exactly “Not sure”. We obtained
a total of 69 pairs (63 positive and 6 negative). After a careful manual inspection,
from among the 63 positive pairs we chose the 24 most difficult ones which to-
gether with the 6 negative ones (with no occlusion i.e., no objects obstructing parts
of the face) form the Hard Set.

Normal Set: We define another set of pairs with a slightly more relaxed human
certainty condition: we selected those pairs whose mean response is close to “Not
sure”, avoiding those whose mean is exactly “Not sure”. From these pairs we ran-
domly choose 30 pairs of images, maintaining the above ratio of 24 positive and 6
negative pairs, and avoiding repetitions with the “Hard Set”. This left us with 30
pairs that will form the Normal Set.

Face matching tasks Participants evaluated one pair of images at a time. Given a pair p,
the participant had to answer the question Are they the same person?, with the possible
options: No, Probably not, Probably yes, or Yes. After answering, if the participant was
assigned to one of the experimental groups, the machine suggestion was shown together
with the machine similarity score associated with the pair s, on which the suggestion was
based: 0 <5, < 0.25 with suggestion No, 0.25 < s, < 0.50 with suggestion Probably
not, 0.50 < s, <0.75 with suggestion Probably yes or 0.75 < s, < 1.00 with suggestion
Yes. They had the possibility to modify their answer (see Figure 1b). Participants in the
control experiment also had the possibility to modify their answer (see Figure 1a).

Exit survey After evaluating the 30 pairs, the participants who interacted with a ma-
chine completed an exit survey. They were asked whether the suggestions of the machine
had been useful to 1. make a decision when they were not sure about their answer, 2.
make a decision when some of the images were blurry or the quality was not good, 3.
make decisions faster, 4. confirm their decision when they were certain about it, 5. make
more accurate decisions, and 6. make them feel more confident about the answer. Par-
ticipants had the possibility to answer Strongly disagree | Disagree | Neither agree nor
disagree | Agree | Strongly agree.
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4.2. Machines

To simulate machines that adapt to the circumstances that we want to reproduce in each
experiment, we introduce noise into the ensemble machine. Given a pair p, we obtain the
associated similarity score s,, with 0 < s, < 1. We define the noise as f(s,) = 1 — s,
which gives us a noisy similarity score that forces the opposite response. The number
of pairs to which this noise is applied depends on the machine to be simulated. These
machines are described below.

Static machines We simulate three machines: 95%, 50%, and 5% accuracy machines.
Each of them is a realization of the probabilistic situations we simulate, which means
that they have exactly the target accuracy in every experiment.

Variable machines We simulate two variable accuracy machines: 1) INC machine sim-
ulates a model that increases its accuracy over time, and is defined as the concatenation
of three machines: 5% - 50% - 95% accuracy machines, each of them solving one third
of the total number of tasks. 2) DEC Machine simulates a model that decreases its accu-
racy over time, and is defined as the concatenation of three machines: 95% - 50% - 5%
accuracy machines, each of them solving one third of the total number of tasks.

Regarding change notification, there were two conditions: without notification, and
with notification. Participants in the first condition were not told anything about variable
machine accuracy. Participants in the notification condition, before starting the survey,
were shown the following message: There are three Als, named machine A, machine B,
and machine C. We will notify you every time there is a change. The notification message
was: Next, you will receive suggestions from machine {A/ B/ C}.

4.3. Measurements

Participant accuracy 'We compute the fraction of correct responses, with respect to the
ground truth, given by the participant before (initial accuracy) and after (final accuracy)
seeing the machine suggestion. In the analysis we show the macro-average across partic-
ipants of the initial and final accuracy, together with their standard deviation.

Interaction Factors Given a pair p solved by a participant, let r; be the participant’s
initial response, ry the participant’s final response, and m the machine suggestion®.

* Influence Factor: We measured how much the machine suggestion influenced the
participant’s response. This value, that we note IF, ranges from -1 to 1, and is
based on the influence defined by Hou ef al. in [7]. We define

—lrp—ri| ifm—ri| <1
IF(rim,rg) =4 . _,
e if |m—ri| > 1
m—r;
In the analysis we show the macro-average of the influence factor. We also mea-
sure the probability that this influence is positive, P(IF > 0), zero P(IF = 0), or
negative P(IF < 0). We find this metric easy to interpret as, for example, a positive
value is given to cases where the participant changes their response in the direction
of what is recommended by the machine.

3ri,rp € {=2,—1,1,2} = {No, Probably not, Probably yes, Yes},m = —2+4s, € [~1,1] with s, € [0,1]
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Table 1. Average participant initial accuracy a;, final accuracy ay, difference among both §, influence factor
IF, probability that this influence is positive P(IF > 0), probability that this influence is neutral P(IF == 0),
probability that this influence is negative P(IF < 0), and probability of confirmation P(C) for all the experi-
ments with the Normal Set and the Hard Set. There are 20 participants for every row. (n) stands for with notifi-
cation, (-) for with no notification.

Normal Set a; ay § | IF  PUF>0) PUF=0) P(IF<0) P(C)
no machine  0.67+0.23  0.67+0.23 0 - - - - -

95% 0.71+£0.20 0.80+0.20 +0.09 0.01 0.13 0.78 0.09 0.57
50% 0.69+0.21 0.66 +0.21 -0.03 0.05 0.14 0.81 0.05 0.40
5% 0.64+£0.28 0.61 030 -0.03 -0.03 0.07 0.87 0.06 0.32
INC (n) 0.64+0.21 0.64+0.22 0 +0.00 0.11 0.82 0.07 0.45
INC (-) 0.64+0.21 0.63+0.18 -0.01 +0.00 0.12 0.79 0.09 0.47
DEC (n) 0.70£0.21  0.69 £0.21 -0.01 0.04 0.11 0.85 0.04 0.42
DEC (-) 0.71+£0.18 0.67 £0.21 -0.04 0.10 0.22 0.70 0.08 0.39
Hard Set a; as 5 IF  P(IF>0) PUIF=0) P(UIF<0) P(C)
no machine  0.57+0.20 0.57+0.20 0 - - - - -

95% 0.58+023 0.65+022 +0.07 | 0.13 0.15 0.81 0.04 0.34
50% 0.55+024 056+0.22 +0.01 | 0.24 0.23 0.75 0.02 0.34
5% 0.54+022 038+0.24 -0.16 | 0.21 0.22 0.74 0.04 0.26
INC (n) 0.55+0.15 056+0.15 +0.01 | 0.18 0.18 0.78 0.04 0.35
INC (-) 049+0.17 0.49+0.17 0 0.17 0.18 0.80 0.02 0.35
DEC (n) 0.58+0.17 059+£0.17 +0.01 | 0.11 0.15 0.80 0.05 0.36
DEC (-) 0.53+0.16 0.52+0.18 -0.01 | 0.13 0.19 0.72 0.09 0.30

* Confirmation Probability: We measured the probability that the participant’s initial
response and the machine’s suggestion match and the participant does not change
their final response. This event, that we note as C, occurs when r; = ry and |m —
ri| < 1. In the analysis we show the probability that this occurs, that we note as
P(C).

5. Results
Table 1 summarizes our results, which we explain next.
5.1. Experiment 1: With vs. Without Decision Support Machine

For every set of pairs, we compare two groups of participants: those who did not re-
ceive machine suggestions and those who received suggestions from the 95% accuracy
machine.

Normal Set  Almost all participants with no machine suggestions maintained their ini-
tial response when given the opportunity to modify it in the vast majority of tasks, mak-
ing both the initial and final accuracy 0.67 £ 0.23. Results from participants interact-
ing with the 95% accuracy machine suggest that the support of a high accurate machine
improves human performance (see left plot in Figure 2) even when the influence is low.
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Figure 2. Participant initial and final average accuracy distributions for the Normal Set and the Hard Set, for
5%, 50%, and 95% Machines in Experiment 1.

Hard Set Similarly, almost all participants with no machine suggestions maintained
their initial response when given the opportunity to modify it in the vast majority of tasks,
making both the initial and final accuracy 0.57 + 0.20. As before, participants interacting
with the 95% accuracy machine got to improve their accuracy (see right plot in Figure
2). For these participants, the influence is higher than for those in the Normal Set.

Participants perceive the 95% accuracy machine more positively in the Normal Set,
as shown in Figure 4, despite its higher influence in the Hard Set.

5.2. Experiment 2: With Degraded Decision Support Machine

In this experiment, we consider 5% and 50% accurate machines.

Normal Set Participants who interact with the 50% accuracy machine and with the 5%
accuracy machine experiment a drop in accuracy, suggesting that low accuracy support
deteriorates human performance (see left plot in Figure 2). Participants on a 5% accuracy
machine showed a slightly negative influence (capacity for correcting mistakes from the
machine).

Hard Set For participants interacting with the 50% precision machine, the accuracy
does not vary markedly (see the right plot in Figure 2), although the influence is high. For
participants interacting with the 5% accuracy machine, there is a marked deterioration in
accuracy (see right plot in Figure 2). For these participants, the influence is also high and
they tend to be misled by the machine more often than in the normal set.

In Figure 4, we can see that for the participants who label pairs from the Normal
Set, the more accurate the machine is, the more useful they find it. However, for the par-
ticipants who label pairs from the Hard Set, the accuracy or inaccuracy of the machines
does not affect as much the perceived usefulness of the machine.

5.3. Experiment 3: With the Variable Decision Support Machine

For every set of pairs, we compare the group of participants who received suggestions
from INC Machine (accuracies: 5% —50% —95%) and DEC Machine (accuracies: 95%
—50% —5%). We distinguish between those participants who were notified every time
the machine changed and those who were not.

Normal Set  With the INC Machine, for both participants with and without notification,
accuracy does not vary markedly, and there is no discernible influence by any of the ma-
chines. In both cases, confirmation was around 50%. With the DEC Machine, for par-
ticipants with notification, accuracy does not vary markedly, and there is no discernible
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Figure 3. Participant accuracy, Influence and Confirmation factors for DEC machines (with and without noti-
fication) with the Normal Set (left) and the Hard Set (right).

Normal Set Hard Set
0.5 0.5 4
044 0.44
034 0.3 4
0.2 0.21
0.14 0.14
0.0~ " - 0.0 " -
strong disagree neither agree strong strong disagree neither agree strong
disagree agree disagree agree
B Machine 5% Machine 50% B Machine 95%

Figure 4. Results obtained from the exit survey from the participants who interacted with some static machine.
They were asked whether the suggestions of the machine had been useful to 1. make a decision when they were
not sure about their answer, 2. make a decision when some of the images were blurry or the quality was not
good, 3. make decisions faster, 4. confirm their decision when they were certain about it, 5. make more accurate
decisions, and 6. make them feel more confident about the answer. We show the average of the responses across
the six questions.

influence (see plots in first column in Figure 3). For participants without notification, the
results show a deterioration in the participant’s accuracy, and the mean influence factor
noticeably exceeds the influence of participants with notification (see plots in second
column in Figure 3).

Hard Set  With both INC Machine and DEC Machine, for both participants with and
without notification, accuracy does not vary markedly. In contrast with participants in
the Normal Set, the influence is now noticeable (see plots in third and fourth columns in
Figure 3).
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6. Discussion

RQ1 Does an Al decision support system help improve human performance in a
face matching task?

An accurate machine may improve human performance, but the difficulty of
the task might prevent the human from fully exploiting this advantage.

A high accuracy machine improves human performance in both easy and hard tasks,
which is aligned with previous works in the literature [6,29]. The influence of this ma-
chine is higher when the tasks are harder. However, the improvement and high influence
on the Hard Set do not appear to stem from the participant’s capacity to recognize the
machine’s high accuracy since the final questionnaire indicates that inaccurate machines
are viewed as equally useful.

RQ2 Does a low accuracy Al decision support system improve or deteriorate hu-
man performance in a face matching task?

High task difficulty allows an inaccurate machine to induce error more than an
accurate machine can induce correctness, probably due to the participants’ inability
to really grasp how inaccurate the machine is.

For degraded accuracy machines supporting human performance in easy tasks, the degra-
dation of the participant’s accuracy is hardly noticeable, suggesting that for a set of easy
tasks the participant is able to solve without attending to the machine, as corroborated
by the close-to-zero influence values. Observe that the minimal impact of the 95% ac-
curacy machine is partially due to the high confirmation rate (i.e., the machine and user
frequently agree, thus reducing the chance of influence), whereas the 5% accuracy ma-
chine exhibits a lower confirmation rate yet maintains a marginal influence (i.e., in many
tasks, the machine has opposed the participant but did not alter their viewpoint). This
suggests that for easy tasks, the participant knows how to solve it well, as it matches the
high-accuracy machine, contradicting the low-accuracy one.

However, for difficult tasks, a very low accuracy machine can induce a participant to
error very noticeably, even far exceeding the ability of a high-accuracy machine to induce
correctness. Our results suggest that for difficult tasks participants tend to be influenced
more by the low-accuracy machines than by the accurate machine, while the opposite is
true for easy tasks. This may stem from a projection of the difficulty experienced by par-
ticipants. Additionally, the control group’s accuracy (no machine) aligns with the 50%
accuracy machine. A potential mirroring between this machine and its users could ex-
plain its significant influence. These phenomena (self-projection and mirroring) are well
established in psychology [30], yet under-explored in human-machine interaction, to the
best of our knowledge. Moreover, results from the exit survey highlight that for difficult
tasks the participant is not able to perceive a difference in the usefulness of interacting
with very accurate or inaccurate machines, which is aligned with some research in the
literature [13].

RQ3 Does a variable Al decision support system improve or deteriorate human
performance in a face matching task?
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Automation bias can be induced in a low-performing machine that initially
provides accurate support. This can be mitigated with a simple notification that the
machine has changed.

For variable machines supporting human performance in easy tasks, the machine influ-
ence is barely noticeable except in one case: when a machine initially functions with high
precision but gradually loses accuracy. If the participant remains unaware of any change
in the machine, they continues to rely on the machine, leading to mistakes. This aligns
with the logic of some patterns observed in the literature, where algorithmic aversion is
seen to increase when the user sees that the machine fails [15]. We observe something
analogous: participants can move from algorithmic appreciation to automation bias after
observing machine success. This situation can be prevented by notifying the participant
about a machine change without revealing whether it is an improvement or a downgrade.
This effect is not observed for variable machines that support human performance in
difficult tasks, probably because the participant is not able to clearly identify that the
machine is performing accurately at the beginning.

It is notable to observe the distinction between outcomes from the static 50% ac-
curacy machine versus those from machines with varying accuracy levels, increasing or
decreasing. While all three machines maintain an average accuracy of 50%, they diverge
in how their errors are distributed. Based on our findings, we can deduce that for chal-
lenging tasks, randomly distributed errors throughout the interaction promote error cam-
ouflage and thus increases the influence factor, compared to machines that accumulate
errors at the beginning or at the end of the interaction flow, which have lower influence
factors.

7. Conclusions and Future Work

We noted that the difficulty of tasks shapes human-machine interactions in a variety
of ways, even when the complexity levels are relatively similar. In our study, there is
merely a 10% difference in average human accuracy between simple and complex tasks.
Nevertheless, this small gap appears to be sufficient to notably change the influence of
decision support. It is therefore crucial to understand that this challenge relates more
to how the participant perceives the task than to their actual skill in solving it. Thus,
high difficulty can affect the effectiveness of an accurate machine and can enhance the
influence of an inaccurate machine. Conversely, low difficulty can enhance automation
bias in the case of variable machines, more specifically those machines that start out
accurate (thus eliciting appreciation) and later deteriorate.

In this work we combined the interpretation of the influence factor with the confir-
mation factor, and that helped us to better understand patterns of interaction. However,
the concept of influence allows for many approaches that need to be considered. We have
noted that this influence can be negative (aversion), positive (appreciation/automation
bias) or neutral (no influence). We observed a tendency towards no influence in easy
tasks, and a more erratic tendency towards influence in the case of difficult tasks. This
highlights the complexity of measuring influence, necessitating further study on when it
is beneficial or detrimental for task completion. We also observed that participants can
tell accurate (95%) from inaccurate (5%) decision support when the task is easy, but lose
this ability when the task is hard, which makes them more prone to be misled.
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A significant constraint identified is the insufficient consideration of real-world,

practical concerns. Facial recognition systems are used in complex ethical domains like
immigration and law enforcement, where delegating decisions to machines can lead to
anonymity, psychological detachment, and invisibility [31,32,33]. These factors may in-
advertently promote unethical actions. It is therefore urgent and necessary to extend re-
search on hybrid systems and their corresponding interaction patterns into domains more
closely linked to real-world application fields.

Code and Data will be made available with the camera-ready version of this paper.
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