Effective Web Crawling

by

Carlos Castillo

Submitted to the University of Chile in fulfillment
of the thesis requirement to obtain the degree of
Ph.D. in Computer Science

Advisor Dr. Ricardo Baeza-Yates

University of Chile
Committee Dr. Mauricio Marin
University of Magallanes, Chile
Dr. Alistair Moffat
University of Melbourne, Australia
Dr. Gonzalo Navarro
University of Chile
Dr. Nivio Ziviani
Federal University of Minas Gerais, Brazil

This work has been partially funded by the Millennium Nucleus “Center feb\Research”
of the Millennium Program, Ministry of Planning and Cooperation — Goverrirne@hile

Dept. of Computer Science - University of Chile
November 2004

Abstract

The key factors for the success of the World Wide Web are its large sizehartack of a centralized control
over its contents. Both issues are also the most important source of prdblelosating information. The

Web is a context in which traditional Information Retrieval methods are clggsnand given the volume
of the Web and its speed of change, the coverage of modern seaide®igyrelatively small. Moreover,
the distribution of quality is very skewed, and interesting pages are sicacoenparison with the rest of the
content.

Web crawling is the process used by search engines to collect pagethigd/Neb. This thesis studies
Web crawling at several different levels, ranging from the long-teoa gf crawling important pages first,
to the short-term goal of using the network connectivity efficiently, inclgdmplementation issues that are
essential for crawling in practice.

We start by designing a new model and architecture for a Web crawldrghtly integrates the crawler
with the rest of the search engine, providing access to the metadata andflthesdocuments that can be
used to guide the crawling process effectively. We implement this design WHRE project as an efficient
Web crawler that provides an experimental framework for this researdact, we have used our crawler to
characterize the Chilean Web, using the results as feedback to improveweralesign.

We argue that the number of pages on the Web can be considered infidigiyan that a Web crawler
cannot download all the pages, it is important to capture the most importanaerearly as possible during
the crawling process. We propose, study, and implement algorithms fievaahthis goal, showing that we
can crawl 50% of a large Web collection and capture 80% of its total Palg&edue in both simulated and
real Web environments.

We also model and study user browsing behavior in Web sites, concludihg@ tk not necessary to
go deeper than five levels from the home page to capture most of the pagekyavisited by people, and
support this conclusion with log analysis of several Web sites. We algmgeoseveral mechanisms for
server cooperation to reduce network traffic and improve the regeggenof a Web page in a search engine
with the help of Web site managers.

Publications related to this thesis

The crawling model and architecture described in Chapter 3 was prdsente second Hybrid Intelligent
Systems conference [BYC02] (HIS 2002, proceedings publishedi®yRress), and introduced before in
preliminary form in the eleventh World Wide Web conference [CBY02].

The analysis and comparison of scheduling algorithms, in terms of long-tetishert-term scheduling
in Chapter 4 was presented in the second Latin American Web confetémieBY04] (LA-WEB 2004,
published by IEEE CS Press).

The model and analysis of browsing behavior on the “Infinite Web” onp@hie was presented in the
third Workshop on Algorithms and Models for the Web-Graph [BY C04] fW2004, published by Springer
LNCS).

Most of the proposals about Web server cooperation shown in CHapterre introduced in preliminary
form in the first Latin American Web conference [Cas03] (LA-WEB 208&blished by IEEE CS Press).

Portions of the studies on Web structure and dynamics shown in Chaptee8rags a chapter in the
book “Web Dynamics”/[BYCSJ04] (published by Springer), and waesented in the 8th and 9th String
Processing and Information Retrieval conferences [BYCO01, BY 3)&PIRE 2001, published by IEEE CS
Press and SPIRE 2002, published by Springer LNCS).

An application of the WIRE crawler to characterize images, not descriltbgithesis, was presented in
the first Latin American Web conference [JdS33] (LA-WEB 2003, published by IEEE CS Press) and the
third Conference on Image and Video Retrieval [BYd$M] (CIVR 2004, published by Springer LNCS).

The WIRE crawler developed during this thesis is available under the GNilicdicense, and can
be freely downloaded @i t p: / / www. cwr . ¢l / proj ect s/ WRE/ . The user manual, including step-by-step
instructions on how to use the crawler, is available at the same address.

Acknowledgements

This thesis would not have been possible with@uP.M. During the thesis | received mostly the financial
support of grant P01-029F of the Millennium Scientific Initiative, Midepl@hile. | also received financial
support from the Faculty of Engineering and the Computer Science Degrarof the University of Chile,
among other sources.

What you are is a consequence of whom you interact with, but justgdthanks everyone for ev-
erything” would be wasting this opportunity. | have been very lucky of aténg with really great people,
even if some times | am prepared to understand just a small fraction of weyah#ve to teach me. | am
sincerely grateful for the support given by my advisicardo Baeza-Yatesduring this thesis. The com-
ments received from the committee memb@omzalo Navarro, Alistair Moffat, Nivio Ziviani and Mauricio
Marin during the review process were also very helpful and detailedwFRtng the thesis, | also received
data, comments and advice from Efthimis Efthimiadis, Marina Buzzi, PatriziaGhmcly, Massimo Santini,
Andrea Rodiguez and Luc Devroye. | also thank Susana Docmac and everybbdtiyndenberg

This thesis is just a step on a very long road. | want to thank the professoet during graduate
studiesVicente Lopez Claudio Gutierrez and Je®ino; also, | was lucky to have really inspiring professors
during the undergraduate studies: Martin Matamala, Marcos Kiwi, PatridileRn Patricio Felmer antbse
Flores. There were some teachers in high and grade school that trusted in rhelped me get the most
out of what | was given. During high school: Domingo Almendras, Beffguayo, and in grade school:
Manuel Guiiez, lvonne Saintard and specialarmen Tapia.

I would said at the end that | owe everything to my parents, but that would ithplythey also owe
everything to their parents and so on, creating an infinite recursion thatssle the context of this work.
Therefore, | thaniMyriam andJuan Carlos for being with me even from before the beginning, and some-
times giving everything they have and more. | am also thankful for theatipp all the members of my
family, specially Mercedes Pincheira.

Finally, my beloved wifeé=abiola was exactly 10,000 days old on the day | gave my dissertation, and |
need no calculation to say that she has given me the best part of thase thank you.

Contents

‘1 Introduction‘

‘1.1 Motivatio$..
‘1.2 The WIRE Droiel:t
‘1.3 Scope and organization of this thiesis

‘2 Related WorlJ

‘2.1 Web characterization e e e e e e e e

‘2.2 Indexing and queryingWeb pages e

‘2.3 Connectivity-based ranking e

‘2.4 Web crawling issui?s

‘2.5 Web crawler architectdre

‘2.6 ConclusioAs ...

‘3 A New Crawling Model and Architecture

‘3.1 The problem of crawler scheduling,

‘3.2 Problems of the typical crawling model

‘3.3 Separating short-term from long-term schednLIing

‘3.4 Combining page freshness and quLaIity

‘3.5 A software architectdre

‘3.6 ConclusioAs

‘4 Scheduling Algorithms for Web Crawling

‘4.1 Experimental setLp

‘4.2 Simulation parameters

17
22
27
34
38

39
39
42
43
45
48
51

‘4.3 Long-termscheduling e

57

‘4.4 Short-term scheduling L e 66
‘4.5 DownloadingtherealWeb 68
‘4.6 ConclusioAs ... 74

‘5 Crawling the Infinite Web 75
‘5.1 Staticand dynamic pages e e e e 76
‘5.2 Random surfer models for an infinite Webisite 78
‘5.3 Data from user sessionsinWebsites L. 86
5.4 Model fiL ... 91
‘5.5 ConclusioAs ... 93

‘6 Proposals for Web Server Cooperation 99
‘6.1 Cooperation scherAes 100
‘6.2 Polling-based cooperat‘on 102
‘6.3 Interruption-based cooperation e 104
‘6.4 Cost analygis .. 106
‘6.5 Implementation of a cooperation scheme in the WIRE crawler . 109
‘6.6 ConclusioAs ... 112

‘7 Our Crawler Implementation 113
‘7.1 Programming environment and dependencies . 113
7.2 Programs e e e 114
‘7.3 Data structurés ... 118
‘7.4 Configuration e 122
‘7.5 ConclusioAs ... 123

‘8 Characterization of the Chilean Web 125
‘8.1 Reports generated by WIRE e . 125
‘8.2 Collection summa#y 126
‘8.3 Web page characteristics e 126
‘8.4 Web site characterist%cs 133

8.5 LINKS e 135

‘8.6 Links between Web siﬁes 138
‘8.7 Comparison with the Greek Web 145
‘8.8 ConclusioAs ... 148
‘9 Conclusions 150
‘9.1 Summary of our contributions L 150
‘9.2 Future wor‘k ... 151
‘9.3 Open proble$s ... 153
‘A Practical Web Crawling Issues 154
‘A.l Networkingingeneral 154
‘A.Z Massive DNSresolving e 156
‘A.S HTTP implementatioA\s 158
‘A.4 HTML codiné .. 161
‘A.S Web content characteristics e 162
‘A.G Server application programming e 163
‘A.? Conclusion‘s ... 164

Biblioéra;;h;(164

Vi

List of Figures

Connection speed versus latency and popu‘arity. e e

‘1.1 Cyclic architecture for search engir%es.
‘1.2 Sub-projects of WIRE.
‘1.3 Topics covered in this the%is.
‘2.1 Random networks and scale-free networks. . .
‘2.2 Macroscopic structure of the Web
‘2.3 Off-line and on-line operation of a search engine.
‘2.4 Sample inverted indéx.
‘2.5 Indexing for Web search.
‘2.6 Expansion of the root Jet
‘2.7 Hubs and authorities.
‘2.8 The search engine’s view of the Web
‘2.9 Evolution of freshness and age with time.
‘2.10 Typical high-level architecture of a Web craviller.
‘3.1 Unrealistic scenarios for Web crawli‘ng.
‘3.2 Realistic download time line for Web crawlérs. :
‘3.3 Distribution of site sizes.
34

‘3.5 Connection speed versus latency.
‘3.6 Classification of crawlers.
‘3.7 A software architecture with two modu‘es
‘3.8 Proposed software architecthre
‘3.9 Main data structures.

Vii

20

a1

Queues inthe crawling simulator. e
‘4.2 Total download time for sequential transfer of Web pgges. e e e
‘4.3 Cumulative Pagerankin.clandigr.
‘4.4 Comparison of cumulative Pagerank vs retrieved pages in the Chilegesa
‘4.5 Comparison of cumulative Pagerank vs retrieved pages in the Gmaplejsa
‘4.6 Comparison using the historical strategies.
‘4.7 Cumulative Pagerank vs Web pages with many robots.
‘4.8 Predicted speed-ups for parallelism.
‘4.9 Distribution of pages to Web sites in a typical be{tch
‘4.10 Active robots vs retrieval time, one page per connel:tion.
‘4.11 Active robots vs retrieval time, 100 pages per connel:tion. e
‘4.12 Cumulative Pagerank onanrealcrawler.
‘4.13 Average Pagerank perdayofcrawl.
‘4.14 Average Pagerank versus page depth. .
‘4.15 Cumulative Pagerank on the actual and simulated Web Jrawls.
‘4.16 Cumulative Pagerank and documents on an actual crawl.
‘5.1 Types of pagesontheWeb.
‘5.2 Static and dynamic pages atagivendepth.
‘5.3 Tree and linked list models for user naviga{ion.
‘5.4 Different actions of the random surker.
‘5.5 Random surfing using ModeI‘A.
‘5.6 Distribution of visits per depth predicted by modgl Ao
‘5.7 Random surfing usingModel B.
‘5.8 Distribution of visits per depth predicted by modelB.
‘5.9 Random surfingusing ModelC.
‘5.10 Distribution of visits per depth predicted by modelC.
‘5.11 Visits per level fromaccesslogs.
‘5.12 Visits perdepthonalogscale.
‘5.13 Session length vs. average sessiondepth. Lo

viii

‘5.14

Session length distribution. 90
‘5.15 Experimental values for our atomic actij)ns. 92
‘5.16 Web pages and entry pages vs diepth 94
‘5.17 Cumulative Pagerank by page levels in a large sample of the Chilean Web. 94
‘5.18 Fitof the modelsto actualdata. 96
‘5.19 Fit of the models to actualdatainBlogs.u... 98
‘6.1 Schematic drawing of a transact*on. 100
‘6.2 Diagrams of polling-based cooperat‘ion. 102
‘6.3 Diagrams of interruption-based schemes of cooperation. 105
‘6.4 Average Pagerank versus number of pgges. P (0}
‘6.5 Example of aobots.rdf file. 110
‘7.1 Operation of the manager program. e e 114
‘7.2 Operation of the harvester progrLam. 116
‘7.3 Events-oriented parsing of HTML dzllta. 117
‘7.4 Storing the contents of adocument. L Lo Lo 120
‘7.5 Checking duplicate URLS. e 121
‘8.1 Distribution of HTTP response cohe 127
‘8.2 Distribution of content lengthof pages. 127
‘8.3 Distribution of page a&e. 128
‘8.4 Distribution of pages at different dep{hs 129
‘8.5 Distribution of languages by page de‘pth 129
‘8.6 Distribution of links to dynamic pages. e 130
‘8.7 Distribution of links to documenks 130
‘8.8 Distribution of links to multimediafiles. 131
‘8.9 Distribution of links to source code and software. 132
‘8.10 Distribution of links to compressedfiles. L 132
‘8.11 PagesperWebsite. e 133
‘8.12 Page contentsperWeb site. e 134

8.13

Cumulative Web site maximum de;Eth. 134

‘8.14 Websiteage. 135
‘8.15 Distribution of in- and out-degree. e 136
‘8.16 Content length vs number of outgoing links. 136
‘8.17 Distribution of Pagerank, global Hubs and Authority sci)res. 137
‘8.18 Links vs exports from Chilean companies. e aa 139
‘8.19 Distribution of in- and out-degree in Web sites. 140
‘8.20 Distribution of link scores in the Web sitesgraph. 141
‘8.21 Distribution of strongly connected components. 143
‘8.22 Macroscopic structure oftheWeb. oL 144
‘8.23 Comparison of page depth, 1 is the page at the root of the server.. 146
‘8.24 Comparison of the distribution of page size in Kilob)btes. P v 15)
‘8.25 Comparison of the distribution of the number of pages perwel:bsite. e e 147
‘8.26 Comparison of the distributions of in-degree and out-dégree. A X ¥
‘8.27 Comparison of the relative size of graph components. 148
‘A.l Misconfiguration of DNS recordls. 157
‘A.Z Diagram showing how we deal with last-modification dates in the respl)nses 161

List of Tables

21

Selected results about Web pagechanges. 13
‘4.1 Comparison of the scheduling strategies. 64
‘4.2 Predicted speed-ups for paralleli‘sm. 66
‘5.1 Predicted average session length for the models, with different vaflges 86
‘5.2 Characteristics of the studied Web s‘ites. 88
‘5.3 Results of fitting models to actual dlata 91
‘5.4 Average distribution of the differentactions. 92
‘6.1 List of cooperation schemes. e 101
‘6.2 Relative costs of server cooperation schemes. 106
‘7.1 Configuration variablés 123
‘8.1 Summary of the characteristics of the studied collection from the Chileal% Web. 126
‘8.2 Fraction of links to external domains, top 20domains 138
‘8.3 Summary of characteristics of links between Web sites. 139
‘8.4 Top sites by in-degree. e 142
‘8.5 Size of strongly connected compon%nts. 143
‘8.6 Summary of characteristics. e 145
‘8.7 Comparison of the most referenced external top-level domains. 149

Xi

Chapter 1

Introduction

This thesis is about Web crawling, the process used by Web searctesngitownload pages from the Web.
This opening chapter starts with the main motivations for studying this procé&esciion 1.1. Sectian 1.2
introduces the WIRE project, the system that we use as a context foingask this topic. Section 1.3

explains the scope and organization of our work.

1.1 Motivation

1.1.1 From organic to mineral memory

As technology advances, concerns arise about how the new inventaynisnpair human capabilities. Plato,
in his dialoguePhaedrustells the story of Theuth (Hermes) presenting his inventions to Pharaaohuha
who dislikes the idea of writing:

“This, said Theuth, will make the Egyptians wiser and will give them better miesioit is
a specific for both the memory and for the wit. Thamus replied: Oh most ingefibauth
(...) this discovery of yours will create forgetfulness in the learners stlsause they will
not use their memories; they will trust to the external written characters @incgemember of
themselves, (...) they will be hearers of many things and will have learneéhgpthey will
appear to be omniscient and will generally know nothing; they will be tires@mgany, having
the show of wisdom without the reality.” [PlaBC]

Thamus considers that writing is a bad invention because it replaces humaorynd here are others
who consider writing as just an extension of the human memory, such as toniwmer, who in November
2003 gave a lecture about the future of books at the newly openedy.itfrdlexandria in Egypt:

“We have three types of memory. The first one is organic, which is the memaae of flesh and

blood and the one administrated by our brain. The second is mineral, and setisis mankind
has known two kinds of mineral memory: millennia ago, this was the memory eyessby
clay tablets and obelisks, pretty well known in this country, on which peapieed their texts.
However, this second type is also the electronic memory of today’s compubssed upon
silicon. We have also known another kind of memory, the vegetal one, teepnesented by
the first papyruses, again well known in this country, and then on haudkde of paper.” [Eco03]

The World Wide Web, a vast mineral memory, has become in a few years gestaultural endeavour
of all times, equivalent in importance to the first Library of Alexandria. Heas the ancient library created?
This is one version of the story:

“By decree of Ptolemy Il of Egypt, all visitors to the city were required tarsnder all books
and scrolls in their possession; these writings were then swiftly copiedfisiab&cribes. The
originals were put into the Library, and the copies were delivered to thaqars owners. While
encroaching on the rights of the traveler or merchant, it also helped tie ereeservoir of books
in the relatively new city.” [wik04]

The main difference between the Library of Alexandria and the Web is abotie was vegetal, made
of scrolls and ink, and the other one is mineral, made of cables and digitalsigrhe main difference is
that while in the Library books were copied by hand, most of the informatiothe Web has been reviewed
only once, by its author, at the time of writing.

Also, modern mineral memory allows fast reproduction of the work, with nodmeffort. The cost
of disseminating content is lower due to new technologies, and has bemasiag substantially from oral
tradition to writing, and then from printing and the press to electronic communnsatithis has generated
much more information than we can handle.

1.1.2 The problem of abundance

The signal-to-noise ratio of the products of human culture is remarkably higiss media, including the

press, radio and cable networks, provide strong evidence of thiopteron every day, as well as more
small-scale actions such as browsing a book store or having a conversatie average modern working
day consists of dealing with 46 phone calls, 15 internal memos, 19 items ohalkprst and 22 e-mails

[Pat00].

We live in an era of information explosion, with information being measuredabyes (18 bytes):

“Print, film, magnetic, and optical storage media produced about 5 exatfytesv information
in 2002. (...) We estimate that new stored information grew about 30% a yeeedre 1999

and 2002. (...) Information flows through electronic channels — telepladim, TV, and the
Internet — contained almost 18 exabytes of new information in 2002, thka half times more
than is recorded in storage media. (...) The World Wide Web contains ab@uedabytes of
information on its surface.” [LV03]

On the dawn of the World Wide Web, finding information was done mainly byrsogrthrough lists
of links collected and sorted by humans according to some criteria. Automated&¥ech engines were
not needed when Web pages were counted only by thousands, andireostries of the Web included a
prominent button to “add a new Web page”. Web site administrators werelegad to submit their sites.
Today, URLs of new pages are no longer a scarce resource, astieghousands of millions of Web pages.

The main problem search engines have to deal with is the size and ratengiobiathe Web, with no
search engine indexing more than one third of the publicly available Web§].G% the number of pages
grows, it will be increasingly important to focus on the most “valuable” gages no search engine will
be able of indexing the complete Web. Moreover, in this thesis we state thatithigen of Web pages is
essentially infinite, which makes this area even more relevant.

1.1.3 Information retrieval and Web search

Information Retrieval (IR) is the area of computer science concernedrefitieving information about a
subject from a collection of data objects. This is not the same as Data REktvidweh in the context of
documents consists mainly in determining which documents of a collection contdieyttverds of a user
query. Information Retrieval deals with satisfying a user need:

“... the IR system must somehow 'interpret’ the contents of the information iteatsifdents)
in a collection and rank them according to a degree of relevance to thquesgr This ‘inter-
pretation’ of a document content involves extracting syntactic and semafaionation from
the document text ...” [BYRN99]

Although there was an important body of Information Retrieval techniquédished before the in-
vention of the World Wide Web, there are unique characteristics of the Véglmtade them unsuitable or
insufficient. A survey by Araset al. [ACGM*01] on searching the Web notes that:

“IR algorithms were developed for relatively small and coherent collestsurth as newspaper
articles or book catalogs in a (physical) library. The Web, on the othet,hamassive, much
less coherent, changes more rapidly, and is spread over geogibptisaibuted computers
.."[ACGM*01]

This idea is also present in a survey about Web search by Brook83Bmwhich states that a distinction
could be made between the “closed Web”, which comprises high-qualityatieaticollections on which a

3

search engine can fully trust, and the “open Web”, which includes themwajerity of Web pages and on
which traditional IR techniques concepts and methods are challenged.

One of the main challenges the open Web poses to search engines i$ ‘@egiree spamming”, i.e.:
malicious attempts to get an undeserved high ranking in the results. Thisdasda whole branch of
Information Retrieval called “adversarial IR”, which is related to retrigvimformation from collections in
which a subset of the collection has been manipulated to influence the algorfemisistance, the vector
space model for documents [Sal71], and the TF-IDF similarity measure8|SB8 useful for identifying
which documents in a collection are relevant in terms of a set of keywoodsded by the user. However,
this scheme can be easily defeated in the “open Web” by just adding fridgrasked query terms to Web
pages.

A solution to this problem is to use the hypertext structure of the Web, using lielween pages as
citations are used in academic literature to find the most important papers iranLamk analysis, which
is often not possible in traditional information repositories but is quite naturahe Web, can be used to
exploit links and extract useful information from them, but this has to be @amefully, as in the case of
Pagerank:

“Unlike academic papers which are scrupulously reviewed, web pagétepte free of qual-

ity control or publishing costs. With a simple program, huge numbers of pzgebe created
easily, artificially inflating citation counts. Because the Web environment icanpaofit seek-

ing ventures, attention getting strategies evolve in response to searcle atganithms. For

this reason, any evaluation strategy which counts replicable featurestopages is prone to
manipulation” [PBMW98].

The low cost of publishing in the “open Web” is a key part of its successjrbplies that searching
information on the Web will always be inherently more difficult that searclifigrmation in traditional,
closed repositories.

1.1.4 Web search and Web crawling

The typical design of search engines is a “cascade”, in which a Wellesrareates a collection which is

indexed and searched. Most of the designs of search enginesentigd/Neb crawler as just a first stage
in Web search, with little feedback from the ranking algorithms to the crawlinggss. This is a cascade
model, in which operations are executed in strict order: first crawling, itheexing, and then searching.

Our approach is to provide the crawler with access to all the informationt &hewollection to guide
the crawling process effectively. This can be taken one step furthéneae are tools available for dealing
with all the possible interactions between the modules of a search engimevasis Figure 1.1.

» Crawling

A
Scores ‘Pages

On-demand
crawling

Loganalysis | Indexing

[3
Log analysis ‘Index

Searching

Figure 1.1: Cyclic architecture for search engines, showing how difi¢components can use
the information generated by the other components. Thedypascade model is depicted with
thick arrows.

The indexing module can help the Web crawler by providing information ateutanking of pages,
so the crawler can be more selective and try to collect important paged fisssearching process, through
log file analysis or other techniques, is a source of optimizations for the iadebcan also help the crawler
by determining the “active set” of pages which are actually seen by uBerally, the Web crawler could
provide on-demand crawling services for search engines. All of ihesmctions are possible if we conceive
the search engine as a whole from the very beginning.

1.2 The WIRE project

At the Center for Web Researcht ¢ p: / / www. cwr . ¢l /) we are developing a software suite for research in
Web Information Retrieval, which we have called WIRE (Web InformationiBedi Environment). Our aim

is to study the problem of Web search by creating an efficient searéhesr§earch engines play a key role
on the Web. Web search currently generates more than 13% of the traffielisites [Sta03]. Furthermore,
40% of the users arriving to a Web site for the first time are following a linknfeolist of search results
[Nie03].

The WIRE software suite generated several sub-projects, includinmg s the modules depicted in
Figure 1.2.

During this thesis, the following parts of the WIRE project were developed:
¢ An efficient general-purpose Web crawler.
e A format for storing a Web collection.

e Atool for extracting statistics from the collection and generating reports.

XML Index [« XML Search

Focused Crawling

Text Index Text Search

Crawling Statistics

Clustering

Importing

Classification

Extracting

Figure 1.2: Some of the possible sub-projects of WIRE. The thick box esedathe sub-
projects in which we worked during this thesis.

Our objective was to design a crawler that can be used for a collection ardke of millions or tens of
millions of documents (10— 107). This is bigger than most Web sites, but smaller than the complete Web,
so we worked mostly with national domains (ccTLDs: country-codes top dereains such ascl or. gr).

The main characteristics of the WIRE crawler are:

Good scalability It is designed to work with large volumes of documents, and tested with $enitlian
documents. The current implementation would require further work to scaiditms of documents
(e.g.: process some data structures on disk instead of in memory).

Highly configurable All of the parameters for crawling and indexing can be configured, ifotuseveral
scheduling policies.

High performance It is entirely written in C/C++ for high performance. The downloader modaofee
WIRE crawler (“harvesters”) can be executed in several machines.

Open-source The programs and the code are freely available under the GPL license.

1.3 Scope and organization of this thesis

This thesis focuses on Web crawling, and we study Web crawling at mdeyatif levels. Our starting point
is a crawling model, and in this framework we develop algorithms for a WebleraWe aim at designing

an efficient Web crawling architecture, and developing a schedulingypolidgownload pages from the Web
that is able to download the most “valuable” pages early during a crawlogeps.

6

ooy ! ' v

Web Chapter 8
Crawling Web Characterization
Chapter 3 Chapter 4 Appendix A
Model and Scheduling Practical Issues
Architecture Algorithms of Web Crawling
\
\] +
Chapter 5 Chapter 6
ImCiZfrfetz:afion The Infinite Web Server
P Web Cooperation

Figure 1.3: Main topics covered in this thesis. Web crawling is impotriarthe context of Web
information retrieval, because it is required for both Webrsh and Web characterization.

The topics covered in this thesis are shown in Figure 1.3. The topics amegtattai.e., there are
several relationships that make the development non-linear. The ciavglementation is required for Web
characterization, but a good crawler design needs to consider thectdvastics of the collection. Also, the
crawler architecture is required for implementing the scheduling algorithm#héuesult of the scheduling
experiments drives the design of the crawler’s architecture.

We try to linearize this research process to present it in terms of chaptersis is not the way the
actual research was carried out: it was much more cyclic and iterativeitbavay it is presented here.

The following is an outline of the contents of this thesis. The first chaptgr®extheoretical aspects
of Web crawling:

e Chapter 2 reviews selected publications related to the topics covered in this, timeluding Web
search, link analysis and Web crawling. The next chapters are oeghinio two parts: one theoretical
and one practical.

e Chapter 3 introduces a new model for Web crawling, and a novel design\Web crawler that inte-
grates it with the other parts of a search engine. Several issues of it& tyrawling architectures are
discussed and the architecture of the crawler is presented as a solutioned@tthose problems.

e Chapter 4 compares different policies for scheduling visits to Web pagadiib crawler. These

algorithms are tested on a simulated Web graph, and compared in terms of drodheyp are able to
find pages with the larger values of Pagerank. We show how in practicamveeach 80% of the total
Pagerank value downloading just 50% of the Web pages.

e Chapter 5 studies an important problem of Web crawling, namely, the facthdaumber of Web
pages in a Web site can be potentially infinite. We use observations from ¥tbasites to model
user browsing behavior and to predict how “deep” we must explore $iteb to download a large
fraction of the pages that are actually visited.

e Chapter 6 proposes several schemes for Web server cooperatiemdministrator of a Web site has
incentives to improve the representation of the Web site in search engmkthis chapter describes
how to accomplish this goal by helping the Web crawler.

The last chapters empirically explore the problems of Web crawling:

e Chapter 7 details implementation issues related to the design and to algorithnmeguteésehe previ-
ous chapters, including the data structures and key algorithms used.

e Chapter 8 presents the results of a characterization study of the Childarpweiding insights that
are valuable for Web crawler design.

Finally, Chapter 8 summarizes our contributions and provides guidelindattoe work in this area.
We have also included in Appendix A a list of practical issues of Web crattiat were detected only after
carrying several large crawls. We propose solutions for each profoldaelp other crawler designers.

Finally, the bibliography includes over 150 references to publications imthis. The next chapter is a
survey about the most important ones in the context of this thesis.

Chapter 2

Related Work

In this chapter we review selected publications related to the topics covettgd thesis.

We start in section 2|1 with a summary of several studies about Web chaatiter that include results
relevant for Web crawling. We continue in section|2.2 with an outline on hascheengines index pages
from the Web. Section 2.3 provides an overview of publications on link aisig general, in section 2.4
we review specific issues of Web crawling and their solutions, and in sez#iowe cover the architecture
of existing Web crawlers.

2.1 Web characterization

2.1.1 Methods for sampling

One of the main difficulties involved in any attempt of Web characterization istbavbtain a good sam-
ple. As there are very few important pages lost in a vast amount of uniamgrages (according to any
metric: Pagerank, reference count, page size, etc.), just taking a URbdom is not enough. For many
applications, pages with little or no meaningful content should be excludédisimportant to estimate the
importance of each page [HHMNOO], even if we have only partial informatio

We distinguish two main methods for sampling Web pages:

Vertical sampling involves gathering pages restricted by domain names. As the domain nanma syste
duces a hierarchical structure, vertical sampling can be done attiffievels of the structure. When
vertical sampling is done at top-level it can select entire countries suctl asi t, . au, which are
expected to be cohesive in terms of language, topics, history, or it et general top-level domains
such as edu or. com which are less coherent, except for tlgov domain. When vertical sampling
is done at second level, it will choose a set of pages produced by mewibidre same organization
(e.g.stanford. edu).

Countries that have been the subject of Web characterization studiedamgrazil [VdMG"00], Chile
[BYPO3], Portugal [GS03], Spain [BY03], Hungary [B€B3] and Austria [RAW 02].

Horizontal sampling involves a criteria of selection that is not based on domain names. In thisticase
are two approaches for gathering data: using a log of the transactiorespnaky of a large organiza-
tion or ISP, or using a Web crawler. There are advantages and digagea for each method: when
monitoring a proxy it is easy to find popular pages, but the revisit period isssiple to control, as it
depends on users; using a crawler the popularity of pages has to betedtiatthe revisit period can
be fine-tuned.

In horizontal sampling, a “random walk” can be used to obtain a set in whéges are roughly
visited with probability proportional to their Pagerank values, and then obtaiample taken from
this set with probability inversely proportional to Pagerank, so the sampigéected to be unbiased
[HHMN99, HHMNOO].

2.1.2 Web dynamics

There are two areas of Web dynamics: studying the Web growth and sgutigillocument updates [RM02];
we will focus on the study of document updates, i.e.: the change of the Welmiis of creations, updates
and deletions. For a model of the growth of the number of pages per Webesii¢he study by Huberman
and Adamic [HA99].

When studying document updates, the data is obtained by repeatedtaczémgie set of pages during
a period of time.

For each page and each visit, the following information is available:

e The access time-stamp of the page: yisit

e The last-modified time-stamp (given by most Web servers; about 80%-8b8é @quests in practice):
modified,.

e The text of the page, which can be compared to an older copy to detacted)aspecially if modifigd
is not provided.

The following information can be estimated if the re-visiting period is short:

e The time at which the page first appeared: created

e The time at which the page was no longer reachable: dglet&dehler [Koe04] noted that pages
that are unreachable may become reachable in the future, and manyeghilptsthis behavior, so he
prefers the term “comatose page” instead of “dead page”.

10

In all cases, the results are only an estimation of the actual values bébaysge obtained bygolling
for events (changes), not by the resouncéfying events, so it is possible that between two accesses a Web
page changes more than once.

Estimating freshness and age

The probability that a copy gf is up-to-date at time, up(t) decreases with time if the page is not re-visited.

Brewington and Cybenko [BC®0] considered that if changes to a given page occur at independent
tervals, i.e., page change is a memory-less process, then this can be nasdeRdisson process. However,
it is worth noticing that most Web page changes exhibit certain periodicitgatis® most of the updates
occur during business hours in the relevant time zone for the studied sastmpthe estimators that do not
account for this periodicity are more valid on the scales of weeks or mordhotihsmaller scales.

When page changes are modeled as a Poisson prodessitg of time have passed since the last visit,
then:

up(t) O et (2.1)

The parametek, characterizes the rate of change of the ppged can be estimated based on previous
observations, especially if the Web server provides the last modificatienofidhe page whenever it is
visited. This estimation fok, was obtained by Cho and Garcia-Molina [CGMO3Db]:

X
1)- Nplog(l—pxp/Np)

ST

(Xp—

Ap ~ (2.2)

Np number of visits tap.

S, time since the first visit t.

Xp number of times the server has informed that the page has changed.

T, total time with no modification, according to the server, summed over all the visits.

If the server does not give the last-modified time, we can still check for ncatlifins by comparing the
downloaded copies at two different times, Xpnow will be the number of times a modification is detected.
The estimation for the parameter in this case is:

Ap~ _NP'OQ(; —Xo/No) (2.3)

The above equation requirg < Ny, so if the page changes every time it is visited, we cannot estimate

its change frequency.

11

Characterization of Web page changes

There are different time-related metrics for a Web page, the most used are

Age: visit, — modified,.

Lifespan: deletegl— createdg.

Number of changes during the lifespan: changes

Average change interval: lifespgfchanges.

Once an estimation of the above values has been obtained for Web pagesamible, useful metrics
for the entire sample are calculated, for instance:

¢ Distribution of change intervals.
e Average lifespan of pages.

e Median lifespan of pages, i.e.: time it takes for 50% of the pages to chargg.isTalso called the
“half-life” of the Web —a term borrowed from physics.

Selected results about Web page changes are summarized in Table 2.1.

The methods for the study of these parameters vary widely. Some resesafobus on the lifespan
of pages, as they are concerned with the “availability” of Web content. ishas important subject from
the point of view of researchers, as it is being common to cite on-line publisatie sources, and they are
expected to be persistent over time —but they are not.

Other publications focus on the rate of change of pages, which is mootiglielated to Web crawling,
as knowing the rate of change can help to produce a good re-visiting orde

2.1.3 Link structure

About computer networks, Barabi [Bar01] noted: “While entirely of human design, the emerging network
appears to have more in common with a cell or an ecological system than witlss\8atch.”

The graph representing the connections between Web pages hasfaestdpology and a macroscopic
structure that are different from the properties of a random grapiveld crawler designer must be aware of
these special characteristics.

12

Table 2.1: Summary of selected results about Web page changes, ofoleradreasing sam-
ple size. In general, methods for Web characterizationiessuehry widely and there are few
comparable results.

Reference Sample Observations
360 random pages, Half-life 2 years
[Koe04]
long-term study 33% of pages lasted for 6 years
[MBO3] 500 scholarly publica- Half-life =~ 4.5 years
tions
(GS96] 2,500 pages, Average lifespan50 days
university Website Median age 150 days
[Spi03] 4,200 scholarly publica- Half-life ~ 4 years
tions
720,000 pages, Average lifespar60 — 240 days
[Cho00] popular sites 40% of pages.itomchange every day
50% of pages in edu and. gov remain the same for 4
months
950,000 pages Average age between 10 days and 10 months
[DFKM97]))
Highly-linked pages change more frequently
4 million pages, 8% of new pages every week
popular sites 62% of the new pages have novel content
[NCOO04] ,
25% of new links every week
80% of page changes are minor
150 million pages, 65% of pages don’t change in a 10-week period
[FMNWO3] 30% of pages have only minor changes
Large variations of availability across domains
[BCST00] 800 million pages Average lifespan140 days

Scale-free networks

Scale-free networks, as opposed to random networks, are chiamadtby an uneven distribution of links.
These networks have been the subject of a series of studies byaBafBar02], and are characterized as
networks in which the distribution of the number of linkép) to a pagep follows a power law:

Pr(r'(p) =k) Ok™® (2.4)

A scale-free network is characterized by a few highly-linked nodesattiats “hubs” connecting several
nodes to the network. The difference between a random network acalexfsee network is depicted in

13

Figure 2.1.

(a) Random network (b) Scale-free network

Figure 2.1: Examples of a random network and a scale-free network. Bagthdnas 32 nodes
and 32 links. Note that both were chosen to be connected dadkmice on the plane, so they
are not entirely random.

Scale-free networks arise in a wide variety of contexts, and there isséasuiial amount of literature
about them, so we will cite in the following just a few selected publications.

Some examples of scale-free network arising outside the realm of comgetarris include:

e Acquaintances, friends and social popularity in human interactions. Thadiist commented “in
other words, some people have all the luck, while others have none0gc

e Sexual partners in humans, which is highly relevant for the controbafadly-transmitted diseases.

e Power grid designs, as most of them are designed in such a way thahifk@yenodes fail, the entire
system goes down.

e Collaboration of movie actors in films.
e Citations in scientific publications.

e Protein interactions in cellular metabolism.

Examples of scale-free networks related to the Internet are:

Geographic, physical connectivity of Internet nodes.

Number of links on Web pages.

User participation in interest groups and communities.

E-mail exchanges.

14

These scale-free networks do not arise by chance alonésBmtd Rnyi [ER60] studied a model of
growth for graphs in which, at each step, two nodes are chosen mhjfat random and a link is inserted
between them. The properties of these random graphs are not consigtethe properties observed in
scale-free networks, and therefore a model for this growth proceseded.

The connectivity distribution over the entire Web is very close to a power bawause there are a
few Web sites with huge numbers of links, which benefit from a good plagemeearch engines and an
established presence on the Web. This has been called the “winnerd'tpkeeaomenon.

Baralasi and Albert [BA99] propose a “rich get richer” generative madethich each new Web page
creates link to existent Web pages with a probability distribution with is not umifdénut proportional to
the current in-degree of Web pages. According to this process,eawity many in-links will attract more
in-links that a regular page. This generates a power-law but the resgitupdy differs from the actual Web
graph in other properties such as the presence of small tightly connectedunities.

A different generative model is the “copy” model studied by Kurafial. [KRR*00], in which new
nodes choose an existent node at random and copy a fraction of teeofinke existent node. This also
generates a power law.

However, if we look at communities of interests in a specific topic, discardiagrajor hubs of the
Web, the distribution of links is no longer a power law but resembles more adaudistribution, as ob-
served by Pennoait al. [PFL*02] in the communities of the home pages of universities, public companies,
newspapers and scientists. Based on these observations, the amposem generative model that mixes
preferential attachment with a baseline probability of gaining a link.

Macroscopic structure

The most complete study of the Web structure [BK®O] focuses on the connectivity of a subset of 200
million Web pages from the Altavista search engine. This subset is a conrgretgld, if we ignore the
direction of the links.

The study starts by identifying in the Web graph a single large strongly ctetheomponent (i.e.: all
of the pages in this component can reach one another along directed lirtkey call the larger strongly
connected component “MAIN”. Starting in MAIN, if we follow links forwarde find OUT, and if we follow
links backwards we find IN. All of the Web pages with are part of the lgtayt do not fit neither MAIN, IN,
nor OUT are part of a fourth component called TENTACLES.

A page can describe several documents and one document can blérstmeeral pages, so we decided
to study the structure of how Web sites were connected, as Web sites see tclaeal logical units. Not
surprisingly, we found in [BYCO1] that the structure in thel (Chile) domain at the Web site level was
similar to the global Web — another example of the autosimilarity of the Web — aru lves use the same

15

notation of [BKM"00]. The components are defined as follows:

(&) MAIN, sites that are in the strong connected component of the cowvityegraph of sites (that is, we
can navigate from any site to any other site in the same component);

(b) IN, sites that can reach MAIN but cannot be reached from MAIN;
(c) OUT, sites that can be reached from MAIN, but there is no path teagk to MAIN; and

(d) other sites that can be reached from IN or can only reach OUT TREMNES), sites in paths between
IN and OUT (TUNNEL), and unconnected sites (ISLANDS).

Figure 2.2 shows all these components.

oD i
TENTACLES

Figure 2.2: Macroscopic structure of the Web. The MAIN component is tiggést strongly
connected component in the graph. The IN and OUT componantseach and be reached
from the MAIN components, and there are other minor strgstuthere is a significant portion
of Web sites which are disconnected from the Web graph inSh&ND portion.

2.1.4 User sessions on the Web

User sessions on the Web are usually characterized through modelsdofraurfers, such as the ones
studied by Diligentiet al. [DGMO04]. As we have seen, these models have been used for pddegavith
the Pagerank algorithm [PBMW98], or to sample the Web [HHMNOQO].

The most used source for data about the browsing activities of useth@iaccess log files of Web
servers, and there are several log file analysis software availabi€4Tweb04b, BouO4, Bar04]. A com-
mon goal for researchers in this area is to try to infer rules in user brgwsitterns, such as “40% users that
visit pageA also visit pageB” to assist in Web site re-design. Log file analysis has a number of restdction
arising from the implementation of HTTP, especially caching and proxiesptas iy Haigh and Megarity

16

[HM98]. Cachingimplies that re-visiting a page is not always recorded, and re-visitingsgagecommon
action, and can account for more than 50% of the activity of users, wiegasuring it directly in the browser
[TG97]. Proxiesimplies that several users can be accessing a Web site from the samedBsadd

To process log file data, careful data preparation must be done [CNESTH), TT04]. An important
aspect of this data preparation is to separate automated sessions frsaassens. Robot session charac-
terization was studied by Tan and Kumar [TK02].

The visits to a Web site have been modeled as a sequence of decisionsdiyridnét al. [HPPL98].
After each click, the user finds a page with a certain value that is the valie ¢dist page plus a random
variable with a normal distribution. Under this model, the maximum depth on a Welnkites an inverse
Gaussian distribution that gives a better fit than a geometric distribution bsttwe parameters instead of
one. The probability of a session of lengtis approximatelyt—/2.

Lukose and Huberman later extended this model [LH98] by adding a thiahpeer that represents
the discount value for future pages. This model can be used to des&gaithm for automatic browsing,
which is also the topic of a recent work by Lét al. [LZY04].

In [AHOQ], it is shown that the surfing paths for different categoriagendifferent length, for instance,
user seeking for adult content tend to see more pages than usergdeekither types of information. This
is a motivation to study several different Web sites as user sessiong chifdoent among them.

Leveneet al. [LBLO1] proposed to use an absorbing state to represent the usérgehe Web site,
and analyzed the lengths of user sessions when the probability of foll@ing is either constant (as in
Model B presented later), or decreases with session length. In the teitge studied, the distribution of
the length of user sessions is better modeled by an exponential decrédasprobability of following a link
as the user enters the Web site.

2.2 Indexing and querying Web pages

The Web search process has two main parts: off-line and on-line.

The off-line part is executed periodically by the search engine, anslstsrin downloading a sub-set of
the Web to build a collection of pages, which is then transformed into a sédedhdex.

The on-line part is executed every time a user query is executed, asdhesendex to select some
candidate documents that are sorted according to an estimation on howtéteyaare for the user’s need.
This process is depicted in Figure 2.3.

Web pages come in many different formats such as plain text, HTML pafésdBcuments, and other
proprietary formats. The first stage for indexing Web pages is to exdratandard logical view from the
documents. The most used logical view for documents in search engines‘isaiip of words” model, in

17

Web Search Engine

User Ranking
A

Searching on-line
(on request)

off-line
Index (periodically)

Indexing

A

(Collection)

A

Crawling

Figure 2.3: A Web search engine periodically downloads and indexes @stibf Web pages
(off-line operation). This index is used for searching aadking in response to user queries
(on-line operation). The search engine is an interface éatvusers and the World Wide Web.

which each document is seen only as an unordered set of words. kerm@déb search engines, this view
is extended with extra information concerning word frequencies and ¢extaftting attributes, as well as
meta-information about Web pages including embedded descriptions alicitekgywords in the HTML
markup.

There are several text normalization operations [BY04] that are ee@dar extracting keywords, the
most used ones are: tokenization, stopword removal and stemming.

Tokenization involves dividing the stream of text into words. While in someudaggs like English this
is very straightforward and involves just splitting the text using spacegandtuation, in other languages
like Chinese finding words can be very difficult.

Stopwords are words that carry little semantic information, usually functiwoadls that appear in a
large fraction of the documents and therefore have little discriminating paweaskerting relevance. In
information retrieval stopwords are usually discarded also for effigiee@sons, as storing stopwords in an
index takes considerable space because of their high frequency.

Stemming extracts the morphological root of every word. In global seamgimes, the first problem
with stemming is that it is language dependent, and while an English rule-bi@saching works well, in
some cases like Spanish, a dictionary-based stemmer has to be used, wttiler ilmoguages as German
and Arabic stemming is quite difficult.

Other, more complex operations such as synonym translation, detecting racdtewpressions, phrase
identification, named entity recognition, word sense disambiguation, etc.sadeim some application do-

18

mains. However, some of these operations can be computationally expansiif they have large error
rates, then they can be useless and even harm retrieval precision.

2.2.1 Inverted index

Aninverted index is composed of two parts: a vocabulary and a list ofmerces. The vocabulary is a sorted
list of all the keywords, and for each term in the vocabulary, a list of all‘tlaces” in which the keyword
appears in the collection is kept. Figlre|2.4 shows a small inverted indesidesimg all words including
stopwords. When querying, the lists are extracted from the inverted artethen merged. Queries are very
fast because usually hashing in memory is used for the vocabulary,ehstshof occurrences are pre-sorted
by some global relevance criteria.

Document 1: Inverted Index Query: “blue night”
“The blue sky ...” a3 Lists: {1,3} N {2}
at 2 / Response: ¢

Document 2: blue 1,3
“The sky at night ...” - car 3 Query: “blue sky”

night 2 Lists: {1,3} N {1,2}
Document 3: sky 1.2 Response: {1}
“A blue car ...” the 1.2

Figure 2.4: A sample inverted index with three documents. All tokens @asidered for
the purpose of this example, and the only text normalizatieeration is convert all tokens to
lowercase. Searches involving multiple keywords are sblng set operations.

The granularity of the choice of the items in the list of occurrences deterrtiaesize of the index, and
a small size can be obtained by storing only the document identifiers of thesponding documents. If the
search engine also stores the position where the term appears on gadheandex is larger, but can be
used for solving more complex queries such as queries for exacesh@proximity queries.

While the vocabulary grows sub-linearly with the collection size, the list ofioetices can be very
large. The complete inverted index can take a significant fraction of tlee smaupied by the actual collec-
tion. An inverted index does not fit in main memory for a Web collection, soraépartial indices are built.
Each partial index represents only a subset of the collection and areletged into the full inverted index.

In Figure 2.5 the main stages of the indexation process are depicted. Parsigg, links are extracted
to build a Web graph, and they can be analyzed later to generate link-bemes that can be stored along
withe the rest of the metadata.

19

— @ ©)

Partial
Web Parsing indices
pages [Link extraction —
Indexing
— \,@
Merge

Link Metadata Text

index index index

@ Link analysis

Figure 2.5: Indexing for Web search. (1) Pages are parsed and links dratted. (2) Partial
indices are written on disk when main memory is exhaustedl.In(ices are merged into a
complete text index. (4) Off-line link analysis can be usedadlculate static link-based scores.

2.2.2 Distributing query load

Query response time in today’s search engines requires to be venarfasshould be done in a parallel
way involving several machines. For parallelization, the inverted indexuallysdistributed among several
physical computers. To partition the inverted index, two techniques ace gkebal inverted file and local

inverted file [TGM93].

When using a global inverted file, the vocabulary is divided into sevends wontaining roughly the
same amount of occurrences. Each computer is assigned a part otdimikay and all of its occurrences.
Whenever a query is received, the query is sent to the computers htidiggery terms, and the results are
merged afterwards. Hence, load balancing is not easy.

When using a local inverted file, the document identifiers are dividededeh computer gets the full
vocabulary. That is, step 3 in Figure 2.5 is omitted. A query is then brotmttasall computers, obtaining
good load balance. This is the architecture used in main search engingsa®bailding and maintaining a
global index is hard.

Query processing involves a central “broker” that is assigned theofedistributing incoming queries
and merging the results. As the results are usually shown in groups of 20 documents per page, the

20

broker does not need to request or merge full lists, only the top modtsé&sum each partial list.

Search engines exploit the fact that users seldom go past the firstamds page of results. Search
engines provide approximate result counts because they nevenperfail merge of the partial result lists,
so the total number of documents in the intersection can only be estimated. Feasos, when a user asks
for the second or third page of results for a query, it is common that thgudelly is executed again.

2.2.3 Text-based ranking

The vector space model [Sal71] is the standard technique for rankougremts according to a query. Under
this model, both a document and a query are seen as a pair of vectorsaneavgith as many dimensions
as terms as the vocabulary. In a space defined in this way, the similarity &g tgua document is given
by a formula that transforms each vector using certain weights and tharatakthe cosine of the angle
between the two weighted vectors:

. ZtVVLq X Wt’d
simqa) =
\/Zt t.q X \/Zt W g

In pure text-based information retrieval systems, documents are showausehs in decreasing order

using this similarity measure.

A weighting scheme uses statistical properties from the text and the queretoagtain words more
importance when doing the similarity calculation. The most used scheme is tHeFwdighting scheme
[SB88], that uses the frequency of the terms in both queries and dotsitbazompute the similarity.

TF stands foterm frequency, and the idea is that a that if a term appears several times in a document
it is better as for describing the contents of that document. The TF is usuahyatized with respect to
document length, that is, the parameter used is the frequency of tiwided by the frequency of the most

frequent term in documeut
freq q

tf, j = ———
Y47 max freq, 4

IDF stands foinverse document frequencyand reflects how frequent a term is in the whole collection.
The rationale is that a term that appears in a few documents gives momaation that a term that appears
in many documents. IN is the number of documents amndif the number of documents containing the
query termt, thenid f, = log |

Using these measures, the weight of each term in given by:

1 1 .

The 1/2 factor is added to avoid a query term having O weight. Several alteenatiighting schemes
have been proposed, but this weighting scheme is one of the most usgivesmdood results in practice.

21

2.3 Connectivity-based ranking

Web links provide a source of valuable information. In a context in whicimthmber of pages is very large,
and there are no trusted measures for asserting the quality of pagefinkgetan be used as a collective,
“emerging” measure of page quality.

It is known that Web pages sharing a link are more likely to be topically relatgduticonnected Web
pages|[Dav00]. The key assumption of connectivity-based rankiag goe step further, and asserts that a
hyperlink from a pagey’ to a pagep, means, in a certain way, that the content of ppgeendorsed by the
author of pagey.

Several algorithms for connectivity-based ranking based on this asisunape the subject of a survey
by Henzinger [Hen01], and can be partitioned into:

e Query-independent rankintghat assign a fixed score to each page in the collection.

e Query-dependent rankingr topic-sensitive ranking, that assign a score to each page in theticollec
in the context of a specific query.

2.3.1 Query-independent ranking

The first connectivity based query-independent ranking method aesidyperlink Vector Voting (HVV)
and was introduced by Li [Li98]. The HVV method uses the keywordsagpg inside the links to a Web
page to confer it a higher score on those keywords. Only the courgyafded-link pairs is used, so this
ranking function is relatively easy to manipulate to get an undeservethank

The Pagerank algorithm, introduced by Pageal. [PBMW98], is currently an important part of the
ranking function used by the Google search engine [goo04]. Theitifiof Pagerank is recursive, stating
in simple terms that “a page with high Pagerank is a page referenced by ragey with high Pagerank”.
Pagerank can be seen as a recursive HVV method.

To calculate the Pagerank, each page on the Web is modeled as a statetémg agd each hyperlink
as a transition between two states. The Pagerank value of a page is thbilityobf being in a given page
when this system reaches its stationary state.

A good metaphor for understanding this is to imagine a “random surfeysop who visits pages at
random, and upon arrival to each page, chooses an outgoing linkmihjfat random from the links in that
page. The Pagerank of a page is the fraction of time the random suefedlspt each page.

This simple system can be modeled by the following equation of a “simplified &algerin this and
the following equationsp is a Web pagel ~(p) is the set of pages pointing fm andl" " (p) is the set of

22

pagesp points to.

Pagerank(x)

() (239)

Pagerank(p) =
xel = (p)

However, actual Web graphs include many pages with no out-links, wisichsd'rank sinks” as they
accumulate rank but never distribute it to other pages. In stationary stdyethey would have Pagerank
> 0. These pages can be removed from the system and their rank competedlso, we would like pages
not to accumulate ranking by using indirect self-references —self-¢éirkgasy to remove— not passing all of
their score to other pages. For these reasons, most of the implementatiRageohnk add “random jumps”
to each page. These random jumps are hyperlinks from every pagepgat in the collection, including
itself, which provide a minimal rank to all the pages as well as a damping édffiest|f-reference schemes.

In terms of the random surfer model, we can state that when choosingxhsteg, the random surfer
either chooses a page at random from the collection with probabjldy chooses to follow a link from the
current page with probability 4 €. This is the model used for calculating Pagerank in practice, and it is
described by the following equation:

Pagerankx)

) (26)

Pagerankp) = % +(1-¢) Z
xel = (p)

N is the number of pages in the collection, and the paransdtetypically between 0.1 and 0.2, based
on empirical evidence. Pagerank is a global, static measure of quality ob g&ge, very efficient in terms
of computation time, as it only has to be calculated once at indexing time and is sa@repeatedly at
query time.

Note that Pagerank can also be manipulated and in fact there are thewsandlions of Web pages
created specifically for the objective of deceiving the ranking funciitron et al. [EMTO04] found that:

“Among the top 20 URLs in our 100 million page Pagerank calculation using tebdjmmn to
random pages, 11 were pornographic, and they appear to havealdbkieved using the same
form of link manipulation. The specific technique that was used was to creaty URLS
that all link to a single page, thereby accumulating the Pagerank that exgeyrpceives from
random teleportation, and concentrating it into a single page of interest.”

Another paradigm for ranking pages based on a Markov chain is atabg model introduced by
Amati et al. JAOPO03, POAO3]. In this model, the original Web graph is transformedragdor each node,
a “clone node” with no out-links. Each clone nogeis only linked from one node in the original graph
When this system reaches stationary state, only the clone nodes hawabifitieb greater than zero. The
probability of the clone nodg' is interpreted as the score of the original n@dd his model performs better
than Pagerank for some information retrieval tasks.

23

A different paradigm for static ranking on the Web is the network flow maatebduced by Tomlin
[Tom03]. For ranking pages, a (sub)graph of the Web is consideyexhmying a finite amount of fluid,
and edges between nodes are pipes for this fluid. Using an entropy maiemizeethod, two measures
are obtained: a “TrafficRank” that is an estimation of the maximum amountwftfioough a node in this
network model, and a “page temperature”, which is a measure of the impedéadVeb page, obtained by
solving the dual of this optimization problem. Both measures can be usechfangaWeb pages, and both
are independent of Pagerank.

The models presented in this section summarize each page on the Web with aasimgler, or a pair
of numbers, but as the creators of Pagerank note, “the importance eba#ge is an inherently subjective
matter that depends on readers interests, knowledge and attitudes” [BBMWIs is why query-dependent
ranking is introduced to create ranking functions that are sensitive ts useds.

2.3.2 Query-dependent ranking

In query-dependent ranking, the starting point is a “neighborhoaplgr a set of pages that are expected to
be relevant to the given query. Carriere and Kazman [CK97] profmobaild this graph by starting with a
set of pages containing the query terms; this set can be the list of remdtslyi a full-text search engine.
Thisroot setis augmented by its “neighborhood” that comprises all (or a large samptle® glages directly

pointing to, or directly pointed by, pages in the root set. The constructmeregdure of the neighborhood set
is shown in Algorithm 1.

Figure 2.6 depicts the process of creation of the neighborhood set. Taefitimiting the number of
pages added to the neighborhood set by following back links was robfoidue original proposal, but was
introduced later [BH98].

Neighborhood set

Figure 2.6: Expansion of the root set with= 5 andd = 2. t is the number of pages in the root
set, and is the maximum number of back-links to include in the neighbod set.

24

Algorithm 1 Creation of the neighborhood s®&t of queryc
Require: o query

Require: t > 0, size of root set.

Require: d > 0 number of back-links to include per page.
1: Ry < topt results using a search engine.
2%« 0
3: forall pe Ry do
4: Letl*(p) denote all pagep points to

Let " (p) denote all pages pointed fpy

S — SUrt(p)

if [T~ (p)| <dthen

S —SUlr(p)
else
10: S — SU an arbitrary set ofl pages i~ (p)

11: endif
12: end for
13: & is the neighborhood set of quesy

Itis customary that when considering links in the neighborhood set, only imdtifferent Web sites are
included, as links between pages in the same Web site are usually createdsayné authors as the pages
themselves, and do not reflect the relative importance of a page forieeadjeommunity.

The most-cited algorithm, presented by Yuwono and Lee [YL96], is the sitnjoles of connectivity-
based query-dependent ranking: after the neighborhood seelasbiilt, each pagp in it is assigned a
score that is the sum of the number of query terms appearing in the paigéagto p. This algorithm
performed poorly when compared with pure content-based analysigsamghors concluded that links by
themselves are not a reliable indicator of semantic relationship between \§eb. pa

A more complex idea is the HITS algorithm presented by Kleinberg [Kle99]shzsed on considering
that relevant pages can be either “authority pages” or “hub pages authority page is expected to have
relevant content for a subject, and a hub page is expected to have niaoleuthority pages.

The HITS algorithm produces two scores for each page, called “atytsoore” and “hub score”. These
two scores have a mutually-reinforcing relationship: a page with high dtytlsaore is pointed to by many
pages with a high hub score, and a page with a high hub score points to mgey with a high authority
score, as shown in Figure 2.7.

An iterative version of this algorithm is shown in Algorithm 2; in this version,thenber of iterations
is fixed, but the algorithm can be adapted to stop based on the conveigfahe sequence of iterations.

The HITS algorithm suffers from several drawbacks in its pure formmé& of them were noted and

25

Authority Authority

Figure 2.7: Hubs and authorities in a small graph. Node 4 is the best hge, @ it points to
many authorities, and nodesandg are the best authority pages.

Algorithm 2 Hub and authority score for each pagesin
Require: S neighborhood set of query

Require: k number of iterations
1: N+ |
Let zdenote the vectarl, 1,1,...1) e R
Hp—2
Ag—2
for j=1tokdo
fori=1tondo
Hj[i] < Yxer+i)Aj-1[X] {T*(i) are pages points tg
Ajli] < Sxer—)HiX) {7~ (i) are pages pointing i
end for

=
e

NormalizeH; andA; so their components sum 1
: end for

e
N P

: Hy is the vector of hub scores

Iy
w

. A is the vector of authority scores

solved by Bharat and Henzinger [BH98]:

(a) Not all the documents in the neighborhood set are about the origpial(ttopic drifting”).
(b) There are nepotistic, mutually-reinforcing relationships between sosts.h

(c) There are many automatically generated links.

Problem (a) is the most important, as while expanding the root set, itis commanuderpopular pages
that are highly-linked, but unrelated to the query topic. The solution is tangkysis of the contents of the
documents when executing Algorithm 1, and pruning the neighborhoguh gnaremoving the documents
that are too different from the query. This is done using a thresholthieostandard TF-IDF measure of
similarity [SB88] between documents and queries.

26

Problems (b) and (c) can be avoided using the following heuristic: if therke @edges from documents
on a host to documents in another host, then each edge is given a welght dhis gives each document
the same amount of influence on the final score, regardless of the nofriimds in that specific document.

A different variation of the HITS algorithm, designed specifically to avoigltadrifting”, was pre-
sented by Chakrabart al. [CDR"98]. In their approach, for each link, the text near it in the origin page
and the full text of the destination page are compared. If they are simildmkhis given a high weight, as
it carries information about semantic similarity between the origin and destinaigesp As this heuristic
keeps the pages in the neighborhood set more closely related, a moegreigansion phase can be done.
The authors propose to follow two levels of links forward and backwesthfthe root set, instead of just
one.

Another approach to query-dependent ranking is topic-sensitiver®alg introduced by Haveliwala
[Hav02], in this method, multiple scores for each page are pre-computatkxing time, using an algorithm
similar to Pagerank. Each score represents the importance of a pagelidopic from a set of pre-defined
topics. At query time, the ranking is done using the query to assign weighte tiffarent topic-sensitive
Pagerank scores of each page.

2.4 Web crawling issues

There are two important characteristics of the Web that generate aiscenahich Web crawling is very
difficult: its large volume and its rate of change, as there is a huge amouagegpeing added, changed
and removed every day. Also, network speed has improved less thamicprocessing speeds and storage
capacities. The large volume implies that the crawler can only downloadtefrax the Web pages within

a given time, so it needs to prioritize its downloads. The high rate of chandegripat by the time the
crawler is downloading the last pages from a site, it is very likely that n@ephave been added to the site,
or that pages that have already been updated or even deleted.

Crawling the Web, in a certain way, resembles watching the sky in a clear niblat we see reflects
the state of the stars at different times, as the light travels different desak¢hat a Web crawler gets is not
a “snapshot” of the Web, because it does not represents the Wepgitan instant of time [BYRN99]. The
last pages being crawled are probably very accurately represéntatie first pages that were downloaded
have a high probability of have been changed. This idea is depicted ireRigir

As Edwardset al. note, “Given that the bandwidth for conducting crawls is neither infinitefres it
is becoming essential to crawl the Web in a not only scalable, but effici@pifvgome reasonable measure
of quality or freshness is to be maintained.” [EMTO01]. A crawler mustfcdlsechoose at each step which
pages to visit next.

The behavior of a Web crawler is the outcome of a combination of policies:

27

World Wide Web

b

~— days, weeks, or months

Search engine's view
User

Figure 2.8: As the crawling process takes time and the Web is very dynaimicsearch en-
gine’s view of the Web represents the state of Web pagesfatelift times. This is similar to
watching the sky at night, as the stars we see never existedtaneously as we see them.

A selection policythat states which pages to download.

A re-visit policythat states when to check for changes to the pages.

A politeness policyhat states how to avoid overloading Web sites.

A parallelization policythat states how to coordinate distributed Web crawlers.

2.4.1 Selection policy

Given the current size of the Web, even large search engines calyea portion of the publicly available

content; a study by Lawrence and Giles [LG00] showed that no seagiheeindexes more than 16% of
the Web. As a crawler always downloads just a fraction of the Web pégeshighly desirable that the

downloaded fraction contains the most relevant pages, and not jusi@masample of the Web.

This requires a metric of importance for prioritizing Web pages. The impaetaha page is a function
of its intrinsic quality, its popularity in terms of links or visits, and even of its URLe(tatter is the case
of vertical search engines restricted to a single top-level domain, ochseaigines restricted to a fixed
Website). Designing a good selection policy has an added difficulty: it mudt with partial information,
as the complete set of Web pages is not known during crawling.

Cho et al. [CGMP98] made the first study on policies for crawling scheduling. Thaia et was
a 180,000-pages crawl from ths¢ anf or d. edu domain, in which a crawling simulation was done with
different strategies. The ordering metrics tested were breadth-firstitdecount and partial Pagerank,

28

which are defined later in this article. One of the conclusions was that if dveler wants to download
pages with high Pagerank early during the crawling process, then ttial [Pargerank strategy is the better,
followed by breadth-first and backlink-count. However, these reavdt$or just a single domain.

Najork and Wiener [NWO01] performed an actual crawl on 328 million pagsismg breadth-first order-
ing. They found that a breadth-first crawl captures pages with higeak early in the crawl (but they did
not compared this strategy against other strategies). The explanat@nkgivthe authors for this result is
that “the most important pages have many links to them from numerous hodthase links will be found
early, regardless of on which host or page the crawl originates”.

Abiteboul et al. [APCO03] designed a crawling strategy based on an algorithm called GPdirfe
Page Importance Computation). In OPIC, each page is given an initial lrash” which is distributed
equally among the pages it points to. It is similar to a Pagerank computationjdfaster and is only done
in one step. An OPIC-driven crawler downloads first the pages in thelicrg frontier with higher amounts
of “cash”. Experiments were carried in a 100,000-pages syntheti©grith a power-law distribution of
in-links. However, there was no comparison with other strategies noriexgr@s in the real Web.

Boldi et al. [BSV04] used simulation on subsets of the Web of 40 million from.thie domain and
100 million pages from the WebBase crawl, testing breadth-first agaim$dnaordering and an omniscient
strategy. The winning strategy was breadth-first, although a randoeringdalso performed surprisingly
well. One problem is that the WebBase crawl is biased to the crawler useathterghe data. They also
showed how bad Pagerank calculations carried on partial subgrégtnes \b/eb, obtained during crawling,
can approximate the actual Pagerank.

The importance of a page for a crawler can also be expressed as ariurfctiee similarity of a page
to a given query. This is called “focused crawling” and was introduge@lakrabartiet al. [CvD99]. The
main problem in focused crawling is that in the context of a Web crawler, stdditike to be able to predict
the similarity of the text of a given page to the qudérgfore actually downloading the page. A possible
predictor is the anchor text of links; this was the approach taken by Ramkg?in94] in a crawler developed
in the early days of the Web. Diligentit al. [DCL*00] propose to use the complete content of the pages
already visited to infer the similarity between the driving query and the pagébdle not been visited yet.
The performance of a focused crawling depends mostly on the richhés&in the specific topic being
searched, and a focused crawling usually relies on a general Welh sgggine for providing starting points.

2.4.2 Re-visit policy

The Web has a very dynamic nature, and crawling a fraction of the Weltakana long time, usually
measured in weeks or months. By the time a Web crawler has finished its cramyl,awents could have
happened. We characterize these events as creations, updatetetindglBYCSJ04]:

29

Creations When a page is created, it will not be visible on the public Web space until itkedinso we
assume that at least one page update —adding a link to the new Web pageecausor a Web page
creation to be visible.

A Web crawler starts with a set of starting URLSs, usually a list of domain naswesegistering a
domain name can be seen as the act of creating a URL. Also, under soeneescbf cooperation the
Web server could provide a list of URLs without the need of a link, as sHowChapter 6.

Updates Page changes are difficult to characterize: an update can be wither, or major. An update
is minor if it is at the paragraph or sentence level, so the page is semanticallgtdahmcsame and
references to its content are still valid. On the contrary, in the case of a ogajate, all references to
its content are not valid anymore. It is customary to consaugrupdate asnajor, as it is difficult to
judge automatically if the page’s content is semantically the same. Characteriabpiartial changes
is studied in [LWP 01, NCOO04].

Deletions A page is deleted if it is removed from the public Web, or if all the links to thaepag removed.
Note that even if all the links to a page are removed, the page is no longdevisithe Web site, but
it will still be visible by the Web crawler. It is almost impossible to detect that aegeas lost all its
links, as the Web crawler can never tell if links to the target page are eeept, or if they are only
present in pages that have not been crawled.

Undetected deletions are more damaging for a search engine’s reputatioopgtates, as they are
more evident to the user. The study by Lawrence and Giles about saggite performance [LG0O]
reports that on average 5.3% of the links returned by search engimé$gdeleted pages.

Cost functions

From the search engine’s point of view, there is a cost associated vitletexting an event, and thus having
an outdated copy of a resource. The most used cost functions, iogddiu [CGMO0O0], are freshness and

age.

FreshnessThis is a binary measure that indicates whether the local copy is accunat¢. orhe freshness
of a pagep in the repository at timeis defined as:

1 if p is equal to the local copy at tinte
Fp(t) = (2.7)
0 otherwise

Age This is a measure that indicates how outdated the local copy is. The agegép im the repository,

30

at timet is defined as:

0 if p is not modified at time
Ap(t) = (2.8)
t — modification time ofp otherwise

The evolution of these two quantities is depicted in Figure 2.9.

Sync. Modify Sync. Modify

Freshness
Fy(1)

> Timet

I I I I

| | | |

I 1 1 1

I 1 1 1

I .

Age | |

At 1 1

o) | |

[:/

| I ! » Timer

Figure 2.9: Evolution of freshness and age with time. Two types of evant@ccur: modifi-
cation of a Web page in the server (everddify) and downloading of the modified page by the
crawler (evensyng.

Coffmanet al. [EGC98] worked with a definition of the objective of a Web crawler that isieent to

freshness, but use a different wording: they propose that a arawdst minimize the fraction of time pages

remain outdated. They also noted that the problem of Web crawling can beledoas a multiple-queue,

single-server polling system, on which the Web crawler is the server aigbesites are the queues. Page

modifications are the arrival of the customers, and switch-over times aigtéineal between page accesses

to a single Web site. Under this model, mean waiting time for a customer in the pollitegrsissequivalent

to the average age for the Web crawler.

Strategies

The objective of the crawler is to keep the average freshness of paigesollection as high as possibly, or

to keep the average age of pages as low as possible. These objedtived aquivalent: in the first case,

the crawler is just concerned witiow manypages are out-dated, while in the second case, the crawler is

concerned witthow oldthe local copies of pages are.

31

Two simple re-visiting policies were studied by Cho and Garcia-Molina [CGAtO3

Uniform policy This involves re-visiting all pages in the collection with the same frequenggrdéess of
their rates of change.

Proportional policy This involves re-visiting more often the pages that change more frequéhgyvisit-
ing frequency is directly proportional to the (estimated) change frequenc

In both cases, the repeated crawling order of pages can be doneagithedom or with a fixed order.

Cho and Garcia-Molina proved the surprising result that, in terms of geerashness, theniform
policy outperforms theroportional policyin both a simulated Web and a real Web crawl. The explanation
for this result comes from the fact that, when a page changes too oftecraivler will waste time by trying
to re-crawl it too fast and still will not be able to keep its copy of the pagstfr "To improve freshness, we
should penalize the elements that change too often” [CGMO03a].

The optimal re-visiting policy is neither the uniform policy nor the proportigmalicy. The optimal
method for keeping average freshness high includes ignoring the thegesange too often, and the optimal
for keeping average age low is to use access frequencies that moatijof@od sub-linearly) increase with
the rate of change of each page. In both cases, the optimal is closer toitbenupolicy than to the
proportional policy: as Coffmaet al. [EGC98] note, “in order to minimize the expected obsolescence time,
the accesses to any particular page should be kept as evenly spacssiate”.

Explicit formulas for the re-visit policy are not attainable in general, buy tire obtained numerically,
as they depend on the distribution of page changes. Note that the re-vimitioigs considered here regard
all pages as homogeneous in terms of quality —all pages on the Web aretiwosiime— something that is
not a realistic scenario, so further information about the Web page qulatitydbe included to achieve a
better crawling policy.

2.4.3 Politeness policy

As noted by Koster [Kos95], the use of Web robots is useful for a numbiasks, but comes with a price
for the general community. The costs of using Web robots include:

e Network resources, as robots require considerable bandwidth,pamdte with a high degree of par-
allelism during a long period of time.

e Server overload, especially if the frequency of accesses to a givearss too high.
e Poorly written robots, which can crash servers or routers, or whiaimib@d pages they cannot handle.

e Personal robots that, if deployed by too many users, can disrupt netaod Web servers.

32

A partial solution to these problems is the robots exclusion protocol [Kogf#]is a standard for
administrators to indicate which parts of their Web servers should not lessaxt by robots. This standard
does not include a suggestion for the interval of visits to the same sergartteough this interval is the most
effective way of avoiding server overload.

The first proposal for the interval between connections was giveKas93] and was 60 seconds.
However, if we download pages at this rate from a Web site with more thaj@Q@@ages over a perfect
connection with zero latency and infinite bandwidth, it would take more than 2heda download only
that entire Web site; also, we would be using a fraction of the resouraestfrat Web server permanently.
This does not seems acceptable.

Cho [CGMO03Db] uses 10 seconds as an interval for accesses, aWd®te crawler [BYCO02] uses 15
seconds as the default. The Mercator Web crawler [HN99] follows aptae politeness policy: if it took
seconds to download a document from a given sever, the crawler aait8x* t seconds before downloading
the next page. Dilet al. [DKM *02] use 1 second.

Anecdotal evidence from access logs shows that access interval&rfimwn crawlers vary between 20
seconds and 3—4 minutes. It is worth noticing that even when being vy, @md taking all the safeguards
to avoid overloading Web servers, some complaints from Web server athatiois are received. Brin and
Page note that:

“... running a crawler which connects to more than half a million servers (...¢rg&es a fair
amount of email and phone calls. Because of the vast number of peaplegcon line, there
are always those who do not know what a crawler is, because this isshenfe they have seen.”
[BP98].

2.4.4 Parallelization policy

A parallel crawler is a crawler that runs multiple process in parallel. Theigda maximize the download
rate while minimizing the overhead from parallelization and to avoid repeatedldads of the same page.

To avoid downloading the same page more than once, the crawling systeinesegpolicy for assigning
the new URLs discovered during the crawling process, as the same URbecfound by two different
crawling processes. Cho and Garcia-Molina [CGMO02] studied two typpslizy:

Dynamic assignmentWith this type of policy, a central server assigns new URLs to differeaiviars
dynamically. This allows the central server to, for instance, dynamicallynbal¢éhe load of each
crawler.

With dynamic assignment, typically the systems can also add or remove downpradesses. The
central server may become the bottleneck, so most of the workload mustsietea to the distributed
crawling processes for large crawls.

33

There are two configurations of crawling architectures with dynamic as&ighthat have been de-
scribed by Shkapenyuk and Suel [SS02]:

e A small crawler configuration, in which there is a central DNS resolvercamiral queues per
Web site, and distributed downloaders.

e A large crawler configuration, in which the DNS resolver and the quengeslso distributed.

Static assignmentWith this type of policy, there is a fixed rule stated from the beginning of theldteat
defines how to assign new URLS to the crawlers.

For static assignment, a hashing function can be used to transform URlevéo better, complete
Web site names) into a number that corresponds to the index of the cordesperawling process.
As there are external links that will go from a Web site assigned to ondingaprocess to a Web site
assigned to a different crawling process, some exchange of URLs guust o

To reduce the overhead due to the exchange of URLs between crawdicesses, the exchange should
be done in batch, several URLs at a time, and the most cited URLSs in the collebtiold be known
by all crawling processes before the crawl (e.g.: using data fromvéopiecrawl) [CGMO02].

An effective assignment function must have three main properties: eaaling process should get
approximately the same number of hosts (balancing property), if the nurhbeavaing processes grows,
the number of hosts assigned to each process must shrink (contnaeeapioperty), and the assignment
must be able to add and remove crawling processes dynamically. &oddi [BCSV04] propose to use
consistent hashing, which replicates the buckets, so adding or remdvirnget does not requires re-hashing
of the whole table to achieve all of the desired properties.

2.5 Web crawler architecture

A crawler must have a good crawling strategy, as noted in the previotiersgdut it also needs a highly
optimized architecture. Shkapenyuk and Suel [SS02] noted that:

“While it is fairly easy to build a slow crawler that downloads a few pagespeond for a short
period of time, building a high-performance system that can download adsdrf millions of
pages over several weeks presents a number of challenges in systigmed!, I/O and network
efficiency, and robustness and manageability.”

Web crawlers are a central part of search engines, and details omlgi@ithms and architecture are
kept as business secrets. When crawler designs are publishedistlodten an important lack of detail
that prevents other from reproducing the work. There are also engecgincerns about “search engine

34

spamming”, which prevent major search engines from publishing theimmgualkgorithms. The typical high-
level architecture of Web crawlers is shown in Figure 2.10.

World Wide
Web

Web pages

URLs Multi-threaded
Scheduler >
downloader Text and
metadata
L
Queue [+
URLs
\) Storage

Figure 2.10: Typical high-level architecture of a Web crawler, involgia scheduler and a
multi-threaded downloader. The two main data structurestse Web page (text) storage and
the URL queue.

2.5.1 Examples of Web crawlers

The following is a list of published crawler architectures for generappse crawlers (excluding focused
Web crawlers), with a brief description that includes the names given taiffeeedt components and out-
standing features:

RBSE [Eic94] was the first published Web crawler. It was based on two progr the first program,
“spider” maintains a queue in a relational database, and the secondmrtigite”, is a modifiedww
ASCII browser that downloads the pages from the Web.

WebCrawler [Pin94] was used to build the first publicly-available full-text index of a-sebof the Web.
It was based on lib-WWW to download pages, and another program $e pad order URLs for
breadth-first exploration of the Web graph. It also included a real-tirawler that followed links
based on the similarity of the anchor text with the provided query.

World Wide Web Worm [McB94] was a crawler used to build a simple index of document titles and URLs
The index could be searched by using ghep UNIX command.

Internet Archive Crawler [Bur97] is a crawler designed with the purpose of archiving periodapshots
of a large portion of the Web. It uses several process in a distribugdibfa and a fixed number

35

of Web sites are assigned to each process. The inter-process geatfadRLs is carried in batch
with a long time interval between exchanges, as this is a costly processnt€heelt Archive Crawler
also has to deal with the problem of changing DNS records, so it keepstamical archive of the
hostname to IP mappings.

WebSPHINX [MB98] is composed of a Java class library that implements multi-threaded Afgb ne-
trieval and HTML parsing, and a graphical user interface to set théngtdRLs, to extract the
downloaded data and to implement a basic text-based search engine.

Google Crawler [BP98] is described in some detail, but the reference is only about &n\easion of
its architecture, which was based in C++ and Python. The crawler wasdtadgwith the indexing
process, because text parsing was done for full-text indexing andaal&)RL extraction. There is an
URL server that sends lists of URLSs to be fetched by several crawlingegses. During parsing, the
URLs found were passed to a URL server that checked if the URL heemwe previously seen. If not,
the URL was added to the queue of the URL server.

CobWeb [dSVG'99] uses a central “scheduler” and a series of distributed “collect®dts® collectors parse
the downloaded Web pages and send the discovered URLSs to the schetidk in turns assign them
to the collectors. The scheduler enforces a breadth-first searehwitth a politeness policy to avoid
overloading Web servers. The crawler is written in Perl.

Mercator [HN99] is a modular Web crawler written in Java. Its modularity arises fromuage of in-
terchangeable “protocol modules” and “processing modules”. Pristoeodules are related to how
to acquire the Web pages (e.g.: by HTTP), and processing moduleslatedreo how to process
Web pages. The standard processing module just parses the pagedrandnew URLS, but other
processing modules can be used to index the text of the pages, or togattstics from the Web.

WebFountain [EMTO01] is a distributed, modular crawler similar to Mercator but written in Ckfeatures
a “controller” machine that coordinates a series of “ant” machines. Aétpeatedly downloading
pages, a change rate is inferred for each page and a non-lineaamrmogg method must be used
to solve the equation system for maximizing freshness. The authors recahoese this crawling
order in the early stages of the crawl, and then switch to a uniform crawtitey,an which all pages
being visited with the same frequency.

PolyBot [SS02] is a distributed crawler written in C++ and Python, which is composed‘aawl man-
ager”, one or more “downloaders” and one or more “DNS resolve€dllected URLs are added to
a queue on disk, and processed later to search for seen URLSs in badeh e politeness policy
considers both third and second level domains (sugy: exanpl e. comandww2. exanpl e. comare
third level domains) because third level domains are usually hosted byrtteeWab server.

36

WebRACE [ZYDO02] is a crawling and caching module implemented in Java, and usedaxs$ af @ more
generic system called eRACE. The system receives requests frosrfarsdownloading Web pages, so
the crawler acts in part as a smart proxy server. The system also saegilests for “subscriptions” to
Web pages that must be monitored: when the pages changes, they musti@aded by the crawler
and the subscriber must be notified. The most outstanding feature of MBEbI that, while most
crawlers start with a set of “seed” URLs, WebRACE is continuouslyivatg new starting URLS to
crawl from.

Ubicrawler [BCSV04] is a distributed crawler written in Java, and it has no centralga® It is composed
of a number of identical “agents”; and the assignment function is calculesied consistent hashing
of the host names. There is zero overlap, meaning that no page is citswided unless a crawling
agent crashes (then, another agent must re-crawl the pages feciailithg agent). The crawler is
designed to achieve high scalability and to be tolerant to failures.

FAST Crawler [RMO02] is the crawler used by the FAST search engine, and a genesaligtion of its
architecture is available. It is a distributed architecture in which each mabbids a “document
scheduler” that maintains a queue of documents to be downloaded by anidat processor” that
stores them in a local storage subsystem. Each crawler communicates withéherawlers via a
“distributor” module that exchanges hyperlink information.

WIRE [BYCO02, CBY02] is the crawler developed for this research, and isrite=d in detail in Chapter 7
of this thesis.

In addition to the specific crawler architectures listed above, there aerajesrawler architectures
published by Cho [CGMO02] and Chakrabarti [Cha03].

A few Web crawlers have been released under the GNU public licensdainLBAil04], WebBase
[Dac02], a free version of WebSPHINX [Mil04], GRUB [gru04] andlrADig [htd04]. For commercial
products, see [SS04, bot04].

About practical issues of building a Web crawler, which is the subjectpgfedix A, a list of recom-
mendations for building a search engine was written by Patterson [Pat04].

2.5.2 Architectures for cooperation between Web sites andearch engines

We study cooperation schemes for Web servers in Chapter 6. In this thesisly consider the cooperation
between Web servers and crawlers, not between crawlers: this isstuelisd in [McL02], using a crawler

simulator and proving that crawlers can benefit from sharing informatimutalast-modification date of

pages. In this case, the cooperation between search engines dccrawlang time, but search engines
could also exchange information later, like in the “STARTS” proposal [(AES7].

37

There are several methods for keeping mirrors (replicas) of informaéorices; these methods are not
directly suitable for Web server cooperation because the crawler ussiailgrested in only a subset of the
pages (the most interesting ones) and not in the entire site. Mirroring metrohadedrRSYNC [TPO03], that
generates a series of fingerprints for “chunks” of data, and thena@sphose fingerprints to compress and
send only the modified parts. CTM [KamO03] is a method for sending diffeern@ e-mail, used to keep
copies of source code for the Open BSD operating systems up-to-date.

A specific proposal for pushing last-modification data to Web crawlereisgoted by Gupta and Camp-
bell [GCO1], including a cost model in which the meta-data is sent only if thb Site is misrepresented
above a certain threshold in the search engine. A more general Intetifetation system was presented by
Brandt and Kristensen [BK97].

The Distribution and Replication Protocol (DRP) [VHGBI7] provides a protocol to distribute data
using HTTP and data fingerprinting and index files. Another proposaluttes a series of files containing
descriptions of Web pages, is presented in [BCGMSO00].

DASL [RRDBO02], the DAV searching and locating protocol, is a proposédresion to DAV that will
allow searching the Web server using an HTTP query with certain extendahneither the query syntax
nor the query semantics are specified by the protocol.

2.6 Conclusions

In this chapter, we have surveyed selected publications from the relat&divat are relevant for this thesis.
We have focused in link analysis and Web crawling.

In the literature, we found that link analysis is an active research topic imtbemation retrieval
community. The Web is very important today because it is the cornerstone aiftrmation age, and is
used by millions of persons every day, and it is natural that it providpsrymities for both business and
research. Link analysis is, in a sense, the most important “new” compofhtire Web in relation to previous
document collections and traditional information retrieval, and probably #g&i& why the field of link
analysis has been so active.

On the contrary, the topic of Web crawling design is not represented banvtke literature, as there
are few publications available. Web crawling research is affected bipdasssecrecy because Web search
engines, in a sense, mediate the interaction between users and Web sies thieckey for success of many
Web sites. There is also secrecy involved because there are manyroabeut search engine spamming,
because there are no known ranking functions absolutely resilient to niglioi@nipulation, so ranking
functions and crawling methods are usually not published.

The next chapter starts the main part of this thesis by presenting a nelingravodel and architecture.

38

Chapter 3

A New Crawling Model and Architecture

Web crawlers have to deal with several challenges at the same time, andfithmae contradict each other.
They must keep fresh copies of Web pages, so they have to re-vigis plagt at the same time they must
discover new pages, which are found in the modified pages. They nu#teigavailable resources such as
network bandwidth to the maximum extent, but without overloading Web seasethey visit them. They
must get many “good pages”, but they cannot exactly know in advahahwwages are the good ones.

In this chapter, we present a model that tightly integrates crawling with thefrassearch engine and
gives a possible answer to the problem of how to deal with these contngditals, by means of adjustable
parameters. We show how this model generalizes several particular easepropose a crawling software
architecture that implements the model.

The rest of this chapter is organized as follows: Section 3.1 presentsathleqm of crawler scheduling,
and Section 3.2 discusses the problems of a typical crawling model. Sectisim8v8 how to separate short-
term and long-term scheduling, and Section 3.4 shows how to combinengafedss and quality to obtain
an efficient crawling order. Section 3.5 introduces a general cravdhitecture that is consistent with these
observations.

Note: portions of this chapter have been presented in [CBY02, BYCO02].

3.1 The problem of crawler scheduling

We consider a Web crawler that has to download a set of pages, witipagep having sizeS, measured in
bytes, using a network connection of capa@fyneasured in bytes per second. The objective of the crawler
is to download all the pages in the minimum time. A trivial solution to this problem is tontlead all the
Web pages simultaneously, and for each page use a fraction of theid#mgvoportional to the size of each

39

page. IfBp is the downloading speed for pagethen:

B, — T& (3.1)

WhereT* is the optimal time to use all of the available bandwidth:

L 2pS
T _pT (3.2)

This scenario is depicted in Figure 3.1a.

B B

S;=T*xB;
i) i)
g S»=T*XxBj §
2 Z |Si= | S2= | S3= Sy= [Ss=
E E T*xB;| T*xB, | T*XxBs |T*xB4|T*xBs
g S3=T*x B3 =
b .
3 « £
£ S4=T*xBy £
m 2]

S5 =T* X Bs

— —
Time [seconds] Time [seconds]
(a) Full parallelization (b) Full serialization

Figure 3.1: Two unrealistic scenarios for Web crawling: (a) paralielizall page downloads
and (b) serializing all page downloads. The areas represg@ sizes, asze = speedx time

However, there are many restrictions that forbid this optimistic scenario. réstgction is that a
scheduling policy must avoid overloading Web sites, enforcing a politgga&y as described in Section
2.4.3: a Web crawler should not download more than one page from a ¥iedpisite at a time, and it should
wait several seconds between requests.

Instead of downloading all pages in parallel, we could also serialize aletiigests, downloading only
one page at a time at the maximum speed, as depicted in Figure 3.1b. Halweumandwidth available for
Web sitesBMAX is usually lower than the crawler bandwidshso this scenario is not realistic either.

The presented observations suggest that actual download time linesndee ® the one shown in
Figure 3.2. In the Figure, the optimal tinTe' is not achieved, because some bandwidth is wasted due to
limitations in the speed of Web sites (in the figuB§**, the maximum speed for page 3 is shown), and to
the fact that the crawler must wait between accesses to a Web site.

40

1

B t

pd |

. S I :

o

g Sy 4

g — I

5 1

*;‘ BMAX

= S3 : .

=

: o

3

= Y

5 |

S4 - w/ 1 Ss

1 b‘
T* T**

Time [seconds]

Figure 3.2: A more realistic download time line for Web crawlers. Pageland 4-5 belong
to the same site, and the crawler waitseconds between them. The hatched portion is wasted
bandwidth due to the constraints in the scheduling poli€ye dptimal timeT* is not achieved.

To overcome the problems shown in Figure| 3.2, it is clear that we should tatwcase the network
link, downloading pages from many different Web sites at the same time.rtunégely, most of the pages
are located in a small number of sites: the distribution of pages to sites, shdvgui 3.3, is very bad in
terms of crawler scalability. Thus, it is not possible to use productivelygelaumber of robots and it is
difficult to achieve a high utilization of the available bandwidth.

0.1 " T T
k/x"1.72 in [50,500] -
001}]
a AN
L
£
] "\
5 0.001]
3]
o
L.
0.0001+ |
1e-05 : N N
1 10 100 1000 10000 100000

Number of documents

Figure 3.3: Distribution of site sizes in a sample of the Chilean Web. rétere a few Web
sites that are very large, and a large fraction of small Weds siThis poses a problem to Web
crawlers, as they must download several pages from a smabauof Web sites but at the
same time they must avoid overloading them with requests.

There is another serious practical constraint: the HTTP request hasyiagéad the latency time can be
over 25% of the total time of the request [LF98]. This latency is mainly the timeéistaikestablish the TCP

41

connection and it can be partially overcome if the same connection is usedesmssgeral requests using the
HTTP/1.1 “keep-alive” feature.

3.2 Problems of the typical crawling model

Crawling literature emphasizes on the words “crawler” and “spider”, andetwords suggests walking
through a directed graph. That is very far from what is really hapggtiaecause crawling is just automatic
page downloading that does not need to follow a browsing-like patteronie ases a breadth-first approach
is used, in other cases the crawling is done in a way that has not an obspryasentation on the Web graph,
and does not resembles a graph traversal.

The typical crawling algorithm comes from the early days of the World Widé,Vded it is given by
Algorithm 3.

Algorithm 3 Typical crawling algorithm
Require: ps1, p2, ..., pn Starting URLS

1: Q={p1,P2,---, Pn}, queue of URLS to visit.

2: V =0, visited URLSs.

3: while Q£ 0do

4: Dequeuep € Q, selectp according to some criteria.
Do an asynchronous network fetch far

vV =Vu{p}

Parsep to extract text and extract outgoing links
*(p) < pages pointed by

for eachp’ e ' (p) do
10: if P ¢VAP ¢ Qthen

11: Q=Qu{p}
12: end if
13: end for
14: end while

We consider that this algorithm can be improved, because during crawigngat necessary to add the
newly found URLSs taQ each and every time a Web page is parsed. The new URLs can be addedps g
or “batches”, because:

Indexing is done in batches.The crawling process adds information teallectionthat will be indexed
The indexing process is done in batch, many megabytes of text at a time jtanmuvwent algorithms
it is very inefficient to do it one document at a time, unless one can achiegeagt balance between
the incoming stream of documents and the processing speed of the indg3(T], and in this case,

42

the index construction becomes the bottleneck. Thus, in most search&rigmadex is not updated
continuously but completely at the same time. To the best of our knowledgesttiie case for

most large search engines, and there is even a term coined for the ap@ategle’s index (“Google

dance”), when the new index is distributed to the different data centets0f3. When the index is
updated in batches, it is not important which URLs were transferred first.

Distributed crawlers exchange URLs in batches.If the crawler is distributed, then it has to send the re-
sults back to a central server, or it has to exchange results with othwiniggrocesses. For better
performance, it must send many URLS at a time, as the exchange of UResages an overhead that
is mostly given by the context switches, not for the (relatively small) sizeeo®fRLs [CGMO02]. This
means that how the URLSs are ordetedally should not impact thglobal crawling order.

The important URLSs are seen earlier in the crawl. If some URL ordering is done and if this ordering is
not based on text-similarity to a query, then in steady state a page that wgubtgeen is a very
unlikely candidate to be downloaded in the near future: “good” pagesese early in the crawling
process [NWO1]. Conversely, if a URL is seen for the first time in a lateestdthe crawling process,
there is a high probability that it is not a very interesting page. This is oblyiduse if Pagerank
[PBMW98] is used, because it reflects the time a random surfer “spantise page and if a random
surfer spends more time in a page, then probably the page can be r&achegveral links.

We have noticed that previous work tends to separate two similar problents amiet two different
problems:

e The two different problems that are usually mixed are the problem of skontefficiency (maximiz-
ing the bandwidth usage and being polite with servers) and long-term eéfyc{erdering the crawling
process to download important pages first). We discuss why these tlem® can be separated in
Section 3.3.

e The two related problems that are usually treated as separate issues iadgeihFeshness and the
index intrinsic quality. We consider that it is better to think in terms of a seriecafes related
to different characteristics of the documents in the collectiocluding freshnesswhich should be
weighted accordingly to some priorities that vary depending on the usagextof the crawler. This
idea is further developed in Section 3.4.

3.3 Separating short-term from long-term scheduling

We intend to deal with long-term scheduling and short-term schedulingatepa To be able to do this,
we must prove that both problems can be separated, namely, we musifdhedktrinsic quality of a Web

43

page or a Web server is related to the bandwidth available to download teatlpéhat were the case, then
we would not be able to select the most important pages first and latereegages to use the bandwidth
effectively, because while choosing the important pages we would betiaff the network transfer speed.

We designed and ran the following experiment to validate this hypothesis. &Weotwe thousand
Chilean site names at random from the approximately 50,000 currently exigfmgccessed the home page
of these Web sites repeatedly each 6 hours during a 2-weeks perdyeasured the connection speed
(bytes/second) and latency (seconds). To get a measure of the kétamsfer characteristics and avoid
interferences arising from variations in the connections to differemesgrpages were accessed sequentially
(not in parallel).

From the 1000 home pages, we were able to successfully measure 76Moaththe others were down
during a substantial fraction of the observed period, or did not ansuwretequest with an actual Web page.
In the analysis, we consider only Web sites that answered to the requests.

As a measure of the “importance” of Web sites, we used the number of inftorkdifferent Web sites
in the Chilean Web, as this is a quantitative measure of the popularity of the it¢/ereong other Web site
owners.

We measured the correlation coefficierietween the number of in-links and the speed (—0.001),
and between the number of in-links and the latemey (-0.069). The correlation between these parameters
is not statistically significant. These results show that the differences iretisrk connections to “impor-
tant” pages and “normal” pages are not relevant to long-term sched#iggre 3.4 shows a scatter plot of
connection speed and number of in-links.

1000 T . . T . 1000
L] L]
L] L]
2 . . 2 ‘. et
£ 100 ¢ e o £ 100 ¢ ®
= ° . ‘x . : ° ° = o 0° . oo.o .
o ® o0 o0 - o o .
8 o ® < : o 8 * o .) ‘e,
3 o ° .'.'.Q ...~ * 3 & Soody ® ®e (34
£ V'Q’, . S ® o Lo lP ° o
2 10¢ :'. e V. e 3 ® ol N 2 10¢ L r‘f “.. S
L] * L X1 > 1] J ° -*. " [] #"ﬁ. L[]
0 00000ED 00 OB DGO GO 60 & O O
LN] ® oBHEEIED® ¢ L] CHNOSINO ®eND o 00 oo
®0 NS L] L] L] 1] wmes o o
L] o® o o [] L 1 X
1 L *® - 1 L L
0.1 1 10 100 1000 10000 100000 0.001 0.01 0.1 1 10 100
Connection speed [KB/s] Latency [s]

Figure 3.4: Scatter plot of connection speed (in Kilobytes per second)atency (in seconds)
versus popularity (measured as the number of in-links).uinexperiments, we found no sig-
nificant correlation between these variables. The restdtaeerages of the measures obtained
by connecting to 750 Web sites sequentially every 6 hoursduar 2-weeks period.

For completeness, we also used the data gathered during this experimerasiarenthe correlation

44

between the connection speed and lateney {-0.645), which is high, as shown in Figure 3.5. In the graph,
we can see that Web sites with higher bandwidths tend to have low latency times.

100000

10000 ¢

1000F e

100 +

10 +

Connection speed [KB/s]

1 L

01 1 1 1 1
0.001 0.01 0.1 1 10 100

Latency [s]

Figure 3.5: Scatter plot of connection speed versus latency. Web siitslow connection
speeds tend to have also low latency.

Another interesting result that we obtained from this experiment was thatction speeds and latency
times varied substantially during the observed period. We found on aaregative deviation of 42% for
speed and 96% for latency, so these two quantities cannot be predistd draly on their observed mean
values. The daily and weekly periodicity in Web server response time\aaséy Liu [Liu98] has to be
considered for a more accurate prediction: Diligettal. [DMPS04] maintain several observed values for
predicting connection speed, and group the observations by time of tite dagount for the periodicity in
Web server response time.

3.4 Combining page freshness and quality

A search engine’s crawler is designed to create a collection of pageis thsgful for the search engine’s
index. To be useful, the index should balance comprehensivenessuality. These two goals compete,
because at each scheduling step, the crawler must decide betwedpatting a new page, not currently
indexed, or refreshing a page that is probably outdated in the indexe Tha trade-off between quantity
(more objects) and quality (more up-to-date objects).

In the following, we propose a function to measure the quality of the indexsefaach engine. The
crawler’s goal is to maximize this function.

We start by stating three factors that are relevant for the quality of a \Agé in the index:

Intrinsic quality of the page. The index should contain a large number of Web pages thahtmeesting
to the search engine’s users. However, the definition of what will begasiieg for users is a slippery
one, and currently a subject of intense research. A number of stmtegie been proposed [CGMP98,

45

DCL"00, NWO01], usually relying in a ranking function for ordering the list ofeatts found by the
search engine.

We cannot known in advance the interest that a Web page will have & bsierve can approximate it
[CGMP98] using a ranking function that considers the partial informatiatthie crawler has obtained

so far during its process.

The intrinsic quality of a page can be estimated in many ways [CGMP98]:

Link analysis (link popularity).

Similarity to a given query.

Accesses to the page on the index (usage popularity).

Location-based, by the perceived depth (e.g. number of directoribe qath to the Web object).

Domain name, IP address or segment, geography, etc.

Representational quality of the page in the index.Every object in the index shoulaccurately represent
a real object in the Web. This is related to both the amount of data storetitababject (e.g.: it is
not the same to index just the first 200 words than to index the full pagefpathd rendering time of
the object (e.g.: compression [WMB99] uses less space but may indheasndering time).

The representational quality depends mainly on the quantity and formatiofdheation being stored
for every object. In the case of Web pages, we can order the repatisaal quality from less to more:

e URL.
e URL + Index of text near links to that page.
e URL + Index of text near links to that page + Index of the full text

e URL + Index of text near links to that page + Index of the full text + Sumnudgxt (“snippet”)
extracted using natural language processing techniques or simply by taféw words from the
beginning of the text

e URL + Index of text near links to that page + Index of the full text + Fulktex

There are other possibilities, involving indexing just portions of the pageyuke HTML markup as
a guide, i.e., indexing only titles, metadata and/or page headings.

Rendering time depends on the format, particularly if compression is usede &daptivity can be
used, e.g.: text or images could be compressed except for those objedtElma large representa-
tional quality is required, because they are accessed frequently bgatehsengine.

At this moment, Google [goo04] uses only two values, either Represent@isaldy(p;) = highand
the Web page is stored almost completely, or Representational@pglity low and only the URL

46

and the hyperlink anchor texts to that URL are analyzed. Note that in thésacpage can be in the
index without ever having been actually downloaded: the index for thegesas built using the URL
and a few words that appeared in the context of links found towardp#ugt. In the future, the page
can be visited and its representational quality can increase, at the exgfemsre storage space and
more network transfers.

There is no reason why this should be a binary variable. A selective ind@gh indexes partially
certain pages and completely other pages can be a good solution for deskrgpace in the future,
especially if the distance between storage capacity and the amount of itiforraeailable on the Web
further increases.

Freshness of the pageWeb content is very dynamic, and the rate of change of Web pages [BFKM
BCS"00] is believed to be between a few months and one year, with the most popjgats having
a higher rate of change than the others. We expect to maximize the probabdiyage being fresh
in the index, given the information we have about past changes: an estiimatbis was shown in

Section 2.4 (page 27).

Keeping a high freshness typically involves using more network resstwdeansfer the object to the
search engine.

For thevalueof an object in the indeX/(p), a product function is proposed:

V(p) = IntrinsicQuality p)* x RepresentationalQualitp)® x Freshnesp)’ (3.3)

The parameters, 3 andy are adjustable by the crawler's owner, and depend on the objective and
policies of it. Other functions could be used, as long as they are increading relevant quality measures,
and allow to specify the relative importance between these values. Wesgrtpase a product because the
distribution of quality and rate of change are very skewed and we usuglllyerworking with the logarithm
of the ranking function for the intrinsic quality.

We propose that thealueof an indext = {p1, p2, ..., pn} IS the sum of the values of the objegisstored
on the index:

V)= 3 V() 3.4)

Depending on the application, other functions could be used to aggregataltte of individual ele-
ments into the value of the complete index, as long as they are non-decreasévgry component. For
instance, a function such &41) = min;V(p;) could be advisable if the crawler is concerned with ensuring
a baseline quality for all the objects in the index.

a7

A good coverage, i.e., indexing a large fraction of the available objedtsjmly increases the value of
an index, but only if the variables we have cited: intrinsic quality, repitasienal quality and freshness are
considered. Coverage also depends on freshness, as new pagssally found only on changed pages.

The proposed model covers many particular cases that differ on thigeétaportance of the measures
described above. In Figure 3.6, different types of crawlers arsifikssin a taxonomy based on the proposed
three factors.

Intrinsic
quality
A
Research Focused
crawlers crawlers
General
crawlers
Archive - News
crawlers e AN agents
p Mirroring N
» systems A
Representational quality Freshness

Figure 3.6: Different types of Web crawlers can be classified in our fraor, based on the
relative importance given to freshness, representatmumality and intrinsic quality.

Research crawlers (e.g.: CiteSeer [cit04]) and focused crawlemma@stly interested in the intrinsic
quality of the downloaded pages. Archive crawlers (e.g.: Internehidedarc04]) are mostly interested in
keeping an accurate copy of the existing pages. News agents and ngisgsiems are mostly interested in
having fresh copies of the pages. General, large-scale crawldarstagecenter of the graph, as they have to
balance all the different aspects to have a good index.

3.5 A software architecture

The observations presented in the previous sections can be used aesyy crawling architecture. The
objective of the design of this crawling architecture is to divide the crawliskitzto different tasks that will
be carried efficiently by specialized modules.

A separation of tasks can be achieved with two modules, as shown in Figuré&schedulercalcu-
lates scores and assigns pages to sederahloademodules that transfer pages through the network, parse
their contents, extract new links and maintain the link structure.

48

Downloader

Scheduler Short-term scheduling
Page score calculations > Network transfers
Long-term scheduling Parsing + Link extraction

Link resolving

7

Figure 3.7: A software architecture with two modules. A “batch” of pagegenerated by the
schedulerand downloaded and parsed by tteevnloader Under this scheme, the scheduler
requires read access to the collection, and the downloaddrand write access.

There are some problems with this two-module architecture. One problem ifothitate scheduler
to work on the Web graph, during the calculations, the Web graph canaageh So, the the process of
modifying the Web graph should be as fast as possible, but parsing gles pan be slow and this could
mean that we have to “lock” the Web graph during a long time. What can be toovercome this is to
parse all pages and accumulate links, and then add all the links found tolligxtion.

Another issue is that we could have different, optimized hardware artimigscfor the tasks of down-
loading and storing pages and for the task of parsing pages. Pargieg pan be expensive in terms of
processing, while downloading pages requires mostly high network ctivitgand fast disks. Moreover,
if the network downloads must be carried with high parallelism, then eachldading task should be very
lightweight. To solve these issues we divide the tasks of downloadindgngansd keeping the link structure,
as shown in Figure 3.8. The following module names are used through tli& thes

Manager: page value calculations and long-term scheduling.
Harvester: short-term scheduling and network transfers.
Gatherer: parsing and link extraction.

Seeder: URL resolving and link structure.

Figure 3.9 introduces the main data structures that form the index of trehsmagine, and outlines the
steps of the operation:

1. Efficient crawling order Long-term scheduling is done by the “manager” module, which generates th

list with URLSs that should be downloaded by the harvester in the next cg¢leafch”). The objective
of this module is to maximize the “profit” (i.e.: the increase in the index value) in epdb.

49

Manager
Page score calculations
Long-term scheduling

-

Seeder
Link resolving
Robots exclusions

_

~—p]

~

Harvester
Short-term scheduling
Network transfers

Gatherer
Parsing
Link extraction

W

N
a

Figure 3.9: The main data structures and the operation steps of theama(d) the manager
generates a batch of URLSs, (2) the harvester downloads thespé3) the gatherer parses the
pages to extract text and links, (4) the seeder checks forUiglws and maintains the link

Manager

50

Figure 3.8: The proposed software architecture has a manager, thatagesnéatches of URLs
to be downloaded by the harvester. The pages then go to argathat parses them and send
the discovered URLs to a seeder.

Harvester

2. Efficient network transfers Short-term scheduling is assigned to the “harvester” module. This module
receives batches of URLs and its objective is to download the pages iratble &s fast as possi-
ble, using multiple connections and enforcing a politeness policy. The $tarvgenerates a patrtial

collection, consisting mostly of raw HTML data.

3. Efficient page parsing The extraction of the text and links is assigned to the “gatherer” module. This
module receives the partial collections downloaded by the harvestedgdals the text to the main
collection. It also generates a list of found URLSs that are passed todderse

4. Efficient URL manipulation The URLs found are processed by a “seeder” module, which seafoche
new URLs that have not been seen before. This module also checkiRlos that should not be
crawled because of theobot s. t xt exclusion protocol, described in Section|7.2 (page 114). The
module maintains a data structure describing Web links.

The pattern of read and write accesses to the data structures is designpbie the scalability of the
crawler as, for instance, the pages can be downloaded and parsedh&hNeb graph is analyzed, and the
analysis only must stop while the seeder is running.

The programs and data structures in Figure 3.9 are explained in detail meGia

3.6 Conclusions

Web crawling is not only a trivial graph traversal problem. It involvegesal issues that arise from the
distributed nature of the Web. First, Web crawlers must share resowitte®ther agents, mostly with
humans, and cannot monopolize Web sites’ time —indeed, a Web crawléd slydo minimize its impact on
Web sites. Second, Web crawlers have to deal with an information repositich contains many objects of
varying quality, including objects with very low quality created to lure the Welwtgr and deceive ranking
schemes.

We consider the problem of Web crawling as a process of discoveriagaré objects, and one of
the main problems is that a Web crawler always works with partial informatiecause it must infer the
properties of the unknown pages based on the portion of the Web actoalhjahded. In this context, the
Web crawler requires access to as most information as possible aboutktheades.

While the model implies that all the portions of the search engine should knaWweafiroperties of
the Web pages, the architecture introduced in this chapter is an attempiaohtsep these properties into
smaller units (text, link graph, etc.) for better scalability. This architecture is imgiéed in the WIRE
crawler and details on the implementation of the WIRE crawler is explained int&hap

Benchmarking this architecture requires a framework that allows compariadifferent settings of
network, processor, memory and disk, and during this thesis we did ngtaray benchmark of this type.
However, the findings about scheduling strategies, stop criteria andcWahcteristics presented in the
following chapters are mostly independent of the chosen architecture.

51

There are other ways of dividing the tasks of a Web crawler that catheseame crawling model
presented in sections 3.3 and/3.4 of this chapter; the modularization dedueifeeproves that the model can
be implemented, and each task is simple enough so the entire system couldtzerpned and debugged
during the duration of this thesis, but certainly there are other alternativectures that could have been

implemented.

In the context of today’s Web, it is impossible to download all of the Web pdgethermore, in Chapter
we argue that the number of Web pages is infinite, so the fraction of thethdela crawler downloads
should represent the most important pages. The next chapter studieshabg for directing the crawler
towards important pages early in the crawl.

52

Chapter 4

Scheduling Algorithms for Web Crawling

In the previous chapter, we described the general model of our Vdeberr In this chapter, we deal with the
specific algorithms for scheduling the visits to the Web pages.

We started with a large sample of the Chilean Web that was used to build a VWWébegya run a crawler
simulator. Several strategies were compared using the simulator to ensutieadeonditions during the

experiments.

The rest of this chapter is organized as follows: Sectioh 4.1 introducesxparimental framework and
Section 4.2 the simulation parameters. Sections 4.3 and 4.4 compare diffdgvedtisng policies for long-
and short-term scheduling. In Section/4.5 we test one of these policiesaigdal Web crawler, and the last
section presents our conclusions.

Portions of this chapter were presented in [CMRBY04].

4.1 Experimental setup

We tested several scheduling policies in two different datasets condisigoto Chilean and Greek Web
pages using a crawler simulator. This section describes how the datddeiathe simulator works.

4.1.1 Datasets: .cland .gr

Dill et al. [DKM *02] studied several sub-sets of the Web, and found that the Web rapH-similar in
several senses and at several scales, and that this self-similaritwasiger as it holds for a number of
different parameters. Top-level domains are useful because thmsents pages sharing a common cultural
context; we consider that they are more useful than large Web sitesdeepages in a Web site are more
homogeneous. Note than a large sub-set of the whole Web (and amyasaut subset of the Web) is always
biased by the strategy used to crawl it.

53

We worked with two datasets that correspond to pages undecth@Chile) and. gr (Greek) top-level
domains. We downloaded pages using the WIRE crawler [BYCO02] in bnefadt mode, including both
static and dynamic pages. While following links, we stopped at depth 5 fardimpages and 15 for static
pages, and we downloaded up to 25,000 pages from each Web site.

We made two complete crawls on each domain, in April and May for Chile, andaijnavid September
for Greece. We downloaded about 3.5 million pages in the Greek Web and 215 million pages in the
Chilean Web. Some demographic information about the two countries is pedsarTable 8.7 (page 145).
Both datasets are comparable in terms of the number of Web pages, buibwt&ireed from countries with
wide differences in terms of geography, language, demographicsphisto.

4.1.2 Crawler simulator

Using this data, we created a Web graph and ran a simulator by using wliffatgeduling policies on this
graph. This allowed us to compare different strategies under exactlathe sonditions.

The simulato@ models:

The selected scheduling policy, including the politeness policy.

The bandwidth saturation of the crawler Internet link.

The distribution of the connection speed and latency from Web sites, wlasloltained during the
experiment described in Section 3.3 (page 43).

The page sizes, which were obtained during the crawl used to build theyk&ph.

We considered a number of scheduling strategies. Their design is basdteap priority queue whose
nodes represent sites. For each site-node we have another heappewigigés of the Web site, as depicted in
Figure 4.1.

At each simulation step, the scheduler chooses the top Website from the qLi®eb sites and a
number of pages from the top of the corresponding queue of Web .palges information is sent to a
module that simulates downloading pages from that Website.

4.2 Simulation parameters

The parameters for our different scheduling policies are the following:

1The crawler simulator used for this experiment was implemented by Dwribla Marin and Dr. Andrea Rodriguez, and
designed by them and the author of this thesis based on the design of tliedré@Rler. Details about the crawler simulator are not
given here, as they are not part of the work of this thesis.

54

Queue of Web pages
for each site

Queue of Web sites

Figure 4.1: Queues used in the crawling simulator. We tested the scimgdablicies using a
structure with two levels: one queue for Web sites and oneigfer the Web pages of each
Web site.

e The policy for ordering the queue of Web sites, related to long-term sdihgd
e The policy for ordering the queues of Web pages, related to short-tdreasling.
e The intervalw in seconds between requests to a single Web site.

e The number of pages downloaded for each connection when re-using connections with thePHTT
Keep-al i ve feature.

e The number of maximum simultaneous connections, i.e.: the degree of parallelization. Aliheeg
used a large degree of parallelization, we restricted the robots to nevenuge than one connection
to a Web site at a given time.

4.2.1 Interval between connectionsw))

As noted in Section 2.4.3, a waiting time wf= 60 seconds is too large, as it would take too long to crawl
large Web sites. Instead, we use= 15 seconds in our experiments.

Liu et al. [Liu98] show that total time of a page download is almost always under dfnsis. We
ran our own experiments and measured that for sequential transteich(are usually faster than parallel
transfers) 90% of the pages were transfered in less than 1.5 seemd35% of the pages in less than 3
seconds, as shown in Figlire 4.2.

From the total time, latency is usually larger than the actual transfer time. Thisstfak situation even
more difficult than what was shown in Figure 3.2, as the time spent waitingotheramortized effectively.

55

—
///

> 0.8
c
(O]
=
g 0.6
m /
2
©
= 0.4
e
S
o

0.2

0

0 0.5 1 1.5 2 2.5 3 3.5 4
Total transfer time [s]

Figure 4.2: Total download time for sequential transfer of Web pages;dhta provides from
experiments in the Chilean Web and was used as an input fa¥gtecrawler simulator.

4.2.2 Number of pages per connectiorcy]

We have observed the log files of several Web servers during this.th&sidiave found that all the Web

crawlers used by major search engines download only one page pecaawection, and do not re-use the
HTTP connection. We considered downloading multiple pages in the sameatmmto reduce latency, and

measured the impact of this technique in the quality of the scheduling.

The protocol for keeping the connection open was introduced a&ete al i ve feature in HTTP/1.1
[FGM™99]; the configuration of the Apache Web server enables this featudefaylt and allows for a
maximum of 100 objects downloaded per connection, with a timeout of 15 dedmtween requests, so
when usingc > 1 in practice, we should also s#&t< 15 to prevent the server from closing the connection.

4.2.3 Number of simultaneous requests}

All of the robots currently used by Web search engines have a higleeefiparallelization, downloading
hundreds or thousands of pages at a given time. Weset (serialization of the requests), as a base case,
r =64 andr = 256 during the simulations, amd= 1000 during the actual crawl.

As we never open more than one connection to a given Welrsgedgounded by the number of Web
sites available for the crawler, i.e.: the number of Web sites that have unypsitges$. If this number is too
small, we cannot make use of a high degree of parallelization and the cpwlermance in terms of pages
per second drops dramatically.

56

The scarcity of large Web sites to download from is especially critical atrtieo&a large crawl, when
we have already downloaded all the public pages from most of the Web itesn downloading pages in
batches, this problem can also arise by the end of a batch, so the pagkstshcarefully selected to include
pages from as many Web sites as possible. This should be a primaryrcarsr parallelism is considered.

4.3 Long-term scheduling

We tested different strategies for crawling pages in the stored Web.gfid@hcomplete crawl on the real
Chilean or Greek Web takes about 8 days, so for testing many strategieslitismore efficient to use the
crawler simulator. The simulator also help us by reproducing the exadsoeach time a strategy is tested.

Actual retrieval time for Web pages is simulated by considering the obséatertty and transfer rate
distribution, the observed page size for every downloaded page, argathration of bandwidth, which is
related to the speed and number of active connections at a given time ahthiat®n.

For evaluating the different strategies, we calculated beforehand gjeedPé value of every page in the
whole Web sample and used those values to calculate the cumulative sunecdrifkags the simulated crawl
goes by. We call this measure an “oracle” score since in practice it ismoetrkuntil the complete crawl is
finished. The strategies that are able to reach values close to the tarbealseafaster are considered the
most efficient ones.

There are other possible evaluation strategies for a Web crawler, pstrategy must consider some
form of global ranking of the Web pages, to measure how fast rankiagasmulated. This global ranking
could be:

e Number of page views, but this is hard to obtain in practice.

e Number of clicks on a search engine, but a search engine’s restgpsesents only a small portion of
the total Web pages.

e A combination of link and text analysis, but there are no established measugeality that accom-
plish this without a specific query, and we want to assert overall qualityguoality for a specific
topic.

e User votes or ranking.

However, we decided to use Pagerank as the global measure of quakiyseeit can be calculated
automatically and it has a non-zero value for each page.

We consider three types of strategies regarding how much information déineyse: no extra informa-
tion, historical information, and all the information. A random ordering carcbnsidered a baseline for
comparison. In that case, the Pagerank grows linearly with the numbeageggrawled.

57

All of the strategies are bound to the following restrictions= 15 waiting time,c = 1 pages per
connectiony simultaneous connections to different Web sites, and no more than onectiomnto each
Web site at a time. In the first set of experiments we assume a situation of dighvlgth for the Internet
link, i.e., the bandwidth of the Web crawl&ris larger than any of the maximum bandwidths of the Web
serversBMAX,

4.3.1 Strategies with no extra information

These strategies only use the information gathered during the curredingrprocess.

Breadth-first Under this strategy, the crawler visits the pages in breadth-first ordettrgtarts by
visiting all the home pages of all the “seed” Web sites, and Web page hesaksp in such a way that new
pages added go at the end. This is the same strategy tested by Najork avedt |M/01], which in their
experiments showed to capture high-quality pages first.

Backlink-count This strategy crawls first the pages with the highest number of links pointiiity to
so the next page to be crawled is the most linked from the pages alreadjodolwd. This strategy was
described by Chet al. [CGMP98].

Batch-pagerank This strategy calculates an estimation of Pagerank, using the pages $eeregery
K pages downloaded. The ndktpages to download are the pages with the highest estimated Pagerank. We
usedK = 100,000 pages, which in our case gives about 30 to 40 Pagerank calcaldtioing the crawl.
This strategy was also studied by Céial. [CGMP98], and it was found to be better than backlink-count.
However, Boldiet al. [BSV04] showed that the approximations of Pagerank using partiahgregm be very
inexact.

Partial-pagerank This is like batch-pagerankbut in between Pagerank re-calculations, a temporary
pagerank is assigned to new pages using the sum of the Pagerank afjgesegointing to it divided by the
number of out-links of those pages.

OPIC This strategy is based on OPIC [APCO03], which can be seen as a welgdkiihk-count strat-
egy. All pages start with the same amount of “cash”. Every time a pagevidettaits “cash” is split among
the pages it links to. The priority of an uncrawled page is the sum of thén®¢bbas received from the
pages pointing to it. This strategy is similar to Pagerank, but has no randosralitkthe calculation is not
iterative — so it is much faster.

Larger-sites-first The goal of this strategy is to avoid having too many pending pages in angiféeb
to avoid having at the end only a small number of large Web sites that may lepdrotane due to the “do
not overload” rule. The crawler uses the number of un-crawled fagesl so far as the priority for picking
a Web site, and starts with the sites with the larger number of pending pagesstifitegy was introduced
in [CMRBYO04] and was found to be better than breadth-first.

58

4.3.2 Strategies with historical information

These strategies use the Pagerank of a previous crawl as an estimatienRafgerank in this crawl, and
start in the pages with a high Pagerank in the last crawl. This is only anxpyation because Pagerank
can change: Cho and Adams [CA04] report that the average relatmefer estimating the Pagerank four
months ahead is about 78%. Also, a study by Ntoeftasal [NCOO04] reports that “the link structure of
the Web is significantly more dynamic than the contents on the Web. Every alealt 25% new links are

created”. We explore a number of strategies to deal with the pages fotimeldénrrent crawl which were not

found in the previous one:

Historical-pagerank-omniscientNew pages are assigned a Pagerank taken from an oracle that knows
the full graph.

Historical-pagerank-random New pages are assigned a Pagerank value selected uniformly at random
among the values obtained in previous crawl.

Historical-pagerank-zero New pages are assigned Pagerank zero, i.e., old pages are crast|eddir
new pages are crawled.

Historical-pagerank-parent New pages are assigned the Pagerank of the parent page (the page in
which the link was found) divided by the number of out-links of the paregep

4.3.3 Strategy with all the information

Omniscient: this strategy can query an “oracle” which knows the complete Web graghinas calculated
the actual Pagerank of each page. Every timeotheisciensstrategy needs to prioritize a download, it asks
the oracle and downloads the page with the highest ranking in its frontiée. tNat this strategy is bound to
the same restrictions as the others, and can only download a page if it éadyafftownloaded a page that
points to it.

4.3.4 Evaluation

Our importance metric is Pagerank. Thus, for evaluating different siestege calculated the Pagerank
value of every page in each Web graph and used those values to cathelatelution of the Pagerank as
the simulated crawl goes by.

We used three measures of performance: cumulative PageranigefRagerank and Kendali's

Cumulative Pagerank: we plotted the sum of the Pagerank of downloaded pages at differents pbin
the crawling process. The strategies which are able to reach valuesacthedarget total value.Q faster are
considered the most efficient ones. A strategy which selects randoes pagrawl will produce a diagonal
line in this graph.

59

1
0.9
0.8
0.7
0.6
05l
0.4 ¢
0.3
0.2
0.1 Chile —+—

0

Cumulative Pagerank

0 0102030405060.70809 1
Fraction of documents
Figure 4.3: Cumulative Pagerank in theCL and. GR domain, showing almost exactly the

same distribution; these curves represents an upper boutitka@umulative Pagerank of any
crawling strategy.

There is an upper bound on how well this can be done, and it is givenelgistribution of Pagerank,
which is shown in Figure 4.3.

The results for the different strategies are shown in Figures 4.4 anth4tfis simulation we are using
r =1, one robot at a time, because we are not interested in the time for downgahd full Web, but just in
the crawling order.

60

1

0.9
x 0.8
S
5 0.7
g 06
D- .
S 05 g =
S o L e
g 04 o o Omniscient
§ 0.3 M !;’Z-A Larger-sites-first-—e-—
- | / X L OPIC o
0.2 y — Breadth-first
/ s " Batch-pagerank—&—
0.1 /ea™ Partial-pagerank =
oX - Backlink-count =
0O 01 02 03 04 05 06 07 08 09 1
Fraction of pages
1
0.9
Xx 0.8
c
©
Q
(@)
a
o
q6 -
S
2 .f"g Omniscient
@ & Larger-sites-first-—e-—
i OPIC o
Breadth-first —x
Batch-pagerank-—=-
L Partial-pagerank =
0w Backlink-count =

0O 01 02 03 04 05 06 0.7 08 09 1
Fraction of pages

Figure 4.4: Comparison of cumulative Pagerank vs retrieved pages hétlifferent strategies,
excluding the historical strategies, in the Chilean sardplkéing April and May 2005.

61

0.9
x 08 a5
SV
S o7 89
8 06 s -
o ' e Bl
S 05 7 o s
[AN
S o4 [.° pra
© 0.3 / 1l A Omniscient
T ' / o - Larger-sites-first-—e-—
0.2 [f /8 HE OPIC o
/ d ,gff!’ Breadth-first
0.1 ,»Q fl" Partial-pagerank-—=-—
0 lﬂ | ~ Backlink-count -
0O 01 02 03 04 05 06 07 08 09 1
Fraction of pages
1 PEE
_\é 0.8 ,.O,ffg'/ & é—é' 5 0 R
@© /Q:'&‘ géé i &
5 0.7 S RRE
> oW e" “
e é’ﬂz o~
§ 08 5N z
g 5 / %’@ o p’
2 0.4 7 .”” A‘A”A Omniscient
& 0.3 / 27 o A Larger-sites-first—e-—
i VTS Y OPIC o
0.2 |7 Breadth-first
¥ met Batch-pagerank =
017F m Partial-pagerank-—=--
0 l:iffﬁﬁf" Backlink-count -2

Fraction of pages

0O 01 02 03 04 05 06 0.7 08 09 1

Figure 4.5: Comparison of cumulative Pagerank vs retrieved pages hétlifferent strategies,
excluding the historical strategies, in the Greek sampiendiMay and September 2005.

62

Obviously theomniscienthas the best performance, but it is in some sense too greedy becatise by
last stages of the crawl it performs close to random.

On the other endhacklink-countand partial-pagerankare the worst strategy according to cumulative
Pagerank, and perform worser than a random crawl. They both teget stuck in pages that are locally
optimal, and fail to discover other pages.

Breadth-firstis close to the best strategies for the first 20-30% of pages, but aftdt bewomes less
efficient.

The strategiedatch-pageranklarger-sites-firstand OPIC have a better performance than the other
strategies, with an advantage towalaiger-sites-firstwhen the desired coverage is high. These strategies
can retrieve about half of the Pagerank value of their domains downtpadiy around 20-30% of the pages.

We tested thdiistorical-pageranistrategies in the Greek Web graph of September, using the Pagerank
calculated in May for guiding the crawl — we are using Pagerank that is 4hsa@d. We were able to use
the Pagerank of the old crawl (May) for only 55% of the pages, as ther d&%6 of pages were new pages,
or were not crawled in May.

Figure 4.6 shows results for a number of ways of dealing with the aboveo#p&iges along with results
for the same Web graph but using tB€I1C strategy for comparison. These results show that May Pagerank
values are not detrimental to the crawl of September.

1
0.9
X 0.8
3
5 0.7 < ‘
g 06 AT B
o ' O AT
S 04 [toal
& 03! # OPIC —»—
L il Omniscient
0.2 1/ Historical-Pagerank-Omniscient -
f Historical-Pagerank-Parent <
0.1 Historical-Pagerank-Random-<-—
0 Historical-Pagerank-Zero -+

0O 01 02 03 04 05 06 07 08 09 1
Fraction of pages

Figure 4.6: Comparison of cumulative Pagerank using the historicateflies against tham-
niscientandOPIC strategies, for a crawl of the Greek Web in September 200dg iBagerank
information from May 2004.

63

The historical-pagerank-randonstrategy has a good performance, despite of the fact that the Web
graph is very dynamic [NCOO04], and than on average it is difficult to estitha@t®agerank using historical
information [CA04]. A possible explanation is that the ordering of pageRBdgerank changes more slowly
and in particular the pages with high ranking have a more stable position inrnkiagahan the pages with
low ranking, which exhibit a larger variability. Also, as Pagerank is bidee@rds old pages [BYSJCO02],
55% of pages that already existed in May account for 72% of the totairBiakyin September.

Average Cumulative Pagerank: this is the average across the entire crawl. As we have normalized
the cumulative Pagerank as a fraction of documents, it is equivalent taghauader the curves shown in
Figures 4.4 and 4.5. The result is presented in Table 4.1, in which we havagad the strategies across

the four collections (note that théstorical-pageranistrategies were tested in a single pair of collections, so
they values are not averaged).

Kendall's Tau: this is a metric for the correlation between two ranked lists, which basically messasu
the number of pairwise inversions in the two lists [Ken70]. Two identical listg ha= 1, while two totally
uncorrelated lists have= 0 and reversed lists hawe= —1. We calculated this coefficient for a 5000-page

sample of the page ordering in each strategy, against a list of the sanm®e qrdgeed by Pagerank. The
results are shown in Tahle 4.1.

Table 4.1: Comparison of the scheduling strategies, consideringageecumulative Pagerank
during the crawl and Kendall's of the page ordering against the optimal ordering.

Strategy Avg. Pagerank 1
Backlink-count 0.4952 0.0157
Partial-pagerank 0.5221 0.0236
Breadth-first 0.6425 0.1293
Batch-pagerank 0.6341 0.1961
OPIC 0.6709 0.2229
Larger-sites-first 0.6749 0.2498
Historical-pagerank-zero 0.6758 0.3573
Historical-pagerank-random 0.6977 0.3689
Historical-pagerank-parent 0.7074 0.3520
Historical-pagerank-omni. 0.7731 0.6385
Omniscient 0.7427 0.6504

We attempted to measure precision, for instance, how many page downteaukscassary to get the
top 10% of pages. However, this kind of measure is very sensitive to saraltions, such as having a single
high-quality page downloaded by the end of the crawl.

64

4.3.5 Multiple robots

The effect of increasing the number of robots te 64 andr = 256 is shown in Figure 4.7. Observing the
rate of growth of the cumulative Pagerank sum, the results shoviatigatr-sites-firstis not affected by the
number of robots; bubreadth-firstimproves as the number of robots increases, because the crawlesgather
information from many sources at the same time, and thus can find pagesvatr al&pth earlier.

1 . . , | | |
0.9 b |
x 0.8 |
G
o 0.7 |
<
a 0.6 |
L Y-) S - 1. S A - i
< 0.4
£ Larger-sites-first=1 —=—
3 037 Larger-sites-first=64 =
0.2 Larger-sites-first=256 o
. Breadth-first=1 —
0.1 Breadth-first=64 ——-s-—- -
0 Bregdth-firsltr:25e e

0 0.5 1 15 2 2.5 3 3.5
Retrieved pages<(106)

Figure 4.7: Cumulative sum of Pagerank values vs number of retrieved Wdglks. Strategies
larger-sites-firsandbreadth-first case for = 1, r = 64 andr = 256 robots.

Finally, Table 4.2 shows the effects in retrieval time when we increase theemohimbots for different
bandwidths, using thiarger-sites-firsistrategy.

The results show that using more robots increases the rate of downlpades$ up to a certain point,
and when bandwidth is saturated, it is pointless to use more robots (see|Biglr Note that this result
arises from a simulation that does not consider CPU processing time, dimg) awlore robots increases the
performance monotonically.

In a multi-threaded crawler, using more robots than necessary actuatades the performance due
to the load from context switches. This is not the case of the WIRE crawlgch is single threaded and
uses an array of sockets, as explained in Section 7.2.2: there are teatcewitches, and handling even
a large amount of sockets is not very demanding in terms of processingr.pélso, idle sockets do not
require processing.

65

Table 4.2: Predicted speed-ups for parallelism in the crawling precesing simulation and

the Larger-sites-firsstrategy.

Bandwidth r=1 r=64 r =256
[bytes/second]

200 0.2 1.6 3.0
2,000 0.7 3.8 16.0
20,000 1.0 27.0 83.3

200,000 1.0 43.0 114.1
2,000,000 1.0 54.3 204.3
20,000,000 1.0 54.6 220.1

250 . , . .
=256 —&— :
r=64 —o-—
o 200+t ‘ .
>
o
()
2 150t i
(72}
©
o
5 100 r -
o
o
B [yl S .

0.1 1 10

100

1000 10000 100000

Bandwidth [KB/s]

Figure 4.8: Predicted speed-up at different bandwidths, showing sdat growth and satura-

tion. Note that the scale for the bandwidth is logarithmic.

4.4 Short-term scheduling

When crawling, especially in distributed crawling architectures, it is typicaldrk by downloading groups
of pages, or to make periodic stops for saving a checkpoint with thergwstatus of the crawler. These
groups of pages or “batches” are fixed-size grougs phages, chosen according to the long-term scheduling

policy.

66

We have shown the distribution of pages on sites for the whole Web in Fig8r@i Figure 4.9 we
show page distribution on sites for a typical batch, obtained at the middle ofdiag. The distribution is
slightly less skewed than for the entire Web, as Web sites with very few @agesompleted early in the
crawl, but it is nevertheless very skewed.

SN k/x"1.37 in [2,2000]
(%))
Qg
‘»
© 0.01¢r __
c
je
Q0
s
L
0.001 __
1 10 100 1000 10000

Number of documents

Figure 4.9: Distribution of Web pages to Web sites in a typical batch erttiddle of the crawl
using breadth-first crawling.

Even when a batch involves many Web sites, if a large fraction of those Wésbhas very few pages
available for the crawler, then quickly many of the robots will be idle, as tvim@t®cannot visit the same
Web site at the same time. Figure 4.10 shows how the effective number ¢ iobolved in the retrieval of
a batch drops dramatically as the crawl goes by. In this figure, the nurib&bbats actually downloading
pages varies during the crawl, as a robots must waivfseconds before downloading the next page from a
site, and if there are no other sites available, then that robot becomesénacti

An approach to overcome this problem is to try to reduce waiting time. This cdoreeby increasing
c and letting robots get more than one page every time they connect to a Web sefigure 4.11 we show
results for a case in which robots can download up+0100 pages per site in a single connection, using the
HTTP/1.1Keep- al i ve feature.

Downloading several pages per connection resulted in significantgsainnterms of the total time
needed for downloading the pages, as more robots are kept actaddioger part of the crawl. In the case
of the small bandwidth scenario, the time to download a batch was redueecbrout 33 to 29 hours, and
in the case of a large bandwidth scenario, the time was reduced from Stodihours.

67

, 60FT .
3
o 650r .
()
=
g 40 1
I
° 30t]
()
O
E 20t .
Z 20 KB/s

10 L 8

0 ! . ! u\HMmm.m i

0 5 10 15 20 25 30 35

Time required to retrieve a whole batch [Hours]

Figure 4.10: Number of active robots vs batch’s total retrieval time. TWe curves are for
small (2 Kb/s) and large (20 Kb/s) bandwidth. In either casest robots are idle most of the
time, and the number of active robots varies as robots gebéed and deactivated very often
during the crawl.

Note that, as most of the latency of a download is related to the connection timelpaoling multiple
small pages with the same connection is very similar to downloading just a larQep¥de, therefore,
increasing the number of pages that are downloaded in the same d¢@miscequivalent to reducing w, the
waiting time between page&educingw in practice can be very difficult, because it can be perceived as a
threat by Web site administrators, but increasing the number of pagedadaled by connection can be a
situation in which both search engines and Web sites win.

Another heuristic that can be used in practice is monitoring the number ofihtessed while down-
loading pages, and stop the current crawl cycle if this number is too logesPthat were not crawled are
downloaded in the next batch. This also suggests preparing the nelxtdigtages in advance, and start the
next batch before the current batch ends on when network usage loetow a certain threshold.

4.5 Downloading the real Web

In this section we describe two experiments for testinganger-sites-firstscheduling policy in a real Web
crawler.

68

70 T T T T T T

LR LR UL HINE) }'H*\‘

" 60 M '\w,w .
S ¥,
e 50 I N\"l”v\h\.‘ﬁiw N
G>'J ‘\MMM
£ 40} " 2KBIs]
© W
° Y
= 30 B ”\)w\‘ -
2 1
g 20 W"\\,‘;\” J
< 20 KB/s

10 B ‘\TlN T

MNMMWM{
V\N““\\‘
0 1 1 1 1 1 ™
0 5 10 15 20 25 30 35

Time required to retrieve a whole batch [Hours]

Figure 4.11: Number of active robots vs batch’s total retrieval time. TWe curves are for
small (2 Kb/s) and large (20 Kb/s) bandwidth. In this casetslare allowed to request up to
100 pages with the same connection, that is the default mawifor the Apache Web server.
In this case there is much less variability in the number tiffacobots.

45.1 Experiment1

We started with a list of Web sites registered with the Chilean Network Inform&@ner [nic04], and ran
the crawler during 8 days with tHarger-sites-firststrategy. We visited 3 million pages in over 50,000 Web
sites, downloading 57 GB of data.

We ran the crawler in batches of upKo= 100 000 pages, using up to= 1000 simultaneous network
connections, and we waited at least 15 seconds between accesses to the same Web site. The crawler used
both therobot s. t xt file and meta-tags in Web pages according to the robot exclusion prot¢es®$].

We did not us&eep- al i ve for this crawl, sac = 1.

We calculated the Pagerank of all the pages in the collection when the cravelingpmpleted, and then
measured how much of the total Pagerank was covered during eacf ldayesults are shown in Figure
4.12.

We can see that by the end of the second day, 50% of the pages weredded, and about 80% of the
total Pagerank was achieved; according to the probabilistic interpretdtlagerank, this means we have
downloaded pages in which a random surfer limited to this collection woulddsp@¥ of its time. By the
end of day four, 80% of the pages were downloaded, and more tharBtfb Pagerank, so in general this

69

0.9
0.8 -
0.4
037 /]

Cumulative fraction

0.Lfs o Pagerank
Documents——-——

0 1 2 3 4 5 6 7 8
Day of crawling

Figure 4.12: Cumulative sum of Pagerank values vs day of crawl, on an bctaaler using
the larger-sites-firststrategy. The fraction of retrieved Pagerank is larger thanfraction of
retrieved documents during the entire crawl.

approach leads to “good” pages early in the crawl. In fact, the avétagerank decreased dramatically after
a few days, as shown in Figure 4,13, and this is consistent with the findif¢gark and Wiener [NWO1].

It is reasonable to suspect that pages with good Pagerank are fatingust because they are mostly
home pages or are located at very low depths within Web sites. There isdiraieinverse relation between
Pagerank and depth in the first few levels, but 3-4 clicks away from d¢hgehpage the correlation is very
low, as can be seen in Figure 4.14. There are many home pages with veRatmvank as many of them
have very few or no in-links: we were able to found those pages only diy tégistration under thecl
top-level domain database.

Regarding the relationship between the expected values of the simulationeamlolstrved values, we
plotted the cumulative Pagerank versus the number of pages downl@adedptained Figure 4.15. The
results are consistent, and the actual crawl performed slightly better thaimhblated crawl.

70

0-12 T T T T T T T

0.1

0.08

0.06

0.04 1

Average Pagerank

0.02 +

0 1 2 3 4 5 6 7 8
Day of crawling

Figure 4.13: Average Pagerank per day of crawl using ldmger-sites-firsistrategy.

le-06]
4
C
o
Q
(o)
@©
(o
Q
(@)
o
(]
>
<
1e_07 I I I I I I 1

0O 1 2 3 45 6 7 8 9 1011121314
Page depth

Figure 4.14: Average Pagerank versus page depth, showing that thereoisedation only in
the first few levels.

71

0.9 e et
G | | <
S5 0.7f - 1
2 .
S o6t | o .
£ o5 ST -
c_;)/ E— ;;’a‘/'/@ :
£ I
8 031 @;/;@; e N
02 #y]
01tr” Larger-sites-first (actual crawly—s—
0 é . Larger-sites-first (simulated crawl) <
0 0.5 1 1.5 2 2.5 3

Retrieved pages<(106)

Figure 4.15: Cumulative sum of Pagerank values vs number of retrieved ygles, on both
actual and simulated Web crawls usiagger-sites-firststrategy.

72

4.5.2 Experiment 2

We also performed two actual crawls using WIRE [BYCO02] in two conseeutieeks in the GR domain,
usingBreadth-firstand Larger-sites-first We ran the crawler in a single Intel PC of 3.06GHz with 1Gb of
RAM under Linux, in batches of up to 200,000 pages, using up=%dl000 simultaneous network connec-
tions, withw = 5 seconds between accesses to the same Web sitey artb for sites with less than 100

pages.

For this experiment, we focused in the time variable, as it is worthless to dodvpbiges in the right
order if they cannot be downloaded fast. We calculated the Pageratikioé pages in the collection when
the crawling was completed and then measured how much of the total Pagexardovered during each
batch. The results are shown in Figure 4.16.

1
0.9
0.8
0.7
0.6
0.5
0.4

0.3 12 Q ;) h
02% & PRLarger-sites-first e

& “Docs.Breadth-first -+
Docs.Larger-sites-first <

0 1 2 3 4
Day of crawling

Cumulative Fraction

Figure 4.16: Cumulative Pagerank (PR) and cumulative fraction of docuséDocs.) of an
actual crawl of theGRdomain using two strategieBreadth-firstandLarger-sites-first

Both crawling strategies are efficient in terms of downloading the valuallespearly, bularger-sites-
first is faster in both downloading documents and downloading good pages stfdtisgy “saves” several
small Web sites for the middle and end part of the crawl and interleaves Whelsesites with larger Web
sites to continue downloading important pages at a fast pace.

73

4.6 Conclusions

Most of the strategies tested were able to download important pages firsghois in [BSV04], even a

random strategy can perform well on the Web, in terms that a random wattkeo\Web is biased towards
pages with high Pagerank [HHMNOO]. However, there are differeint@ow quickly high-quality pages are
found depending on the ordering of pages.

The historical-pagerankamily of strategies were very good, and in case of no historical information
available,OPIC andlarger-sites-firstare our recommendation8readth-firsthas a bad performance com-
pared with these strategidsatch-pagerankequires to do a full Pagerank computation several times during
the crawl, which is computationally very expensive, and the performamae fsetter than simpler strategies.

Notice that thdarger-sites-firsistrategy has practicals advantage overQRtC strategy. First, requires
less computation time, and also does not require knowledge of all in-linksitea jgage a®PIC does. The
later is relevant when we think of distributed crawlers as no communicatiorebateomputers is required
to exchange these data during the crawling process. [HEnger-sites-firsthas better scalability making it
more suitable for large scale distributed crawlers.

Also, our simulation results show that attempting to retrieve as many pages fgiverasite ¢ >>
1), allows the crawler to effectively amortize the waiting timeébefore visiting the same site again. This
certainly helps to achieve a better utilization of the available bandwidth, andot$ fgo both the search
engine and the Web site administrator.

Experiments with a real crawl using therger-sites-firststrategy on the ever-changing Web validated
our conclusions whereas simulation was the only way to ensure that alg#satensidered were compared
under the same conditions.

We verified that after a few days, the quality of the retrieved pages is lihaarat the beginning of the
crawl. At some point, and with limited resources, it could be pointless to contirawding, but, when is the
right time to stop a crawl? The next chapter deals with this subject throughisranttéactual data from Web
usage.

74

Chapter 5

Crawling the Infinite Web

We have seen in Chapter 4 several scheduling policies for orderims plaging Web crawling. The objective
of those policies is to retrieve “good” pages early in the crawl. We havsidered that the Web is bounded,
but a large amount of the publicly available Web pages are generatedhibatit upon request, and contain
links to other dynamically generated pages. This usually results in Web sitesathbe considered to have
arbitrarily many pages.

This poses a problem to Web crawling, as it must be done in such a waystaistdownloading pages
from each Web site at some point. But how deep must the crawler go?

In this chapter:

e \We propose models for random surfing inside a Web site when the numpages isinboundedFor
that, we take the tree induced by the Web graph of a site, and study it by.levels

e We analyze these models, focusing on the question of how “deep” us@rsige a Web site.

¢ We validate these models using actual data from Web sites, as well as usikgpadiysis measure
such as Pagerank [PBMW93].

The next section outlines the motivation of this work, namely, the existencgrafntic pages. In
Section 5.2, three models of random surfing in dynamic Web sites are fgésard analyzed; in Section
5.3, these models are compared with actual data from the access log @il &b sites. The last section
concludes with some final remarks and recommendations for practical Mietecimplementations.

Portions of this chapter were presented in [BYCO04].

75

5.1 Static and dynamic pages

Most studies about the Web refer only to the “publicly indexable portioe9B], excluding a portion of the
Web that has been called “the hidden Web” [RGMO1] or the “deep WebtQB, GA04]. The non-indexable
portion is characterized as all the pages that normal users could el)eatezss, but automated agents such
as the crawlers used by search engines can not.

Certain pages are not indexable because they require previousatgistm some special authorization
such as a password, or are only available when visited from within a ceraivork, such as a corporate
intranet. Others ardynamic pagesgenerated after the request has been made. Some times they are not
indexable because they require certain parameters as input, e.g. quesy aed those query terms are
unknown at crawling time. The different portions of the Web are depicté&iguare 5.1.

Dynamic pages

. Parameters known, | Parameters unknown
Static pages | or not required

Private Password or authorization required
Public Indexable by today's Domain-specific
search engines knowledge required
I

Figure 5.1: The Web can be divided into password-protected and puldigdjlable, and into
dynamic and static pages.

However, many dynamic pages are indexable, as the parameters fongrtd@m can be found by
following links. This is the case of, e.g. typical product catalogs in Welestan which there are links to
navigate the catalog without the user having to pose a query.

The Web is usually considered as a collection of pages, in the same séngmdgional Information
Retrieval collections, but much larger. Under this assumption, the Weh diaga finite number of nodes in
which measures such as diameter are well defined. This is fundamentatlg.\Wiioe amount of information
in the Web at any given time is certainly finite, but when a dynamic page leadstoea dynamic pagehe
number of pages can be potentially infinifake for instance a dynamic page that implements a calendar,
you can always click on “next month” and from some point on there will banore data items in the
calendar; humans can be reasonably sure that it is very unlikely to famdsescheduled 50 years in advance,
but a crawler can not. A second example would be a calculator, such ywsaait page that calculates
approximations ofit using an iterative method. A crawler cannot tell when two pages reflecsaime
information. There are many more examples of “crawler traps” that invotyesl@and/or near-duplicates that
can be detected afterwards, but we want to avoid downloading them.

76

Also, personalization is a source of a large number of pages; if you gawcanazon. comand start
browsing your favorite books, soon you will be presented with more iterogtahe same topics and au-
tomatically generated lists of recommendations, as the Web site assembles aofigetderences of the
visitor. The visitor is, in fact, creating Web pages as it clicks on links, aralidéomated agent such as a Web
crawler generates the same effect. This is a case of uncertainty, in weialstrument, the Web crawler,
affects the object it is attempting to measure.

This poses a problem to Web crawling, as it must be done in such a waystapistdownloading pages
from each Web site at some point. Most researchers usually take orefofltwing approaches to this:

Download only static pagesA common heuristic to do so is to avoid downloading URLs containing a ques-
tion mark, but this heuristic can fail as there are many URLs which are dyadyngenerated but do
not use the CGI standard, encoding the parameters in the rest of theAllRl_a valuable fraction of
the publicly available Web pages is generated dynamically upon request,sndt clear why those
pages should be penalized in favor of static pages.

Download dynamic pages only with one set of parameter§Vhen doing this, dynamic pages are either
downloaded with the set of parameters of the first time they are found, orawigtmpty set of pa-
rameters. The obvious drawback is that dynamic pages could querylzasdatand a single set of
parameters cannot represent the contents of the database.

Download up to a maximum amount of pagesThis creates a data set that is highly dependent on the crawl-
ing strategy. Moreover, this cannot be used to compare, for instareabunt of information on
different domains.

Download up to a certain amount of pages per domain nameAs a small sum has to be paid for register-
ing a domain name, there is a certain effort involved in creating a Web site andemain name.
However, there are certain domain names such as “.co.uk” which ardargey and might require
special rules.

Download up to a certain amount of levels per Web siteStarting from the home page of each Web site,
follow links up to a certain depth. This is the approach we consider in thisrpapé the natural
guestion is: how deep must the crawler go?

The Web of dynamically generated content is crawled superficially by masly ahawlers, in some
cases because the crawler cannot tell a dynamic URL from a static cthén ather cases purposefully.
However, few crawlers will go deeper, unless they know when to stdphaw to handle dynamic pages
with links to more dynamic pages. In our previous experiences with the Wil&Eer [BYC02], we usually
limit the depth at which pages are explored, typically to 5 links in dynamic pagk$links in static pages.
When we plot the number of pages at a given depth, a profile as the owe ghFigure 5.2 is obtained.

77

0.5

All
Static —e—
v 047 Dynamic -
o
8
Y 03 B
o
c
=]
5 0.2+
o
LL
0.1
0 « ., Tetesesees
01234567 891011121314

Depth

Figure 5.2: Amount of static and dynamic pages at a given depth. Dynaagegwere crawled
up to 5 levels, and static pages up to 15 levels. At all destiadic pages represent a smaller
fraction of the Web than dynamic pages.

Notice that here we are not using the number of slashes in the URL, bgtthsimeal shortest distance
in links with the start page(s) of the Web site. The dynamic pages grow witi depile the static pages
follow a different shape, with the maximum number of pages found arounrd32links deep; this is why
some search engines use the heuristic of following links to URLSs that seern<dymamically generated
content only from pages with static content. This heuristic is valid while the ahafumformation in static
pages continues to be large, but that will not be the case in the near, fasuaege Web sites with only static
pages are very hard to maintain.

We deal with the problem of capturing a relevant portion of diyeamically generated content with
known parameterswvhile avoiding the download of too many pages. We are interested in knafangser
will ever see a dynamically generated page. If the probability is too low,ldregearch engine like to
retrieve that page? Clearly, from the Web site or the searcher’s pour\sf the answer should be yes, but
from the search engine’s point of view, the answer might be no.

5.2 Random surfer models for an infinite Web site
We will consider a Web sit& = (PagesLinks) as a set of pages under the same host name that forms a

directed graph. The nodes dPages= {P1, P>, ...} and the arcs areinkssuch thai R, P;) € Linksiff there
exists a hyperlink from pag® to pageP; in the Web site.

78

Definition (User session) We define a user sessiaras a finite sequence of page views (P, P,,...,Py),

with P € Pagesand(R,P.1) € Links The first requestiy does not need to be the start page located at the
root directory of the server, as some users may enter to Web site folloiimigta an internal page, e.g., if
they come from a search engine.

Definition (Page depth) For a pageP, and a session, we define the depth of the page in the session,
depthP,u) as:

if R = Uo
depthP,u) =
mindepth(Pj,u)+1 P;cu,j<i,(P;,R) € Links

The depth is basically the length of the shortest path from the start paggthtiee pages actually seen
during a session. Note that the depth of a page is not only a function of ¢esité structure, it is the
perceiveddepth during a particular sessian

Definition (Session depth) We define the depth of sessionas maxdeptHP,u) with B € u. We are
interested in this variable as its distribution is relevant from the point of vieseafch engines.

For random surfing, we can model each pag®agesas a state in a system, and each hyperlink in
Linksas a possible transition. This kind of model has been studied by Hubestr@dn[HPPL98, AHOO].
We propose to use a related model that collapses multiple pages at the sdras &esmgle node, as shown
in Figure 5.3. That is, the Web site graph is collapsed to a sequential list.

$0¢ O

Figure 5.3: A Web site and a sequence of user actions can be modeled as(&efte If we
are concerned only with the depth at which users explore thie $e, we can collapse the tree
to a linked list of levels (right).

The advantage of modeling the Web site graph as a sequential list as that meg deed to model
exactly which page a user is visiting, because we do not need this infornaatimur main concern is at what

79

depththe user is inside a Web site. Also, different Web sites have varying eegifeconnectivity, so for
considering the entire Web site we would need to model both the number of ksielirach page and the
distribution of the overlap of out-links between pages.

At each step of the walk, the surfer can perform one of the following at@ttions: go to the next
level (actionnex?, go back to the previous level (actitwack), stay in the same level (actigtay), go to a
different previous level (actiopreV), go to a different deeper level (actidmd), go to the start page (action
start) or jump outside the Web site (actigamp).

For actionjumpwe add an extra nodeXl T to signal the end of a user session (closing the browser, or
going to a different Web site) as shown in Figure 5.4. Regarding this Welaftiée leaving, users have only
one option: start again in a page with depth O (actitart).

Figure 5.4: Representation of the different actions of the random surfdhe EXIT node
represents leaving the Web site, and the transition betwemode and the start level has
probability one.

As this nodeEXI T has a single out-going link, it does not affect the results for the othegsiddve
remove the nod&Xl T and change this by transitions going to the start I&gelAnother way to understand
it is that as this process has no mema@ing back to the start page or starting a new session are equivalent
so actionsjump and start are indistinguishable in terms of the resulting probability distribution for the
other nodes. As a response to the same issue, Leatemle [LBLO1] proposed to use an absorbing state
representing leaving the Web site; but we cannot use this idea becausantvéo calculate and compare
stationary probability distributions.

The set of atomic actions is = {next start/ jump back stay prev fwd} and the probabilities if the
user is currently at leve, are:

e Pr(next¢): probability of advancing to the levéh- 1.

e Pr(bacK/): probability of going back to the levél— 1.

80

e Pr(stay/): probability of staying at the same level

e Pr(start, jump/): probability of going to the start page of this session, when it is not the preweo
cases; this is equivalent in our model to begin a new session,

e Pr(prev/): probability of going to a previous level that is neither the start level noirtireediate
preceding level.

e Pr(fwd|¢): probability of going to a following level that is not the next level.

As they are probabilitiesy ¢ionc s Pr(action?) = 1. The probability distribution of all levels at a given
time is the vectok(t). When there exists a limit, we will call this lime x(t) = x.

In this paper, we study three models wRh(next¢) = q for all levels, i.e.: the probability of advancing
to the next level is constant. Our purpose is to predict how far will a rea go into a dynamically generated
Web site. If we know that, e.gXp + X1 + X2 > 0.9, then the crawler could decide to crawl just those three
levels.

The models we analyze were chosen to be as simple and intuitive as possibgh Without sacrificing
correctness. We seek more than just fitting the distribution of user clickwaneto understand and explain
user behavior in terms of simple operations.

Our models are “birth-and-death” processes, because they haviegrétation in terms of each level
being a number representing the population of a certain species, andraasition between two levels
represents either a birth of a death of a member. In this context, we noteanaalthat any given model
in which from a certain point over the rate of death (going back to the fivetdgexceeds the rate of birth
(going deeper), then the population will be bounded (the visits will be fonostly in the first levels).

5.2.1 Model A: back one level at a time

In this model, with probabilityg the user will advance deeper, and with probability ¢ the user will go
back one level, as shown in Figuire 5.5.

Figure 5.5: Model A, the user can go forward or backward one level at a.time
Transition probabilities are given by:
e Pr(next/) =q

81

e Pr(back/) =1—qfor¢>1
e Pr(stayl) =1—qfor¢=0
e Pr(start, jump¢) =0

e Pr(prev/) =Pr(fwd|¢) =0

A stable state is characterized by:

X = gt (l-axa (Viz1)
X = (1-g)x+(1—-a)x

The solution to this recurrence is:

X =XO(%1>i (Vi>1).

If g>1/2 then the solution ig = 0, andx. = 1, SO we have an asymptotic absorbing state. In our framework
this means that no depth boundary can ensure a certain proportion ed paited by the users. When
g < 1/2 and we impose the normalization constrajft,x; = 1, we have a geometric distribution:

()6

The cumulative probability of levels.0.k is:

K q \k1
(65
iZO 1-q

This distribution is shown in Figure 5.6. We also calculate the session lengtle dowsider that a
session ends when the user returns to level zero, as astanand jumpare equivalent. This is equivalent
to the average return time to the origin in a Markov chain, whiclyig IMT93]. Hence E(|u|) = f_;zc‘q

5.2.2 Model B: back to the first level

In this model, the user will go back to the start page of the session with ghitypdb- g. This is shown in
Figure 5.7.

The transition probabilities are given by:

e Pr(next/) =q
e Pr(back/) =1—qif £ =1, 0 otherwise

e Pr(stayl)=1-qfor¢=0

82

Figure 5.7: Model B, users can go forward one level at a time, or they calbags to the first
level either by going to the start page, or by starting a nesgise.

e Pr(start, jump¢) =1—qfor¢>2

e Pr(prev/) =Pr(fwd|¢) =0

A stable statex is characterized by:
X = (1-q) %Xi =(1-q)
X = O%-1 _(Vi >1)
andyi-oXx = 1.
As we havgy < 1 we have another geometric distribution:
X = (1-a)q

The cumulative probability of levels & is:
k

i;Xi —1— qk+l

83

This distribution is shown in Figure 5.8. In this case we haygi|) = l—}q

Cumulative probability

Level

Figure 5.8: Distribution of visits per depth predicted by model B.

5.2.3 Model C: back to any previous level

In this model, the user can either discover a new level with probalgjlitr go back to a previous visited
level with probability 1— g. If a user decides to go back to a previously seen level, the level willechos
uniformly from the set of visited levels (including the current one), asvshia the Figure 5.9.

Figure 5.9: Model C: the user can go forward one level at a time, and caragh to previous
levels with uniform probability.

The transition probabilities are given by:
e Pr(nextl)=q
e Pr(backl)=1—q/({+1)for¢>1
e Pr(stayl)=1-q/(¢{+1)
e Pr(start, jump¢)=1—q/(¢+1)for’>2

84

e Pr(pre\()=1-q/(¢{+1)for¢>3

o Pr(fwd|¢) =0

A stable stat is characterized by:

Xk
X = (1-9) —
Ion+1
Xk)
X = Q1+ (1-9))y — (Vi>1)
k2|k+1
andyisox = 1.
We obtain a solution of the form:
X =% (i+1)d

Imposing the normalization constraint, this yields:
X =(1-a)?(+1)d

The cumulative probability of levels & is:

_ixi =1—(2+k—(k+1)q)g<t

This distribution is shown in Figure 5.10. In this case we Hayel|) = ﬁ

Cumulative probability

COOO00O0O00
o fOONOUIRRNP-

U [ocnoinococaoa®

Figure 5.10: Distribution of visits per depth predicted by model C.

85

5.2.4 Model comparison

We can see that iff < 0.4, then in these models there is no need for the crawler to go past depthtd or 4
capture more than 90% of the pages a random surfer will actually visit, anid iirger, say, ®, then the
crawler must go to depth 6 or 7 to capture the same amount of page views.

Note that the cumulative distribution obtained with model A (“back one leveifjgisarametega, and

model B (“back to home”) using parametgy are equivalent if:

OB
1+0s°

qA:

So, as the distribution of session depths is equal, except for a transimmrimethe parameteg, we will
consider only model B for charting and fitting the distributions of sessiothdep

It is worth noticing that a good model should approximate both the distributisassion depth and the
distribution of session length. Table 5.1 shows the predicted session lengths

Table 5.1: Predicted average session length for the models, withrdifferalues ofj.

g ModelA ModelB ModelC

0.1 1.13 111 1.23
0.2 1.33 1.25 1.56
0.3 1.75 1.43 2.04
0.4 3.00 1.67 2.78
0.5 - 2.00 4.00
0.6 - 2.50 6.25
0.7 - 3.34 11.11
0.8 - 5.00 25.00
0.9 - 10.00 100.00

In Table 5.1 we can see that although the distribution of session depth isnieefsamodels A and
B, model B predicts shorter sessions. Observed average sessitrslanthe studied Web sites are mostly
between 2 and 3, so reasonable valuegyfior between 04 and 06.

5.3 Data from user sessions in Web sites

We studied real user sessions on 13 different Web sites in the US, 8pBimnd Chile, including commer-
cial and educational sites, non-governmental organizations, and sité¢gdh collaborative forums play a

major role, also known as “Blogs”.

86

We obtained access logs with anonymous IP addresses from these Veelasitgprocessed them to
obtain user sessions:

e Sort the logs by IP address of the client, then by access time stamp.

e Consider onlyGET requests for static and dynamic HTML pages or documents such as \WaiFdyP
Postscript.

e Consider that a session expires after 30 minutes of inactivity, as this is comnha file analysis
software, and is based on empirical data [CP95].

e Consider that a session expires if thsr - Agent changes [CMS99], as a way of overcoming the issue
that multiple clients can be behind the same IP address.

e Consider multiple consecutive hits to the same page (page reload) as a siggleiew.

¢ In pages with frames, consider all the frames as a single page, this cemareial inspection of pages
with frames.

¢ Ignore hits to Web applications such as e-mail or content management syasainsy neither respond
to the logic of page browsing, nor are usually accessible by Web crawlers

e Expand a session with missing pages (e.qg.: if the user clicks “back” in higsbrpand then follow a
link). This information is obtained from thief err er field, and is a way of partially overcoming the
issue of caching. Note that, as re-visits are not always recorded$®oécaching [TG97], data from
log filesoverestimates the depth at which users spent most of thedomeser visits could be actually
even less deep.

Additionally, manual inspection of the data led to the following heuristics to disgatomated agents:

o Identify robots by their accesses to threbot s. t xt file, as suggested by Tan and Kumar [TK02].
¢ |dentify robots by knowrser - Agent fields.

¢ Ignore malicious hits searching for security holes, which are usuallywzeseg of requests searching
for buffer overflows or other software bugs. These requestssarally done by automated agents like
Nessus [Der04].

5.3.1 General characteristics of user sessions

The characteristics of the sample, as well as the results of fitting models B anth€data are summarized
in Table/ 5.2. The names of the Web sites are not public because some of filedpgpecially those of
commercial entities, were obtained under the condition of publishing only ttistisi@ results.

87

Table 5.2: Characteristics of the studied Web sites. The number of sis&sions does not
reflect the relative traffic of the Web sites, as it was obtimedifferent time periods. The
average number of page views per session is larger in Bldgeot‘entry” is the fraction of
sessions starting in the home page.

Code Type Country Recorded Average Average Root
sessions session length max. depth entry
El Educational Chile 5,500 2.26 0.98 84%
E2 Educational Spain 3,600 2.82 1.41 68%
E3 Educational us 71,300 3.10 1.31 42%
C1 Commercial Chile 12,500 2.85 0.99 38%
Cc2 Commercial Chile 9,600 2.12 1.01 32%
R1 Reference Chile 36,700 2.08 0.95 11%
R2 Reference Chile 14,000 2.72 1.21 22%
o1 Organization Italy 10,700 2.93 1.97 63%
02 Organization us 4,500 2.50 1.13 1%
OB1 Organization + Blog Chile 10,000 3.73 1.89 31%
OB2 Organization + Blog Chile 2,000 5.58 2.48 84%
Bl Blog Chile 1,800 9.72 3.56 39%
B2 Blog Chile 3,800 10.39 2.31 21%

By inspecting Table 5/2, we observe that the average session lengtheisnaidout 2 to 3 pages, and
user sessions in Blogs are larger than in the other Web sites. This is abbsas Web postings are very
short, so a user reads several of them during a session.

5.3.2 Distribution of visits per depth

Figure 5.11 shows the cumulative distribution of visits per page depth to Web ¥it2can see that at least
80%-95% of the visits occur at depth4 (this is, no more than four “clicks” away from the entry page). It
is also noticeable that about 30%-50% of the sessions include only thpagert

The distribution of visits per depth follows a power law, as shown in Figur2. 3Me only selected the
log files with more than 10,000 sessions recorded in order to have enessjbrss across the entire range of
the figure, which is 30 levels.

An interesting observation about the distribution session lengths is that gittbey are longer in
Blogs, they are not much deeper than in the other Web sites, as shownlén5Tab This led us to study
the relationship between session length and session depth. The resolvisishFigure 5.13, which uses

88

Cumulative fraction of visits

Figure 5.11: Cumulative distribution of visits per level, from accesgdoof Web sites.
E=educational, C=commercial, O=non-governmental orgitin, OB=0Organization with on-
line forum, B=Blog (Web log or on-line forum).

=
0.1
J9
2 oo01}
ks
[
§ D
S 0.001 | Educ.3 ——
T Com. 1 ——]
Ref.1 = E U N
| Ref.2 o ol |
0.0001 org 1 = jI—
Org. +Blog 1 &~ ‘ oo
1 10
Level

Figure 5.12: Distribution of visits per level. In this figure we only seled the log files with
more than 10,000 sessions recorded.

information from all our samples including Blogs. Session depth grows slihvaa session length, and even
long sessions, which are very rare, are not so deep. User broissiagainly not depth-first.

89

Depth

5 10 15 20 25 30 35 40 45 50
Session Length

Figure 5.13: Session length vs. average session depth in the studiedes®ons. Even very
long sessions, which are rare, are not very deep.

The discrepancy between session length and depth is important fromith@fpadew of an alternative
model. Suppose the user chooses a session length at random bégaregghe Web site (this session length
could reflect that the user has a certain amount of time or interest in the.tdpitt)is model, the average
session depth could be overestimated if we do not account for the fathéharowsing pattern is not depth-
first. Figure 5.14 shows the session length distribution, which follows a plawewith parameter almost -2.
This differs from the results of Huberman that had parameter -3/2 [HBPL9

0.1

0.01

Frequency

0.001

0.62 * x(-2.03)
1 10
Session Length

le-04

Figure 5.14: Session length distribution.

90

Table 5.3: Results of fitting models B (equivalent to model A) and C todigribution of visits
per depth in the studied Web sites. The minimum fitting erooreflach Web site is shown in

bold face.

Model B Model C

Code q Error q Error
Educ. 1 0.51 0.88% 0.33 3.69%
Educ. 2 051 2.29% 0.32 4.11%
Educ. 3 0.64 0.72% 0.45 3.65%
Com. 1 0.55 0.39% 0.36 2.90%
Com. 2 0.62 5.17% 0.41 10.48%
Ref. 1 0.54 2.96% 0.34 6.85%
Ref. 2 0.59 2.75% 0.39 6.11%

Org. 1 0.54 2.36% 0.352.27%
Org. 2 0.62 2.31% 0.42 5.95%
Org. +Blogl 0.65 2.07% 0.46 5.20%
Org. +Blog2 0.72 0.35% 0.54 2.00%
Blog 1 0.79 0.88% 0.63 0.70%
Blog 2 0.78 1.95% 0.63 1.01%

5.4 Model fit

We fitted the models of cumulative depth to the data from Web sites. The resufisesented in Table 5.3

and Figure 5.18. In general, the curves produced by model B (andlApdee a better approximation to

the user sessions than the distribution produced by model C, excepiofys,Bis seen in Figure 5.19. The
approximation is good for characterizing session depth, with error inrgelogver than 5%.

We also studied the empirical values for the distribution of the different exaodifferent levels in the
Web site. We averaged this distribution across all the studied Web siteseatdifflepths. The results are
shown in Table 5.4, in which we consider all the Web sites except for Blogs.

Inspecting Table 5.4, we can see that the actioed, jump andbackare the more important ones,
which is evidence for the adequacy of models A (back one level) and rBo@ielck to start level).

We can see in Figure 5.15 thBt(next¢) does not vary too much, and lies betweedS0and 06,
increasing ag grows. This is reasonable as a user that already have seen seggzalip more likely to
follow a link. From the point of view of our models, it is certainly not constémit, is almost constant for
the first five levels which are the relevant ones. On the other taegandbackare closer to constant.

91

Table 5.4: Average distribution of the different actions in user sessiof the studied Web
sites, except for Blogs. Transitions with values greatantd.1 are shown in boldface.

Level Observations Next Start Jump Back Stay Prev Fwd

0 247985 0.457 - 0.527 - 0.008 - 0.000
1 120482 0.459 - 0.332 0.185 0.017 - 0.000
2 70911 0.462 0.111 0.235 0.1710.014 — 0.001
3 42311 0.497 0.065 0.186 0.159 0.017 0.069 0.001
4 27129 0.514 0.057 0.157 0.171 0.009 0.088 0.002
5 17544 0.549 0.048 0.138 0.143 0.009 0.108 0.002
6 10296 0.555 0.037 0.133 0.155 0.009 0.106 0.002
7 6326 0.596 0.033 0.135 0.113 0.006 0.113 0.002
8 4200 0.637 0.024 0.104 0.127 0.006 0.096 0.002
9 2782 0.663 0.015 0.108 0.113 0.006 0.089 0.002
10 2089 0.662 0.037 0.084 0.120 0.005 0.086 0.003
11 1649 0.656 0.020 0.076 0.119 0.018 0.105 0.004
12 1273 0.687 0.040 0.091 0.091 0.007 0.082 0.001
13 1008 0.734 0.015 0.058 0.112 0.005 0.054 0.019
14 814 0.716 0.005 0.051 0.113 0.015 0.080 0.019
15 666 0.762 0.025 0.056 0.091 0.008 0.041 0.017

O
0.7 Fi i
06 [

05 %

* P Start+Jump —e—
N Btk e

Prev +

Observed frequency

+
012 3 456

7 8 9 1011 1213 14 15
Depth

Figure 5.15: Experimental values for our atomic actions.

92

Actionsstart, stayand fwd are not very common. These actions include visits to pages that have been

already seen, but it seems that pages are only re-visited by going badéwel.

5.5 Conclusions

The models and the empirical data presented lead us to the following chienatédarof user sessions: they
can be modeled as a random surfer that either advances one level eltbpity g, or leaves the Web site
with probability 1— g. In generalqg ~ 0.45— 0.55 for the first few levels, and thena 0.65— 0.70. This
simplified model is good enough for representing the data for Web sites, but:

e We could also consider Model A (back one level at a time), which is etprivén terms of cumulative
probability per level, except for a change in the parameters. Based emibieical data, we observe
that users at first just leave the Web site while browsing (Model B), thet several clicks, they are
more likely to go back one level (Model A).

e A more complex model could be derived from empirical data, particularlytbatconsiders thaj
depends orf. We considered that for deciding when to stop while doing Web crawlingsithple
model is good enough.

e Model C appears to be better for Blogs. A similar study to this one, focuskydrothe access logs of
Blogs seems a reasonable thing to do since Blogs represent a growiiog pdron-line pages.

In all cases, the models and the data show evidence of a distribution of vidiis gtrongly biased to
the first few levels of the Web site. According to this distribution, more than 80D84e visits are closer than
3 to 4 clicks away from the entry page in most of the Web sites. In the caskg$,Bve observed deeper
user sessions, with 90% of the visits within 6 to 7 clicks away from the entrg.p&ithough our models do
not fit well for deep sessions, they are accurate for the first fivgaetdevels. Also, we would need much
more data to get significant results for over six levels.

In theory, as internal pages can be starting points, it could be condhbdedeb crawlers must always
download entire Web sites. However, entry pages are usually only in ¢hécfiv levels of a Web site. If we
consider the physical page depth in the directory hierarchy of a Welnstebserve that the frequency of
surfing entry points per level rapidly decreases, as shown in Figuge Bhils is consistent with the findings
of Eiron et al,; they observed that “when links are external to a site, they tend to link to phievel of the
site” [EMTOA4].

Link analysis, specifically Pagerank, provides more evidence for onclasions. We asked, what
fraction of the total Pagerank score is captured by the pages on thé Fagtls of the Web sites? To
answer this, we crawled a large portion of the Chilean Web (.cl) obtainingdr® million pages in April of

93

0.5 ———— -
- Entry pages—e—
? : Web site pages—e—
T e e

Frequency

o 1 2 3 4 5 6 7 8
Level (by directory depth)

Figure 5.16: Fraction of different Web pages seen at a given depth, antidreof entry pages
at the same depth, considering the directory structurdgstudied Web sites. Frequencies are
normalized relative to all pages.

2004, using 150 thousand seed pages that found 53 thousand WelFgjte® 5.17 shows the cumulative
Pagerank score for this sample. Again, the first five levels capture mame80o of the best pages. Note
that the levels here are obtained in terms of the global Web structure, edngithternal and external links,

not user sessions. These results are consistent with the findings bk HagbWiener [NWO01].

Cumulative Pagerank

) o Pagerank—e— |
o 1 2 3 4 5 6 7 8
Level (by links structure)

Figure 5.17: Cumulative Pagerank by page levels in a large sample of tiiea®hweb.

These models and observations could be used by a search engineewrdrihalso account for dif-
ferences in Web sites. For instance, if the search engine’s crawfermesra breadth-first crawling and can
measure the ratio of new URLs from a Web site it is adding to its queue vslg&les) then it should be able
to infer how deep to crawl that specific Web site. The work we presentibisiarticle provides a framework

94

for that kind of adaptivity.

An interesting enhancement of the models shown here is to consider thatoointiee pages to detect
duplicates and near-duplicates. In our model, downloading a duplicateghagild be equivalent to going
back to the level at that we visited that page for the first time. A more detaikdgisas could also consider
the distribution of terms in Web pages and anchor text as the user browsegtta Web site.

A different class of models for user browsing, including models basextonomical decisions could be
used, but those models should be able to fit both, the distribution of sess@ih knd the expected session
depth.

As the amount of on-line content that people, organizations and busiresslling to publish grows,
more Web sites will be built using Web pages that are dynamically generatébpse pages cannot be
ignored by search engines. Our aim is to generate guidelines to crawlrikes practically infinite, Web
sites.

95

0.9

0.8

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.5

Educ. 1 Educ. 2
o i ’ : :
L & : : 09 +
[,,Xx+ 08 [
[07 [
" Actual data 0.6 " Actual data 1
Model B: q=0.51, err=0.88% + Model B: q=0.51, err =2.29% +
Model C: q=0.33, err =3.69% x 05 Model C:q=0.32, err =4.11% x
0o 1 2 3 4 5 6 7 "0 1 2 3 4 5 6 7 8
Educ. 3
" Actual data
odel B: q=0.64,err=0.72% +
Model C: g =0.45, err =3.65% x
0 1 2 3 4 5 6 7
Com. 1 Com. 2
1 ;
: +++H4”3*W
[08 [
[07 [
" Actual data 06+ /7 ‘ " Actual data 1
Model B: q=0.55, err=0.39% + Model B: q=0.62, err=5.17% +
Model C: g =0.36, err =2.90% x 05 Model C: q=0.41, err=10.48% -
o 1 2 3 4 5 6 7 "0 1 2 3 4 5 6 7 8

Figure 5.18: Fit of the models to actual data, except for Blogs and noreguwental organi-
zations with Blogs. Model B (back to start level), has snradieors for most Web sites. The
asymptotic standard error for the fit of this model is 5% inwlogst case, and consistently less
than 3% for all the other cases. Note that we have zoomedartliettop portion of the graph
(continues on the next page).

96

09 r
0.7
06 f ‘ ‘ " Actual data ——— 06 f ‘ ‘ " Actual data ———
/i Model B:q=0.54,err=2.96% - Model B: q=0.59, err =2.75% +
05 L Model C: q =0.34, err =6.85% x 05 Model C: g =0.39, err =6.11% x
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
1 1
09 r . 09 r
06 7 ‘ ‘ " Actual data ——— 0.6 | " Actual data
{ Model B: q =0.54, err =2.36% - B:q=0.62,err=231%
05 ;] Model C:q=0.35emr=227% - 05 C:q=042,emr=595% -
"0 1 2 3 4 5 6 7 8 "0 1 2 3 4 5 6 7 8
Figure5.18(cont.)

97

0.9

0.8

0.7

0.6

0.5

0.9

0.8

0.7

0.6

0.5

Org. +Blog 1 Org. + Blog 2

1
L 0.9
" Actual data 0.6 | " Actual data
odel B: g =0.65, err = 2.07% - M :q=0.72, err = 0.35% -
;KZIodel C:q=046,emr=520% - 05 M q=0.54,err=2.00% ~
0 1 2 3 4 5 6 7 8 . 0 1 2 3 4 5 6 7 8
Blog 1 Blog 2
1
— 0.9 [y
L 08 L
I 07 Lo
" Actual data 06 r o " Actual data ——
Model B4 = 0.79, err=0.88% - Model Bi'g/=0.78, err=1.95% -
Model €£q = 0.63, err = 0.70% x 05 MOdeL&ix =0.63, err = 1.01% x
0 1 2 3 4 5 6 7 8 . 0 1 2 3 4 5 6 7 8

Figure 5.19: Fit of the models to actual data in the case of Blogs. In thég eeser sessions tend
to go deeper inside the Website because more pages arel ysitsession, probably because
Blog postings tend to be short.

98

Chapter 6

Proposals for Web Server Cooperation

As the number of publicly available Web pages increases, the problenepirigea search engine index up-
to-date with changes becomes increasingly more difficult [LG99], anddriswon to find several pages out-

dated in current search engines [SS04]. This makes things more difictiie user who seeks information

and affects the image of the search engine, but this also has costs foekhsités that are misrepresented,
if we consider the whole user experience.

If a user searches for a keyword on a search engine, and theseshapage from the search results that
no longer exists, or that contains material that is currently irrelevant éousler’s information need, the user
will be frustrated with both the search engisued the Web sitéor not finding this information. There is also
an opportunity cost related to these visitors: maybe the information they veesnineved to another page in
the same website and the search engine was not aware of the change cas# it would be better for the
Web site to inform the search engine of the update.

Web crawlers can use an important amount of network and processmrces from the Web server,
especially if they do not follow existing rules of “good behavior” [Kos98]eb crawlers tend to visit many
more pages than humans, and they request them very fast, normally witt80Gtxonds between visits;
so they are believed to account for at least 16% of the requests [MBR Many of the requests are to
unmodified resources, and can be avoided in certain schemes if the iséoves the crawler about which
resources have not been modified since its last visit.

Hence, an Web site administrator has incentives to improve the represemfatiem\Web site in the
search engine’s index and to prevent unnecessary visits from esawllae mechanism for accomplishing
this is what we call @ooperationscheme between the Web server and the Web crawler.

In this chapter we show some existing techniques for cooperation, andogesg new ones; some of
the techniques shown here were not designed for this specific pubpbskeey can be adapted. We also
present a discussion about the relative merits of each technique. Fimallgaplement one of them in the
WIRE crawler.

99

The next section presents general aspects about cooperation s¢Becten 6.2 presents polling-based
schemes, and Section 6.3 presents interruption-based schemes. |[Sdcsbovés a relative comparison of
costs. Section 65 describes how a cooperation scheme was implemented itRlBeckawler. The last
section presents the conclusions and future work.

Portions of this chapter were presented in [Cas03].

6.1 Cooperation schemes

The standard HTTP transaction follows the request-response paraaligient requests a page from a Web
server, and the Web server responds with the page, as depicted ie[Bidur This transaction involves
meta-data (information about the page) that is downloaded along with the pagecontents.

Web Page

Web
Server

Web
Crawler

Meta-data

Figure 6.1: Schematic drawing of a normal transaction between a WeblergC" on the
left) and a Web server (“S” on the right). The large, darkleinn the middle represents a
Web page and the small, light circle represents its meta-ddte arrow from the Web page to
the Web crawler indicates that the Web crawler initiatescibrenection. We use this pictorial
representation in the next two figures.

The cooperation schemes we study in this thesis can be divided into twosgpmliing andinterrupt

Polling (or pull) schemes: the Web crawler periodically requests data from the Webr $iased on a
scheduling policy. These requests check if a page have been chandetien download the page.

Interrupt (or push schemes: in this case the Web server begins a transaction with the segirehwhen-
ever there is an event. These events can happen when one or multiptegpaggdated, based on
server policies. The search engines must subscribe to the servarsvfrich they want to receive
events. This is similar to the relationship between the main processor andnahatkvice (network
card, scanner, etc.) in a modern computer.

Note that polling becomes equivalent to an interrupt when the polling pemald te zero; but the usage
of resources at both ends of the polling line increase at the same time.

In this thesis, we study several cooperation schemes, which are sunuinamizable 6.1.

100

Transfered data Polling version Interrupt version

Meta-data Serve meta-data of content Send meta-data of updates
Differences of site Serve differences of content Send differeofcesntent

Pages Serve pages only if modified Send changed pages
Batches of pages Serve many pages per request Send batch update
Site Serve entire site compressed Send entire site
Mixed Filtering interface Remote agent

Table 6.1: List of cooperation schemes analyzed in this thesis. Alheft have two versions:
polling (poll) and interrupt (push).

Before we get into the details of each scheme, there are some issues waentish that are almost
independent of the scheme used:

Compressioncan be used for decreasing transmission cost at the expense of usigoocessing
power on the server side. On the current Web, compression is usedrisferring most images —because
they are usually stored in a compressed format— but normally it is not appligextual Web pages. The
HTTP/1.0 protocol considers requests of compressed bodies usidgadbgt - encodi ng header, so com-
pressing Web-pages can be used but it is usually left to the communicatioadretine ISP and the final
user. Compression can be used with complete Web pages, bundles ohgéebgnd their resources, or Web
page differences [SS03] (more details in Section 6.2).

Privacy issuesarise when the crawler has access to information in the server that waseaat to be
public. This may sound strange, but in practice when using a Web cravidepdissible to download files
that are linked by mistake or private directories that allow a virtual listing; axeeheven found complete
plain-text password files!. Many Web site administrators mistakenly believ&yhaot publishing the URL
of a Web page they can keep the page private. This is a common practioessdVeb site administrators
are very reluctant to provide access for clients to list the contents otdlires. Note that if users follow an
external link from one of these “private” pages, their browser will infdhe referrer to the next Web site,
and this referrer could be logged and inspected so it is pointless to try pauké@own URLS private.

Index update capabilitiesare very reduced in global-scale Web search engines: constraintsnis ter
of disk space are the most important limitation, so it is not always possible ®a&twomplete copy of the
downloaded pages. This can lead to some difficulties; for instance, ondastiinverted index, removing
a page or updating a paragraph without having the complete text can be ibiposvery time-consuming.
Also, in many cases updating batches of pages is preferred to updatiyig sages to reduce the overall
processing cost.

Search engine “spamming”’occurs whenever Web site administrators try to get undeserved high rat-

101

‘_:‘_I_Q :.._ Serve
B Q | updates
{{% :
+E< e @ E isf‘.eg’:dif.
-—E*@ E }S):glfes

Figure 6.2: Diagrams of polling-based cooperation. The arrow betwbhenXeb crawler “C”
and the Web server “S” represents who initiates the conmreciihe small, white circle repre-
sents meta-data and the large, gray circle represents tivents of the page.

ings in search engines. Data provided by Web servers cannot bedtnasteletely, for instance, in terms
of self-asserted frequency of updates of the pages or local pagetampe. Web crawlers used by most
search engines are interested only in some of the pages of a Web sitee alsttifion of which pages must
be added to the index should be left to the search engine. In notificatiemssh a degree of trust can be
established, e.g.: if a Web site sends update notifications, but when pagesected by the Web crawler
they have not changed, then the search engine can ignore furtheratitifs from that Web site for a period
of time.

Structure and HTML markup used in a Web site affects the visibility of its pages by search engine
crawlers. Information that is accessible only through forms is, in gerdiffadult to gather for Web crawlers;
this is called the “hidden Web” [RGMO1]. Web sites could attract more visitotisely provide a crawler-
friendly interface for this data to be indexed by search engines.

6.2 Polling-based cooperation

In all these cases, the Web crawler queries the Web server with certaidipity; the cooperation schemes
discussed in this section are depicted in Figure 6.2.

102

Serve meta-data of updates. A file containing last-modification data (and probably file size and path)

is served. This file can contain a description of many pages on the Web itee tase of single files,

the HTTP protocol provideBEAD requests that are responded with meta-data about the requested object.
Multiple HEAD requests can be pipelined, but this is not as efficient as serving a editeisExamples: the
Distribution and Replication Protocol (DRP) [vHGI97], the proposal by Brandmagat al. [BCGMSO00] in

which files containing information about changes are served, and thegatby Buzzi [Buz03] that includes
information obtained from the access log files. RDF [LS99] also includegdhsibility of informing time-
related data about the resources.

Finally, the HTTPEXpi res: header presents a way of informing the crawler of the next change in a
Web page, but this involves prediction and therefore is not widely used.

Serve differences of content. The Web server provides a series of differences between a basenvand
newer versions. In the most simple case, the difference is only betwedasthend the current version.
Examples: the HTTP Delta responses proposed by Meigil [MDFK97] that use theont ent - encodi ng
field of HTTP responses, however, a disadvantage is that servetsretais potentially many different
versions of their Web pages and that it can only be used for Web pagehate already been visited.
Another disadvantage is that re-visits account for a small fraction of taédownloads, so this cannot be
used for all pages.

Savant and Suel [SS03] study the possibility of delta-encoding Welspeitferespect to other similar
Web pages in the same server that are already in a client’s cache, wirshaglower compression ratio
but imposes less workload on the Web server and can be used for affa®n of the accesses. In their
approach these differences are also compressed. See the suSseglland Memon [SM02] for a summary
of techniques for delta compression for remote synchronization of files.

An example of delta compression being used in practice is that sourcearquspiilar free software can
be updated using thgat ch [WEDMOO] program, with servers providing differences between thgiral
version and the new version. For Web sites, differences in terms ofwgtalichanges in the links, can be
encoded using tables as\MiHOWEDABMNO3].

Serve pages only if modified. The Web crawler can avoid downloading a file if the file has not been
modified. Examples: in HTTP/1.0 this is done using a date the crawler prouidaslly the last visit to

the same page) in arf - Modi fi ed- Si nce header; these headers are used only by a minority of crawlers
[BCGMSO00], although they are supported by most Web servers. InRAILT, arentity-tag(E-Tag) can be
provided: this is a hash function of the text of the document.

Serve multiple pages on one request. The overhead arising from multiple TCP connections can be avoided
by requesting a series of pages in the same connection. Example: thislifsousunadern Web browsers,

103

and is implemented using tl@nnect i on header with théceep- al i ve value in HTTP/1.1 [FGM99]; in
this case, pipelining of the requests can also be used. With pipelining, thegeseat requests multiple
pages without waiting for a response, and then receives multiple responthe same order as they were
requested.

Serve entire site in a large file. This is suitable only if the Web changes occur in many pages, or if the
Web site is composed of many small files. Example: typically, Linux distributioaslestributed in whole
CD- or DVD-sized disk images and not on a file-by-file basis.

Filtering interfaces. This is a standard method for answering queries from the crawler. Tleatguery

a Web crawler could ask is “give me all the pages that have changedthisagate”. A more powerful
filtering interface could also include requests for differences, ongugabout other characteristics such as
page sizes or local importance. Examples: DASL [RRDBO02] for seagdieb servers, RSYNC [TPO03] for
mirroring content, and the Common Index Protocol (CIP) [AM99]. In Wak[web04a], thePROPFI ND
method allows to query for properties of a document, and a proposedssxi&PROPFI ND for querying
about groups of documents. A generic filtering interface could also be ingpled using a Web Service
[CCMwWO1].

6.3 Interruption-based cooperation

In all these cases, the Web server sends data to the Web server ethtdmege is an update (page change,
deletion or new page). The Web crawlers must subscribe with the Wetr $erstart receiving notifications,
and when they receive them, they can choose to process, enquenerertigem.

The following cooperation schemes are depicted in Figure 6.3:

Send meta-data of updates. The notification includes only meta-data about the update, as a minimum,
the URL of the resource and a timestamp of the event would be requirednfies the Keryx [BK97]
notification service, developed during the apogee of push-baseditdetiery, and the Fresh Flow proposal
for Web server cooperation [GCO1].

Send differences of content. Whenever an event happens, the Web server sends a file containigify the
ference between the last version and the current one (if the charegespor, the Web server may send the
entire file). This exploits the fact that most page changes are minor, eter..oak year, 50% of changed
pages have changed less than 5% [NCOO04]. Example: CTM [KamO03]: icdbkis, differences on a repos-
itory of source code are sent to interested users by electronic mail amecisigers automatically execute

104

Send «](C O<-I_ S |«
updates ‘I—Q

Send

atr, |© %} T
Send C @_ S e
pages

Send

o

batches C @ S+

Figure 6.3: Diagrams of interruption-based schemes of cooperationn€dions are initiated
by the server-side (right) and handled by the crawler (left)

thepat ch [WEDMOO] program to apply the update to the local copy. In CTM, evdrydiative “deltas”, a
complete base set is sent.

Send changed pages. The Web server sends the complete text of each updated or new pagetivehe
modifications are made. Examples: this was typical in push technologies [8]N&Sd was implemented in
services like “Marimba Castanet” and “Pointcast” in the early days of the Walrently, it is being used in

wireless devices [Cha02].

Send multi-pages updates. The Web server sends batches of modified pages according to sordelsche
This can be useful if the updates are regular and involve severad fagexample, in the Web site of a daily
or weekly newspaper. This is the idea behind the protocol used foirigeppges updated in mobile devices
used by AvantGO [ava04], in which a single device receives a conguiésmdle of pages from several Web
sites.

Send entire site. The Web server sends the entire site. This is useful, for instance, lfwadipg an entire
Web site when the site is publicly available for the first time, or if there is a major reatldh involving
most of the pages, as an extension of the previous scheme.

105

Strategy Network Processing Processing Freshness

cost (server) (crawler) improvement
Send meta-data of updates + + High
Send differences of content -— ++ + High
Send changed pages - + High
Send batch update + + High
Send entire site ++ + High
Remote agent -—— ++ - High
Serve meta—data of content + + Normal
Serve differences of content -—— ++ + Normal
Serve pages only if modified - Normal
Serve many pages in one request - Normal
Serve entire site compressed ++ + Normal
Filtering interface -— ++ - High

Table 6.2: Relative costs of server cooperation schemes discussaidsathe base case where

expected improvement in freshness for the search engiakéstion

Remote agent. The Web server executes software provided by the search enginspthisre includes
instructions to identify important pages and to detect changes in the pagasetinelevant for the search en-
gine. Important pages can be identified based on local connectivityatéstarmation, or log file analysis.
Changes can be detected using a custom algorithm that varies dependigsearch engine’s characteris-
tics. When there is a change, the agent sends back some data to theeseggmeh This can be meta-data,
complete pages, or differences. This is a typical application for a mobilg §g@99], and the cooperation
can be taken one step further, as in some cases the agent could helpréhesseyine by fetching data from
“near” servers, as proposed by Theilmann and Rothermel [TR99].

6.4 Cost analysis

6.4.1 Costs for the Web server

We will consider unitary (per-page) costs and benefits:

e b: Benefit from a user viewing one page, from advertising revenuésiorother sources.

e ¢y Network cost for serving one page, i.e.: bandwidth cost.

106

e Cp: Processing cost for serving one page, i.e.. servers cost.

A simple observation is that we should have (in thedry c, + c,, otherwise, the Web site would
not be able to pay the operation costs. However, we should note that seimsiiés can be financed by
revenues from other sources. Another observation is that in gemeredssing capacity is cheaper than
network connectivity, So in generejf > cp,.

Estimates: We cannot measure these quantities, but we can make some estimates: @4,dh@xost
per page-view of an advertising campaign on the Web is about US$ 0.@5sdikely thatb > 0.05. On
the other end, having a Web server costs about US$ 10 for 5 gigabitafixd,tor 625Mb; if each page
including images is 40Kb on average, this is enough for 15,000 page;wietise that network bandwidth
is usually “overbooked” in popular virtual servers, probably by @daor 2 or 3, so an estimate of the cost
iS: ¢h+Cp < 0.002. Serving pages to a Web crawler is cheaper because the Webrataagenot download
the images.

This is a very rough estimate, but it reveals something interesting: if we onfyuat for Web server
usage, serving a Web page costs at mg@6lof the benefit, and this is probably the biggest cause of the
huge success of the World Wide Web as a platform for publishing informafitre main source of cost
when keeping a large Web site is not the Web hosting, but rather the cpsidifcing and maintaining its
contents.

In Table 6.2 we provide a rough estimation of relative costs associated wsh ¢tbeperation schemes.
Network bandwidth savings are the product of not dealing with unnapgssquests from the crawlers,
and costs, from sending more than is necessary. Processing cos$te ikeeping meta-data, calculating
differences, or more complex processing. Benefits arise from irenldesshness on the Web search engine,
and are higher if an interruptiopgsh is involved.

Which is the best strategy for the Web server? This will depend on the price the Web server is willing
to pay; if this is minor, then using server software that correctly implementsHAIT is the best option. If
the price is moderate, then serving and sending meta-data of updates istthptimn. If the server wishes
to invest more resources, it can benefit from providing content diffegs and/or a filtering interface for the

crawlers.

6.4.2 Costs for the crawler

The main costs for the crawler for each page are:

e Polling or receiving an interrupt. We will consider that in terms of networdk @rocessing, generating
a connection or handling an interrupt are the same.

107

e Downloading the page.

e Processing the downloaded page.

An estimation of these costs is due to Crasweetl. [CCHMO04], and it is close to US $1.5 Million for
an entire crawl of the Web, or about US$ 0.002 per page. Remarkalslys tixactly our estimation of the
costs for the Web server, and both figures were obtained independently

The freshness of the repository is higher in interrupt-based stratagidtere is no significant delay be-
tween the server update and the search engine syncing of the pagmstéor the crawler are summarized
in Table 6.2. Network cost for the crawler is the same as for the serveadastransfer in these schemes
involves one crawler and one server.

However, interrupt-based strategies have to be implemented carefublydeeif too many Web servers
are sending interrupts to the Web crawler at whatever time they choosehtheaarch engine risks being
overloaded by these requests, loosing control over the crawling ggode s likely that interrupt-based
strategies can only be deployed for a small group of Web sites.

Which is the best strategy for the crawler? A remote agent or filtering interface can help to distribute the
workload of the search engine, especially if servers cooperate iprpoessing documents or in generating
partial indexes. The remote agent can be used for the more importanité&efssach as news sources) if the
crawler can process interrupts as they arrive, probably by keepntal index for the most changing data.

An extreme case of using an agent could be when the Web server tgasnibiea (partial) inverted index
and then sends it to the search engine, which only needs to perform a.merthis case, the crawling
problem is simplified, and is transformed into polling or pushing of indexes.

6.4.3 Overall cost

It is very important to consider that not all Web servers are equal, andigitribution of “quality” on the
Web is, by all measures, very skewed: most of the important Web pages arfew Web servers, as shown
in Figurel 8.11 (page 133). The best servers are not necessarilyrgiee tmes, in Figure 6.4 we compare
average Pagerank with site size and find no correlation.

By inspecting Table 6.2, a noticeable fact is that the schemes that do noeregtra cost for the Web
server are already implemented in HTTHe€p- al i ve andi f - nodi fi ed- si nce features).

Itis clear that if the request—response paradigm is enforced strictlychieme that can provide the best
benefits in terms of freshness is a filtering interface. Pushing or pullingreiftes of content are probably
the most balanced schemes, because the server gains in less bandagdth Tlkese schemes are more
useful if many clients can benefit from differences: not only the Walwtars of search engines, but also the
general public using enabled browsers or cache services.

108

le-06}

Average Pagerank

1e-07} | 1!

1 10 100 1000 10000
Number of pages

Figure 6.4: Average Pagerank versus number of pages, for a sample @%b sites in
the Chilean Web. The size of a Web site does not seems to telated with the quality of its
pages according to this metric.

6.5 Implementation of a cooperation scheme in the WIRE crawler

The WIRE crawler supports a cooperation scheme based on servinglatiataef updates. The Web server
provides an XML file containing a description of the documents provided &y\eb server.

We wanted to use publicly-available XML name spaces to conform to existéinittbns. We used the
following XML applications (languages):

RSS RDF Site Summary, also called “Rich Site Summary” or “Really Simple Syndicationi exgension
of RDF. It was conceived as a simplification of RDF to be able to aggregaltéghlaiVeb sites in a
single interface for the “My Netscape” service [Lib00]. Nowadays, Widely used by news sources
to provide a short list of the latest news histories to be used by hewsgaggre.

DC The Dublin Core is a simple set of metadata elements to describe electronic agasuihes designed
to provide a minimal set of descriptive elements for Web pages [dc04],dimgwdate, type, format,
copyright status, etc.

The Web server periodically generates arfiddot s. r df , located at the root of the Web site, containing
the last-modification time of all the URLSs in its public space. An example file is showigime 6.5.

Currently the file contains only the URL and the last-modification time, which is tloerrdtion the
WIRE crawler can use, but in the future it could include more informatioh sisgpage size, format, number
of accesses, etc.

109

<?xm version="1.0"?>
<rdf:rdf
xm ns: rdf ="http: //ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns"
xm ns:dc="http://purl.org/dc/el ements/1.1/"
xm ns="http://purl.org/rss/1.0/">
<channel rdf:about="http://ww. exanpl e.con ">
<i tems><rdf : Seq>
<rdf:li rdf:resource="http://ww.exanpl e.com one. htm"/>
<rdf:li rdf:resource="http://ww.exanple.com two. htm"/>
</rdf:Seg></items>
</ channel >
<itemrdf:about="http://ww:.exanpl e. conf one. htm ">
<dc: nodi fi ed>2004- 10- 01T12: 05+02: 00</ dc: nodi fi ed>
<litemp
<itemrdf:about="http://ww.exanpl e. conf one. htm ">
<dc: nodi fi ed>2004- 11- 21T09: 01+02: 00</ dc: nodi fi ed>
</itenp
< rdf:rdf >

Figure 6.5: Example of a obot s. r df file.

The implementation of this scheme has two parts: a server-side script thaagenthe file, and an
interpreter in the Web crawler.

6.5.1 Web server implementation
On the server-side, a Perl script is provided for generating@$8dile. This script requires two parameters:

e The root directory of pages in the Web site.

e The base URL of the home page of the Web site.
Optional parameters are:

e Patterns to include pages. The default is to include all pages that includelibing * ht nf’.
e Patterns to reject pages, to exclude private directories.

e The maximum number of pages to include in the file.

110

A typical example of usage is:

% wi re-rss-generate --docroot /home/httpd/ htm --base http://ww. exanple.com
> [home/ htt pd/ ht m /robot s. rdf

This program is executed periodically usiogont ab. The frequency of updates should be related to
the frequency of update of the Web site, but generating the file on a daily $gems acceptable.

The. rdf extension was chosen because it is usually a registered file type in theedy&eb servers,
and therefore the response included the corresporagiplg cat i on/ xnl +r df content-type.

6.5.2 Web crawler implementation

The WIRE crawler handles the download of this file similarly totlhéot s. t xt file [Kos95]. A setting in
the crawler configuration file controls the frequency at which this file islkde for changes.

The crawler parses theobot s. rdf file and for each item found, it checks the last modification time
of the file. This timestamp is entered into the equation for estimating the probabilitye afliject being
outdated, as shown in Section 2.4 (page 27).

6.5.3 Testing

We tested our implementation to gather insights about how it works in practids.isTa first step that is
necessary to learn about the system before a large-scale studiedad.car

We tested our implementation over a month with a Web site containing medical inforntai®kyeb
site has 249 pages. IssuinglBAD request for each page, just to check for the last-modification timestamp,
generates 108,777 bytes of traffic, with an average of 434 bytes ger pla takes about 5 minutes to
sequentially make all of these requests, even if we do not wait between them.

When using cooperation, the generatetot s. r df file is about 61,504 bytes, with an average is 247
bytes per page; this is more than 40% of savings in bandwidth, and with antanpadvantage: everything
is done in just one request in less than 5 seconds.

An unexpected benefit of this implementation is that Web pages are usuathyelied slowly, level by
level as the crawler must parse the Web pages to find links. When the piggeissfound on a single file,
the Web crawler can download the entire site in just one session, withoimgh@avparse data to discover
pages.

We learned that if the updates involve only just one page, then ifdhet s. r df file is too large this
scheme can waste network resources because the complete file with thetanistadasfered each time. The
robot s. rdf could be divided into several parts for very large Web sites, and thetegoalld be chosen in

111

such a way that the most important pages are found in a small part —faréestay dividing the Web site by
levels.

We also learned that for a good scheduling using a file with meta-data, thetémpsearch engine pa-
rameter is not the minimum re-visiting period, but the maximum acceptable outdateahjlity; otherwise,
bandwidth can be wasted by requesting the meta-data file more often thatdessaey, especially if only a
few Web sites are involved and they do not change too often.

6.6 Conclusions

How probable is the wide adoption of a cooperation strategy? The basi® Igidtocol is not completely
implemented in the same way across different servers, and the minimum-commamidator is quite poor
in terms of functionalities, as explained in Appendix A.

On the other hand, Web site administrators can cooperate if it is not too codtlp@ans an important
benefit. This benefit should come mostly in terms of being better represented Web search engines. We
consider that the reductions on load for the Web server are probabénoagh by themselves to justify the
adoption of a cooperation strategy.

There are also some specific applications that can use a cooperatiogystratest general search en-
gines offer specialized (paid) search services for specific Web Siese search services could be improved
if software for cooperating with the search service is installed in the ssider

With the emergence of Web services, filtering strategies could be an intgrpessibility for the near
future, as they can help crawlers and other autonomous agents to intéradleb servers at a more mean-
ingful level.

112

Chapter 7

Our Crawler Implementation

We developed a Web crawler that implements the crawling model and archit@casented in Chapter 3,
and supports the scheduling algorithms presented in Chapter 4. This chegstents the implementation
of the Web crawler in some detail. Source code and technical documentatituding a user manual are

available aht t p: // www. cwr . cl / proj ect s/ WRE/ .

The rest of this chapter is organized as follows: section 7.1 present@mming environment used.
Section 7.2 details the main programs, section 7.3 the main data structuresténm addahe configuration

variables.

7.1 Programming environment and dependencies

The programming language used was C for most of the application. We @&dd4s to take advantage of
the C++ Standard Template Library to shorten development time; howevelidwmt use the STL for the

critical parts of our application (e.g.: we developed a specialized implementdteohash table for storing

URLSs). The crawler currently has approximately, @80 lines of code.

For building the crawler, we used the following software packages:

ADNS [Jac02] Asynchronous Domain Name System resolver, replaces tliasddDNS resolver interface
with non-blocking calls, so multiple host names can be searched simultane@eslysed ADNS in
the “harvester” program.

LibXML2 [lib02] An XML parser developed in C for the Gnome project. Itis verytpble, and it is also an
efficient and very complete specification of the XPath language. We uBathXor the configuration
file of the crawler, and for parsing the “robots.rdf” file used for Webveecooperation during the
crawl, as shown in Chapter 6.

113

We made extensive use of thpr of utility to improve the speed of the application.

7.2 Programs

In this section, we will present the four main programs: manager, harvgatberer and seeder. The four
programs are run in cycles during the crawler’s execution, as showigime=3.8.

7.2.1 Manager: long-term scheduling

The “manager” program generates the liskot/RLs to be downloaded in this cycle (we uged= 100 000
pages by default). The procedure for generating this list is outlined below

quality : 0.4
freshness : 0.1 Viownloaded * 04— Viegenr : 0.04 = {Profit: 0.36

visited? 01
quality 107
freshness ' 0.9 Vaownloaded - 07 — Vewrent - 063 = Profit: 0.07
visited? 01
quality (0.6

P3 Vdownloaded ' 0.6 ™ Veurrent : 0 = { Profit: 0.6
freshness ‘-

visited? 0

Figure 7.1: Operation of the manager program wkh= 2. The two pages with the highest
expected profit are assigned to this batch.

The current value of a page is IntrinsicQualiy x Pr(Freshnedg) = 1) x RepresentationalQualitp),
where RepresentationalQualify) equals 1 if the page has been visited, 0 if not. The value of the downloaded
page is IntrinsicQualityp) x 1 x 1. In Figure 7.1, the manager should select p&jemdP; for this cycle.

1. Filter out pages that were downloaded too recentlyin the configuration file, a criteria for the maxi-
mum frequency of re-visits to pages can be stated (e.g.: no more than dlageoa once a week).
This criteria is used to avoid accessing only a few elements of the collectidnisdrased on the
observations by Cho and Garcia-Molina [CGMO03a].

2. Estimate the intrinsic value of Web pagesThe manager program calculates the value of all the Web
pages in the collection according to a ranking function. The ranking fumeispecified in the con-

114

figuration file, and it is a combination of one or several of the following:ePagk [PBMW98], static
hubs and authority scores [Kle99], weighted link rank [Dav03, BYD@4lge depth, and a flag indi-
cating if a page is static or dynamic. It can also rank pages according penties of the Web sites
that contain the pages, such as “Siterank” (which is like Pagerank albuilated over the graph of
links between Web sites) or the number of pages that still have not beetadmed from that specific
Web site, this is, the strategy presented in Chapter 4.

3. Estimate the freshness of Web page$he manager programs estimaesFreshness= 1) for all pages
that have been visited, using the information collected from past visits arfdrthelas presented in

Section 2.4 (page 27).

4. Estimate the profit of retrieving a Web page The program considers that the representational quality of
a Web page is either 0 (page not downloaded) or 1 (page downloditest).it uses the formula given
in Section 3.4 (page 45) with = B = y =1 to obtain the profit, in terms of the value of the index,
obtained by downloading the given page. This is high, e.g.: if the intrinsiewflithe page is high,
and the page copy is not expected to be fresh, so important pageawatedcmore often.

5. Extract top K pages according to expected profitOr less tharK pages if there are fewer URLs avail-
able. Pages are selected according to how much their value in the index wéhgecif they are
downloaded now.

An hypothetical scenario for the manager program With: 2 is depicted in Figure 7.1. The manager
objective is to maximize the profit in each cycle.

For parallelization, the batch of pages generated by the manager is starsérias of files that include
all the URLs and metadata of the required Web pages and Web sites. It ised clodependent unit of
data that can be copied to a different machine for distributed crawlingjradutes all the information the
harvester needs. Several batches of pages can be generatgditeisame cycle by taking more URLs from
the top of the list.

7.2.2 Harvester: short-term scheduling

The “harvester” programs receives a listofJRLs and attempts to download them from the Web.

The politeness policy chosen is to never open more than one simultaneaection to a Website,
and to wait a configurable amount of seconds between accesseadt(iBja For the larger Websites, over a
certain quantity of pages (default 100), the waiting time is reduced (to altlef& seconds). This is because
by the end of a large crawl only a few Web sites remain active, and the wéitieggenerates inefficiencies
in the process that are studied in Chapter 4.

115

As shown in Figure 7.2, the harvester maintains a queue for each Web saegiven time, pages are
being transferred from some Web sites, while other Web sites are idle taerfa politeness policy. This
is implemented using a priority queue in which Web sites are inserted accordirgrtestamp for their next
visit.

World Wide Web

Web sites Eg-l

Web pages

Figure 7.2: Operation of the harvester program. This program createsaejfor each Web
site and opens one connection to each active Web site (sitesafd 6). Some Web sites are
“idle”, because they have transfered pages too recentBs(&i 5, and 7) or because they have
exhausted all of their pages for this batch (3).

Our first implementation used Linux threads [Fal97] and did blocking 1/0O ah ¢aread. It worked
well, but was not able to go over 500 threads even in PCs with proceskdBHz and 1GB of RAM. It
seems that entire thread system was designed for only a few threadsatte¢ime, not for higher degrees
of parallelization.

Our current implementation uses a single thread with non-blocking I/O ovarrag of sockets. The
pol | () system call is used to check for activity in the sockets. This is much harder terivapt than the
multi-threaded version, as in practical terms it involves programming contéidhes explicitly, but the
performance was much better, allowing us to download from over 1000sit&bhat the same time with a
very lightweight process.

The output of the harvester is a series of files containing the downloadgd pad metadata found
(e.g.: server response codes, document lengths, connection ,sgteedd he response headers are parsed to
obtain metadata, but the pages themselves are not parsed at this step.

116

7.2.3 Gatherer: parsing of pages

The “gatherer” program receives the raw Web pages downloaddigedyarvester and parses them. In the
current implementation, onlyext / pl ai n andt ext/ ht ml pages are accepted by the harvester, so these are
the only MIME types the gatherer has to deal with.

The parsing of HTML pages is done using an events-oriented parseevénts-oriented parser (such
as SAX [Meg04] for XML) does not build an structured representatibthe documents: it just generates
function calls whenever certain conditions are met, as shown in Figure 7e3folvid that a substantial
amount of pages were not well-formed (e.g.: tags were not balaneetie parser must be very tolerant to
malformed markup.

[<lel>[zibffs] [<]s] [a] |<lol>[cle]s]e]</[pp]<]/p]]

1. start(“p™)
2. text(“This isa ™)

3. start(“b”)

A\
4, text(“test™)

"

5. end(*b™)

Y

6. end(“p”)

Figure 7.3: Events-oriented parsing of HTML data, showing the functitat are called while
scanning the document.

During the parsing, URLs are detected and added to a list that is passedsedder” program. At this
point, exact duplicates are detected based on the page contents, arficblimpsgges found to be duplicates
are ignored to preserve bandwidth, as the prevalence of duplicates Bvethis very high [BBDHOQ].

The parser does not remove all HTML tags. It cleans superfluouatakeaves only document struc-
ture, logical formatting, and physical formatting such as bold or italics. rin&ion about colors, back-
grounds, font families, cell widths and most of the visual formatting markusadded. The resulting file
sizes are typically 30% of the original size and retain most of the informatiedetkfor indexing. The list
of HTML tags are kept or removed is configurable by the user.

7.2.4 Seeder: URL resolver

The “seeder” program receives a list of URLs found by the gathaneradds some of them to the collection,
according to a criteria given in the configuration file. This criteria includgtepns for accepting, rejecting,

117

and transforming URLSs.

Accept Patterns for accepting URLSs include domain name and file name patterns.oiffaéndname pat-
terns are given as suffixes (e.gcl, . uchile.cl, etc.) and the file name patterns are given as file
extensions. In the later case, accepted URLs can be enqueued fdoddwor they can be just logged
on a file, which is the current case for images and multimedia files.

Reject Patterns for rejecting URLs include substrings that appear on the pararoétanown Web appli-
cations (e.gl ogi n, | ogout , regi st er, etc.) that lead to URLs which are not relevant for a search
engine. In practice, this manually-generated list of patterns produceificagt savings in terms of
requests for pages with no useful information.

Transform To avoid duplicates from session ids, which are discussed in Section payj& (63), we detect
known session-id variables and remove them from the URLS. Log file sisdtyols can detect requests
coming from a Web crawler using the “user-agent” request headeistpedvided, so this should not
harm Web server statistics.

The seeder also processes all the “robots.txt” and “robots.rdf” filasatkdound, to extract URLs and
patterns:

robots.txt This file contains directories that should not be downloaded from the WelkK®s96]. These
directories are added to the patterns for rejecting URLSs in a per-site basis.

robots.rdf This file contains paths to documents in the Web site, including their last-modifi¢aties. It
is used for server cooperation, as explained on Chapter 6.

The seeder also recognizes filename extensions for known programmagupges used for the Web
(e.g.. php,.pl,.cfmetc.) and mark those URLs as “dynamic pages”. Dynamic pages may ehigrer
or lower scores during long term scheduling.

To initialize the system, before the first batch of pages is generated by tragerathe seeder program
is executed with a file providing the starting URLSs for the crawl.

7.3 Data structures

7.3.1 Metadata

All the metadata about Web pages and Web sites is stored in files containihgitbesl records. The records
contain all the information about a Web page or Web site except for the WRltlee contents of the Web

page.

118

There are two files: one for metadata about Web sites, sorted by sitedidyn@nfor metadata about
Web pages, sorted by document-id. Metadata currently stored for a &gebipcludes information about:

Web page identification Document-id, which is an unique identifier for a Web page, and Site-id, wich
an unique identifier for Web sites.

HTTP response headersHTTP response code and returned MIME-type.
Network status Connection speed and latency of the page download.

FreshnessNumber of visits, time of first and last visit, total number of visits in which a cleamgs detected
and total time with no changes. These are the parameters needed to estintashthest of a page.

Metadata about page contentsContent-length of the original page and of the parsed page, hash functio
of the contents and original doc-id if the page is found to be a duplicate.

Page scoresPagerank, authority score, hub score, etc. depending on the $fiolgguhlicy from the config-
uration file.

Metadata currently stored for a Web site includes:

Web site identification Site-id.
DNS information IP-address and last-time it was resolved.
Web site statistics Number of documents enqueued/transfered, dynamic/static, erron&qettO

Site scoresSiterank, sum of Pagerank of its pages, etc. depending on the caitguiile.

In both the file with metadata about documents, and the file with metadata abougitd&hthe first
record is special, as it contains the number of stored records. ThevelEcnment with doc-igt 0 nor Web
site with site-id= 0, so identifier O is reserved for error conditions and record for ch&cui is stored at
offset sizeofdocid) x i.

7.3.2 Page contents

The contents of Web pages are stored in variable-sized records thidedecument-id. Inserts and deletions
are handled using a free-space list with first-fit allocation.

This data structure also implements duplicate detection: whenever a new dadaramred, a hash
function of its contents is calculated. If there is another document with the Bashefunction and length,
the contents of the documents are compared. If they are equal, the ddddroéthe original document is
returned, and the new document is marked as a duplicate.

119

DOC,;: 9421

— @® » w5

¥
VUUVUUUUVU
/J\

0ld=NULL, new=9421

9420 offset

—@—> 9421 offset

9422 offset
9423 offset

—@»

Disk Storage

1
2
3
4
Free space list Offsets list

Figure 7.4: Storing the contents of a document requires to check firsteéfdocument is a
duplicate, then searching for a place in the free-spacedist then writing the document to
disk.

The process for storing a document, given its contents and documentahicted in Figure 7.4:

1. The contents of the documents are checked against the contentestetable. If they have been
already seen, the document is marked as a duplicate and the originalidoetigrned.

2. Afree space is searched in the free-space list. This returns a dotaffget in the disk pointing to
an available position with enough free space.

3. This offset is written to the index, and will be the offset for the curtmtument.

4. The document contents are written to the disk at the given offset.

This module requires support to create large files, as for large colledtierdisk storage grows over
2GB, and the offset cannot be provided in a variable of tygmg”. In Linux, the LFS standard [Jae04]
provides offsets of typel‘ong | ong” that are used for disk I/0O operations. The usage of continuous, large
files for millions of pages, instead of small files, can save a lot of disk seeksoted also by Patterson
[Pat04].

7.3.3 URLs

The structure that holds the URLSs is highly optimized for the most common opesatiging the crawling
process:

120

e Given the name of a Web site, obtain its site-id.
e Given the site-id of a Web site and a local link, obtain the doc-id for the link.
e Given a full URL, obtain both its site-id and doc-id.
The implementation uses two hash tables: the first for converting Web site matimsge-ids, and the

second for converting “site-id + path name” to a doc-id. The processdiaverting a full URL is shown in
Figure 7.5.

INPUT

http://host.domain.com/dir/file.html

h 1('h0st.d(§1in.com') 4@;

h('235 dit/file.html')
host.domain.com 235 —— VULVUUUU
©) 235 path/file.htnl 9421

OUTPUT
FSITE—ID = 235; DOC-ID = 9421

Figure 7.5: For checking a URL: (1) the host name is searched in the hadh od Web site
names. The resulting site-id (2) is concatenated with ttieqnad filename (3) to obtain a doc-id

(4).

This process is optimized to exploit the locality on Web links, as most of the linksdftn a page point
to other pages co-located in the same Web site.

7.3.4 Link structure

The link structure is stored on disk as an adjacency list of document-idsadfacency list is implemented
on top of the same data structure used for storing the page contentst #xdbe duplicate checking. As
only the forward adjacency list is stored, the algorithm for calculating RRaggecannot access efficiently the
list of back-links of a page, so it must be programmed to use only forwakd.lifihis is not difficult to do,
and Algorithm 4 illustrates how to calculate Pagerank without back-links;gimesdea is also used for hubs
and authorities.

Our link structure does not use compression. The Web graph can beesseg by exploiting the
locality of the links, the distribution of the degree of pages, and the factévatral pages share a substantial

121

Algorithm 4 Calculating Pagerank without back-links
Require: G Web Graph.

Require: gdampening factor, usually~ 0.15
1: N — |G|
2: for eachpe Gdo

3: Pagerank= g

4. Auxp=0

5. end for

6: while Pagerank not convergirdp
7. for eachpe Gdo

8: *(p) < pages pointed by
o: for eachp’ e I'*(p) do
10: AuxXpy = Auxpy + ?%LW
11: end for
12: end for
13: for eachpe Gdo

14: Pagerank= g + (1—q)Aux,
15: Auxp =0

16: end for

17. Normalize Pageranky Pagerank=1
18: end while

portion of their links [SY01]. Using compression, a Web graph can beesgmted with as few as 3-4 bits
per link [BV04].

7.4 Configuration

Configuration of the crawling parameters is done with a XML file. Internallgretis a mapping between
XPath expressions (which represent parts of the XML file) and intearébles with native data types such
as integer, float or string. When the crawler is executed, these intemiables are filled with the data given
in the configuration file.

Tablel 7.1 shows the main configuration variables with their default valuesa 8etail of all the con-
figuration variables, see the WIRE documentationtap: / / www. cwr . ¢l / proj ect s/ W RE/ doc/ .

122

XPath expression Default value Description

collection/base tmp/ Base directory for the crawler
collection/maxdoc 10 Mill. Maximum number of Web pages.
collection/maxsite 100,000 Maximum number of Web sites.
seeder/max-urls-per-site 25,000 Max. pages to download from edglsitée
seeder/accept/domain-suffixes .cl Domain suffixes to accept.
seeder/ext/download/static * Extensions to consider as static.
seeder/ext/download/dynamic * Extensions to consider as dynamic.
seeder/ext/log/group * Extensions of non-html files.
seeder/sessionids * Suffixes of known session-id parameters.
manager/maxdepth/dynamic 5 Maximum level to download dynamic pages.
manager/maxdepth/static 15 Maximum level to download static pages.
manager/batch/size 100,000 URLSs per batch.

manager/batch/samesite 500 Max. number of URLs from the same site.
manager/score * Weights for the different score functions.
manager/minperiod * Minimum re-visiting period.
harvester/resolvconf 127.0.0.1 Address of the name server(s).
harvester/blocked-ip 127.0.0.1 IPs that should not be visited.
harvester/nthreads/start 300 Number of simultaneous threads or sockets
harvester/nthreads/min 10 Minimum number of active sockets.
harvester/timeout/connection 30 Timeout in seconds.
harvester/wait/normal 15 Number of seconds to wait (politeness).
harvester/maxfilesize 400,000 Maximum number of bytes to download.
gatherer/maxstoredsize 300,000 Maximum number of bytes to store.
gatherer/discard * HTML tags to discard.

gatherer/keep * HTML tags to keep.

gatherer/link * HTML tags that contain links.

Table 7.1: Main configuration variables of the Web crawler. Defaultues marked “*” can be
seen ahttp:// ww. cwr . cl/projects/ WRE doc/

7.5 Conclusions

This chapter described the implementation of the WIRE crawler, which is b@sede crawling model
developed for this thesis. The Web as an information repository is velgobang, especially because of its
dynamic and open nature; thus, a good Web crawler needs to deal witraspews of the Web that become
visible only while running an extensive crawl, and there are severaldmases, as shown in Appendix A.

123

There are a few public domain crawling programs listed under Section 2.5&/§%. We expect to
benchmark our crawler against some of them in the future, but there is stkltew do to get the most out of
this architecture. The most important task is to design a component foricating) several instances of the
Web crawler running in different machines, or to be able to carry two péttse process at the same time,
such as running the harvester while the gatherer is working on a prevaacis. This is necessary because
otherwise the bandwidth is not used while parsing the Web pages.

Our first implementation of the Web crawler used a relational database aatishfor downloading
the Web pages, and the performance was very low. Our current impleioantaith the data structures
presented in this chapter, is powerful enough for downloading collectiothe order of tens of millions of
pages in a few days, which is reasonable for the purposes of creatiagets for simulation and analysis,
and for testing different strategies. There is plenty of room for erdraeats, especially in the routines
for manipulating the Web graph —which is currently not compressed, louicgbe compressed for larger
datasets— and for calculating link-based scores.

Also, for scaling to billions of Web pages, some data structures shouldabezad on disk instead of in
memory. This development is outside the scope of this thesis, but seemsal ocaiinuation of this work.

The next two chapters present a study of a Web collection and the ptgmtidtdems found while
performing this large crawl.

124

Chapter 8

Characterization of the Chilean Web

As an application of the crawler implementation presented in Chapter 7, welahmien and studied the
pages under theCL top-level domain.

The WIRE crawler includes a module for generating statistics and repatg @b collection. In this
chapter, we present several characteristics of the Chilean Web, ermbmpare some of them with the
characteristics of the Greek Web.

8.1 Reports generated by WIRE
The procedure for generating reports has the following steps:

1. Analysis of the metadata that is kept in the data structures describedtionS&8 (page 118), and
generation of statistics as plain text files.

2. Generation ofnupl ot scripts to generate graphs, and invocatiograipl ot .

3. Generation of the report usigJiX.

This procedure makes maintenance of the reports easier, as the datar&gextfrom the representa-
tion. The exact commands for generating reports are detailed in the usealntiaat is available on-line at
http://ww. cw . cl/projects/WRE doc/.

The generated reports include:
e Areport about characteristics of the pages that were downloaded.
e A report about links found in those pages.

e A report about languages.

125

e Areport about Web sites.

e Areport about links in the Web site graph.
In this chapter, most of the data tables and graphics (except for pisscHae to a limitation of the
GNU plot program) were generated using the WIRE report generator.
8.2 Collection summary
Table 8.1 summarizes the main characteristics of the collection, which was abiikay 2004.

Table 8.1: Summary of the characteristics of the studied collectiomfthe Chilean Web.

Downloaded Web pages 3,313,060 Downloaded Web sites 49,535
Static 2,191,522 66.15% Static pages per site 40.40
Dynamic 1,121,538 33.85% Dynamic pages per site 26.73
Unique 3,110,205 93.88% Pages per site 67.13
Duplicates 202,855 6.12%

We downloaded up to five levels of dynamic pages and also up to 15 levelatiof gages. We also
limited the crawl to HTML pages, downloading at most 300 Kb of data per With, a maximum of 20,000

pages per Web site.

8.3 Web page characteristics

8.3.1 Status code

Figure 8.1 shows the distribution of the HTTP response code. In the figgerbave merged several HTTP
response codes for clarity:
e OK includes requests that lead to a page tran€k(200) andPARTI AL CONTENT (206) responses.

e MOVED includes all the redirects to other pageSVED (301),FOUND (302) andrEMPORARY REDI RECT
(307).

e SERVER ERROR includes all failures on the server sideNTERNAL SERVER ERRCR (500), BAD
GATEWAY (502),UNAVAI LABLE (503), andNO CONTENT (204).

126

e FORBIDDEN includes all the requests that are denied by the setatJTHORI ZED (401),FORBI DDEN
(403) andNOT ACCEPTABLE (406).

FORBIDDEN 0,35%
SERVER ERROR 0.56%
MOVED 5,14%

NOT FOUND 9.29%

OK 84.,65%

Figure 8.1: Distribution of HTTP response code.

In all our experiments, we usually have had between 75% and 85% afnesp leading to an actual
transfer of data. From the point of view of Web crawler, the fractiore@d&fl requests is significant, and it
should be considered in short-term scheduling strategies when “@lengd the network connection.

The fraction of broken links, over 9%, is very significative. This meaas tiie Web is dynamic, and
quality control on existent Web sites is neither meticulous nor frequengénou

8.3.2 Content length

To save bandwidth, we downloaded only the first 300 KB of the pagesc&hter of the distribution of page
sizes follows a Zipf’s law of parameter3.54, as shown in Figure 8.2. Close to 300 KB the number of pages
looks higher than expected because of the way in which we enforcedwr@ahd limit.

0.1

(7]

o 0.01}

®©

o

S 0.001

[

2 1e-04}

(&)

©

w 1e-05}
A ; -

16-06 k/x"3.54 in [100,250] -

1 10 100
Content length of unparsed HTML in KB

Figure 8.2: Distribution of content length of pages.

127

We observe that below 12 Kilobytes, there are fewer pages than pabthigtdhne Zipf's law. This is
because of a limit of HTML coding: the markup is not designed to be tersesagm a short text requires
a certain amount of markup. As HTML is used as a presentational langaagtolling the formatting
attributes of the pages, it generates a significant overhead over ex¢specially for complex designs.

For a Web crawler, 300Kb seems to be a safe limit for HTML pages, as #éneneery few Web pages
with more than this amount of data.

8.3.3 Document age

We observed the last-modification date returned by Web servers, alieldaiye heuristic described in Sec-
tion/A.3.5 (page 160) to discard wrong dates. We found that 83% of thesiteb studied returned valid
last-modified dates for their pages. The distribution of page age in terms dhsnand years is shown in
Figure 8.3.

" " 01 .07 in [0,48] ——

())

()] (@]

© (48]

= e 0.01}

o o

c [

2 S

§ § 0.001 ¢

LL LL

1le-04 ‘ ‘ ‘
0 1 2 3 4 12 24 36 48
Document age in years Document age in months

Figure 8.3: Distribution of page age. Note that for the graph of Page ageadnths the scale
is semi-log.

Page changes exhibit an exponential distribution, as seen in the grdptoclwoment age in months.
Note that more than 60% of pages have been created or modified in thedassgahe Chilean Web is
growing at a fast pace.

8.3.4 Page depth

We limited the browser to download only five levels of dynamic pages, and up lev&s of static pages.
The distribution of pages by depth is shown in Figure 8.4.

The distribution of static pages follows a shape whose maximum is in the fifth bextehe distribution
of dynamic pages tends to grow without bounds. This is because dynagds pave links to other dynamic
pages, as discussed in Chapter 5.

128

1000 ——————————————— _
900 | I | Static page Sum—
800 | Dynamic pages——

700 ¢
600 r
500 r
400 ¢
300 ¢
200 ¢
100

Pagesx 1000)

01234567891011121314
Depth

Figure 8.4: Distribution of pages at different depths.
8.3.5 Languages

We took a sample of 5,000 pages, and analyzed their contents to compawedittiists against a series of
lists of stop words in several languages on the Chilean Web. We found @b% of the pages in Spanish,
and 27% in English. Other languages appeared with much less frequency.

Spanish m
English C——

Fraction of identified pages

0123456789101121314
Depth

Figure 8.5: Distribution of languages by page depth.

There are large variations in this distribution if we check Web sites at diffézeels, as shown in Figure
8.5. For instance, over 90% of home pages are mostly in Spanish, but this figes as low as 60% if we
take pages at depth 5, as shown in Figure 8.5. By inspecting a sample afghshEpages at deeper levels,
we found that their are mostly mirrors of Web sites such as the Linux Docuti@nRroject, or the TuCows
shareware repository.

129

8.3.6 Dynamic pages

About 34% of the pages we downloaded were dynamically generatedndsieused application was PHP
[php04], followed by ASP [asp04] and pages generated using Jaltan and. j sp). The distribution is
shown in Figure 8.6.

Perl 0,61%

SHTML 0,93%

Cold Fusion 1,82%
JSP/JHTML 2.52%

ASP 22.25%

PHP 71.88%

Figure 8.6: Distribution of links to dynamic pages.

PHP, an Open Source technology clearly dominates the market. Dynami ggagmostly built using
hypertext pre-processing (PHP, ASP, JHTML, ColdFusion), in witiemmands for generating dynamic
content, such as accessing a database, are embedded in documenmésrtiestly HTML code. It must be
considered also that some dynamic pages use HTML extension, andni@b$the static pages in HTML
are generated automatically using batch processing with content managarsiems, so there are other
technologies for dynamic pages that could be missing from this analysis.

8.3.7 Documents notin HTML

We found 400,000 links to non-HTML files containing extensions useddouchents. Portable Document
Format (PDF) is the most widely used format and the de facto standardyéallby plain text and Microsoft
Word. The distribution is shown in Figure 8.7.

TEX 0,28%

RTF 0.50%

PS 1,55%

PPT 3.13%
XML 8,54%

DOC 12,21%
PDF 45,02%

TEXT 28,78%

Figure 8.7: Distribution of links to documents found on Chilean Web magecluding links
to HTML files.

130

Despite the fact that Microsoft Windows is the most used operating sysienydes associated with
Microsoft Office applications such as Word or Powerpoint are nad asenuch as we could expect, probably
because of concerns of viruses or lost of formatting.

There are over 30,000 XML files in the Chilean Web, including files with thersibms DocBook,
SGML, XML and RDF. In our opinion, this amount of links suggest that it >y to download those XML
files and analyze them, as we could start searching on them.

8.3.8 Multimedia

There are several links to multimedia files, including over 80 million links to imag&80B links to audio
files, and 8,000 links to video files. The distribution of file formats is shown infei@.8.

Image Audio Video

AU 0.27%
ASF 2.65%

i WAV 2,75% OT 0.17%
8% MIDI 3.97% WMV —_ AVI 11,99%
/A WMA 4.26% 33.45%
/f &P\ PLS 5,26%
MPEG 23,50%
BT MP3 20.52%
60,31%

GIF 88,39% MOV 30,89%
Figure 8.8: Distribution of links to multimedia files found on Chilean Wpages.

Compuservesd F is the most used file format for images, followed IBEG. The Open Source PNG
format, which was conceived as a replacement of GIF is still rarely udeel contents of these images was
analyzed in the context of a face detection is analyzed in [BYdBN.

Realnetwork’sReal audi 0 andMP3 are the most used file formats for audio, and are mostly used for
streaming in Internet radios. In the case of video, there is no clear donfiamerat and there are relative few
video images on the Web (1/1000 of the quantity of image files). We also fowerd760,000 links to Flash
animations, mostly in the home pages of Web sites.

We found that about 1/3 of the links to multimedia files from home pages wenaimie, and that this
fraction falls to 1/10 of the links when internal pages are considered. sTigigests that Web site designers
usually have a small set of images that are used across their entire Web sites

131

8.3.9 Software and source code

We found links to 30,000 files with extensions used for source code, @hO@D files with extensions used
for software. The later does not count software that is distributed in cessed files such asar or. zi p.
The distribution of the links found is shown in Figure 8.9.

Source code Software

CDROM (ISO) 0.08%
Palm PRC/PDB 0.26%

Java 12,18% Windows EXE 13,68%
P Javascript 3,86%
Shell 7,11%
| | Redhat RPM
C++ 7,09% 21.29%
Debian DEB TR
64,70%

C 69.76%
Figure 8.9: Distribution of links to source code and software.

Note that the number of files containing software packages for Linux disiritts doubles the one for
Windows software; the explanation is that in Linux an application is usually deewbof several packages.
Nevertheless, this reflects a comparable level of availability of softwareagas for both platforms.

Software repositories are usually mirrored at several locations, angréiralence of mirrors on the
Web is in general very high, but the method for avoiding duplicates explam&ection A.5.2 (page 163)
worked very well in removing these mirrors, as we only have 6% of dupligates.

8.3.10 Compressed files

We found links to 370,000 files with extensions used for packed or cosguidBes, and their distribution is
shown in Figure 8.10.

HQX/SIT 0.15%
Z 0.24%

RAR 0.34%
TAR 6.14%

ZIP 21.64%

GZ 71.50%

Figure 8.10: Distribution of links to compressed files.

The &Z extension, used in the GNgki p program, is the most common extension. Note that in this

132

case these files probably include software packages that are no¢daonifrigure 8.9.

8.4 Web site characteristics

8.4.1 Number of pages

We observed an average of 67.1 pages per Web site, but the mode ismmallgr than that. The distribution
of the number of Web pages on Web sites is very skewed, as shown iBiddr, following a Zipf’s law of
parameter-1.77.

2 519 T 01 “kIx"1.77 i [50,500] -
[} :
= 0.8 4 o
s o7/ £ 00l
S 06 5
5 05 S 0001}
c 0.4 g
2 03 g
§ 0.2 - le-04
L 0.1 -
0 1e-05 : e :
0 0.10.20.30.40.50.60.70.80.9 1 1 10 100 1000 10000100000
Fraction of Web sites Number of documents

Figure 8.11: Pages per Web site.

There are many domain names that are registered with the sole purposergfirg the name for later
use. For instance, only half of the registered domain names untdrave a Web site, and from those, about
half have only one page, so only about a quarter of the Web sites qrerphb sites with at least two pages.
Although the number of Web sites on the Chilean Web has doubled in the lastytbmes, the fraction of
Web sites with just one page remains constant.

On the other end, there are very large Web sites. The top 10% of the Webaitain over 90% of the
Web pages.

8.4.2 Page size

The average size of a complete Web site, considering only HTML pagebpig 4.1 Megabytes (we do
not know the total amount of information on the Web site, as we did not downtudtimedia files). The
distribution of the size of Web sites in terms of bytes is also very skewedndsecseen on Figure 8.12. It
is even more skewed than the distribution of the number of pages, as the%opf Meb sites contain over
95% of the total page contents in bytes.

133

0.1

K/x*1.41 in [1,100] -

0.01}

0.001

Fraction of sites

Fraction of content
eNolololololoNoNe]

0.0001 |

ORrNMwhuUuiooN®OR

0 0.10.20.30.40.50.60.70.80.9 1 1e-05

10 100 1000

Fraction of Web sites Raw content length in MB

Figure 8.12: Page contents per Web site.

The distribution of the page sizes suggests that using the schemes far geoperation, presented in

Chapter 6, with just a few large Web sites could be very efficient.

8.4.3 Maximum depth

As defined in Chapter 5, the home page of a Web site is at level 0, and theflayeage is the shortest path

from that page to the home page of its Web site.

Most of the Web sites we studied are very shallow, as shown in Figure 8H8average maximum

depth of a Web site is.5.

0.9
0.8
0.7
0.6

0.4
0.3
0.2
0.1

Fraction of Web sites

//

//

/

0.5 4

012345678910 12314
Maximum depth

Figure 8.13: Cumulative Web site maximum depth.

The distribution of the maximum depth of Web sites is further evidence in fdwshat is proposed in

134

Chapter 5, namely, downloading just a few levels per Web site.

8.4.4 Age

We measured the age of Web sites, observing the age of the oldest agst page, as well as the average
age. The age of the oldest page is a upper bound on how old the Web aitd the age of the newest page
is a lower bound on how often the Web site is updated. The results are ghéigure 8.14.

0.7 , |
) Newest page-------

0 0.6 %‘}C;«‘ Average page-——-
2 Oldest page——
5 0.5 r\}
S 04
[
2 03}
@
5 ooo02¢

0.1t

0 . \ .

Age in years

Figure 8.14: Web site age.

According to this figure, about 55% of the Web sites were created this g:edrmabout 3/4 of the Web
sites in the last 2 years. This implies that for obtaining a large coverage itoaaaop-level domain, it is
necessary to obtain the most recently registered domain names frequently.

8.5 Links

8.5.1 Degree

The distribution of links is skewed, with very few pages having large amafriisks. The distribution of
in-degree is much more skewed than the distribution of out-degree, as shdigure 8.15: having a Web
page with a large in-degree is much more difficult than having a page withedaitedegree.

The distribution of out-degree is similar to the distribution of page-sizes, &nd thindeed a correlation
between both, as a page cannot have too many links if it is too small, as sh&iguie 8.16.

135

o 1 I ——— 0.%/
5 0.9 g
@ 0.8 (=) 0.01+
° @
s 0.7 Q
o 06 5 0.001 ¢
> 0.5 c
T 04 S le-04f
S 03 g
E 02 I 1le-05|
o 01 -
0 le-06 : : S
0 0.10.20.30.40.50.60.70.80.9 1 1 10 100 10001000000000
Fraction of documents Number of incoming links
(O]
e 3] » O-hxn3 77 [90,110]
g 038 S 001}
= 0.7 Q
© 06 ‘5 0.001 ¢
¢ 0.5 c
S 04 S 1le-04;
S 0.3 S
1S 0.2 o 1le-05+
3 o1
0 le-06 : :
0 0.10.20.30.40.50.60.70.80.9 1 1 10 100 1000
Fraction of documents Number of outgoing links

Figure 8.15: Distribution of in- and out-degree.

kY

£ 1000

(@)

=

S 100

5

o

o 10 t

(O]

o]

£

>

Z l n L
0.1 1 10 100

Content length in Kilobytes

Figure 8.16: Content length vs number of outgoing links.

8.5.2 Link scores

We compared the distributions of Pagerank [PBMW98], and a variationeofith'S algorithm [Kle99], in
which we use the entire Web as the expanded root set (this can be sestatis version of HITS).

The distribution of link scores is shown in Figure 8.17.

As Pagerank is calculated using random jumps to other pages, evenvitigesry few links have a
“parasitic” Pagerank value (no page has zero probability) that is loveer 2fN, whereN is the number of
pages.

On the other hand, a page needs “good” links (out-links to authorities irageaf hubs, in-links from

136

Cumulative Pagerank

Cumulative global authority score Cumulative global hub score

hubs in the case of authorities) to have a non-zero value. Only 12% e§eye a non-zero hub value and

000000000

ORrNwhUION®OR

0 0.10.20.30.40.50.60.70.80.9 1

Fraction of documents

COO0O000000
OSRrMvwhuoo~NLOR

o

0.05 0.1 0.15
Fraction of documents

0.2

COO0O000000
ORrNMwhuUud~NLOR

0

0.05 0.1 0.15
Fraction of documents

0.2

Fraction of pages Fraction of pages

Fraction of pages

0.01
0.001 ¢
le-04 +
le-05¢

%

%

A A w—

1e-06

le-0&e

-0Te-Ofie-0%e-00.0010.01

Page rank

0.01 i~
0.001 ¢
le-04 ¢

le-05} <

?{/%(’1.83 in [5e-6,Se_5] ,,,,,,,,,,,,,,,,

le-06 e :
7 1e-06 1le-05 1e-04 0.001

le-0

0.0

Hub score

0.001 ¢

le-04 ¢

le-05}

le-06

K/x11.87 in [1e-6,1e-4]

le-G&

-(e-Ge-0ke-11000.010.1

Auth score

Figure 8.17: Distribution of Pagerank, global Hubs and Authority scores

only 3% of pages have a non-zero authority value.

137

8.5.3 Links to external domains

We found 2.9 million outgoing external links, i.e.: links that include a host namie @eter discarding
links to other hosts inCL we obtained 700,000 links. The distribution of links into domains for the top 20
domains is shown in Table 8.2.

Top level domain Percent of links Top level domain Percent of links
COM 65.110% PE - Peru 0.558%
ORG 11.806% ES - Spain 0.494%
NET 8.406% FR - France 0.464%
DE - Germany 1.621% JP - Japan 0.462%
MX - Mexico 1.059% NL - Netherlands 0.444%
BR - Brazil 0.977% IT - ltaly 0.431%
AR - Argentina 0.846% VE - Venezuela 0.400%
CO - Colombia 0.809% TW - Taiwan 0.382%
UK - United Kingdom 0.644% SG - Singapur 0.371%
EDU 0.609% KR - Korea 0.370%

Table 8.2: Fraction of links to external domains, top 20 domains

Most of the countries in the table are Latin American countries, but theredsodinks to large domains
such as COMor . DE. We took data from the exports promotion bureau of Chile, “ProChile"JR}aegarding
the volume of exports from Chile to other countries, and we compared this weithumber of links found.
We took the top 50 countries that receive more exports from Chile. The-th8¥ch is the largest destination
of Chilean exports— was taken as tt@Mdomain. The results are shown in Figure 8.18.

There is a relationship between number of outgoing links and exports voldime.most important
outliers are Asian countries, the outliers above the line have a high volumeatte but few links, probably
because of a language barrier.

8.6 Links between Web sites

In the following, we consider links between Web sites. A link between two Web mepresents one or many
links between their pages, preserving direction. Several links betwaggesre collapsed to a single link
between Web sites, and self-links are not considered.

A summary of the characteristics of the links found is presented in Table 8.3.

138

10000 -

— k*xr0.42
0
S
= pe COom®
= 1000 ¢ Eét |
g a0, T e _
Q- ® o ° J
x o o o o
L e
R ®SG,ID
10 -

1 10 100 1000 10000100000
Number of external links

Figure 8.18: Relationship between number of external links from Chilé&b site and exports
from Chilean companies to the top 50 destinations of Chitequorts.

Table 8.3: Summary of characteristics of links between Web sites.

Downloaded Web Sites 49,535

At least one in-link 17,738 36%
At least one out-link 13,820 28%
At least one in-link or out-link 23,499 47%

8.6.1 Degree in the Web site graph

The distribution of in- and out-degree also reveals a scale-free netaerkhown in Figure 8.19. The
cumulative graphs consider only the Web sites with at least one in- or outelggectively.

139

Cumulative in-degree

Cumulative out-degree

COO0000000
ORrMvwhuiooNLOR
—

0 0.10.20.30.40.50.60.70.80.9 1
Fraction of documents

——

COO0000000
ORrMvwhuioo~NLOR
—

0 0.10.20.30.40.50.60.70.80.9 1
Fraction of documents

Fraction of sites

Fraction of sites

0% x02.01 in [10,100] ———
001}
0.001}
1e-04+
1e-05 ‘ il
1 10 100 1000

Number of external incoming links

O 195 in [16,100]
001}

0.001 ¢

le-04+

1le-05

1 10 100 1000 10000
Number of external outgoing links

Figure 8.19: Distribution of in- and out-degree in Web sites.

140

8.6.2 Sum of link scores

We studied the link scores presented in Figure 8.17, and summed them byt¥¢ed ke result is shown in
Figure 8.20.

I=
5 1 0.1
() .
2 09 — "
o 0.8 I 0.01+¢
© 0.7 2 i
£ 0.6 / © 0.001
7 0.5 § le-04¢
() 0.4 8
£ 03 g 1le-05}
= 0.2 L .06 |
E 02 le-06
3 0 le-07 T
0 01 02 03 04 05 le-(R:-(&-0e-0e-@000.010.1

g Fraction of documents Sum of pagerank
& 1 0.001
g 0.9 @
I o3 £ 1e-04}
e 06 S
3 0.5 S le-05¢
o 04 =
= 0.3 ©
= = le-06; -
] 0.2 - L
= 0 le-07 : : : : :
2 0 01 02 03 04 05 le-01e-0fe-0%e-008.0010.01 0.1
§) Fraction of documents Sum of hub score
2 1 0.001
g o8 8 Loos
Z 07 @ e
S 0.6 o

0.5 S le-05¢
% 0.4 = ,

0.3 IS
o = le-06}
= 0.2 L
g 0 le-07 : : : : :
3 0 01 02 03 04 05 le-0Te-0fe-0%e-08.0010.01 0.1

Fraction of documents Sum of authority score

Figure 8.20: Distribution of Pagerank, global hubs and authority scaréhe graph of Web
sites.

141

8.6.3 Most linked Web sites

The most linked Web sites on the Chilean Web are listed in table 8.4. There is atkanyg presence of
government-related Web sites in the top places, as well as universities.

Site name Site type Number of links
hits.e.cl Access counter 675
www.sii.cl Government (internal revenue service) 647
www.uchile.cl University 595
www.mineduc.cl Government (education) 513
www.meteochile.cl Meteorology Service 490
www.emol.com Newspaper 440
www.puc.cl University 439
www.bcentral.cl Government (bank) 404
www.udec.cl University 366
www.corfo.cl Government (industry) 354

Table 8.4: Most referenced Web sites, by number of in-links in the grafp¥veb site links.

8.6.4 Strongly connected components

We studied the distribution of the sizes of strongly connected componen® (@Che graph of Web sites.
A giant strongly connected component appears, as observed bgrxoal. [BKM T00]. This is a typical
signature of a scale-free network. The distribution of SCC sizes ismethén Table 8.5 and Figure 8.21,
here we are considering only Web sites with links to other Web sites.

142

Fraction of SCCs

Component size

Number of components

© 00 N O O A WD

10
5,202

17,393
283

(Giant SCC) 1

Table 8.5: Size of strongly connected components.

0.1¢

0.01

0.001

le-04

1le-05

o Giant SCC

KIx"4.05in [2,10] —

Vi 1

1

10 100 1000 10000

Strongly connected component size

Figure 8.21: Distribution of strongly connected components.

143

8.6.5 Web links structure

In [BYCO01] we extended the notation introduced by Brodeal. [BKM *00] for analyzing Web structure,
by dividing the MAIN component into four parts:

(e) MAIN-MAIN, which are sites that can be reached directly from thecimponent and can reach
directly the OUT component;

() MAIN-IN, which are sites that can be reached directly from the IMponent but are not in MAIN-
MAIN;

(g) MAIN-OUT, which are sites that can reach directly the OUT componerttake not in MAIN-MAIN;

(h) MAIN-NORM, which are sites not belonging to the previously defingidc®omponents.

Note that the Web sites in the ISLANDS component are found only by directlyssing the home page
of those Web sites. This is possible because we had a complete list of tHenegjidomains undercl at
the time of our studies. The distribution of Web sites into components is shownureR8g22. This structure
evolves over time, as studied in [BYPO03, BYPO04].

Component name Size

MAIN _NORM 2.89%
MAIN _MAIN 3.16%

MAIN _IN 1.20%
MAIN _OUT 3.26%
IN 7.23%
ouT 18.15%

TENTACLES-IN 2.75%
TENTACLES-OUT 4.23%
TUNNEL 0.33%
ISLAND 56.81%

TENTACLES - IN TENTACLES - OUT

Figure 8.22: Macroscopic structure of the Web.

144

8.7 Comparison with the Greek Web

We seek to understand to what extent the studies of the Chilean Webemwripotiser subsets of the Web.
Dill et al. [DKM *02] have shown that the Web graph is self-similar in a pervasive andtsbase. We
compared some characteristics of the Chilean and the Greek Web, includigetihgraphs but also other
properties such as size or number of pages. The pages for this stuelypktained simultaneously on the
Greek and Chilean Web domains during January 2004.

We downloaded pages using a breadth-first scheduler for up to 5 fevdligamically generated pages,
and up to 15 levels for static, HTML pages. We limited the crawler to 20,000sppge website; and
considered only pages under tigg and. cI domains.

Both countries are comparable in terms of the number of pages, but hayediffanences in terms
of language, history, economy, etc. Table 8.7 summarizes information titmpage collection, as well as
some demographic facts that provide the context for this section.

Greece Chile

Population [Uni02] 10.9 Million 15.2 Million
Gross Domestic Product [The02] 133 US$bn. 66 US$ bn.
Per-capita GDP, PPP [The02] 17,697 US$ 10,373 US$

Human development rank [Uni03] 24P 43N

Web servers contacted 28,974 36,647
Pages downloaded 4.0 Million 2.7 Million
Pages with HTTP OK 77.8% 78.3%

Table 8.6: Summary of characteristics.

8.7.1 Web pages

Figure 8.23 shows the depth at which the pages of the collection were;foatedthat 5 is the limit we set
for dynamic pages, as dynamic pages grows exponentially with depth.igthibution is almost identical.

Figure 8.24 shows the distribution of HTML page sizes, not consideringesjaghowing a peak be-
tween 10 and 15 Kilobytes. The right-tail follows a power-law similar to previ@sults, and both distribu-
tions are very similar.

Figure 8.25 plots the number of pages per website. This has a very sHestritolition, as few websites
account for a large portion of the total web; so we have plotted this in logdatg.

145

0.35
0.3+ Chile ———
0.25
0.2}
0.15}
0.1}

005} ./

0

Fraction of pages

o

0 2 4 6 8 10 12 14
Page depth

Figure 8.23: Comparison of page depth, 1 is the page at the root of therserve

0.1
0.01+/

0.001 ¢

Fraction of pages

le-04 ¢

1e-05 :
1 10 100

Size in Kilobytes

Figure 8.24: Comparison of the distribution of page size in Kilobytes.

8.7.2 Links

Figure 8.26 shows that these two sub-graphs of the web have thesetehiatics, revealing the existence
of self-similarities. The power law parameter depends a lot on the rangat@fuded. Taking degrees of
at most 350, we obtain -2.02 and -2.11 for in-degree, and -2.17 andl f&.4ut-degree; for .GR and .CL,
respectively. Discarding degrees smaller than 50, the parameterssgetoe2.3 and -2.8 for in-degree and
out-degree. This should be compare with the results in [K&R that found -2.1 and -2.7, respectively, for
200 million pages in 1999.

The distribution of out-degree is different, as the in-degree in many cefiests the popularity of a
web page, while the out-degree reflects a design choice of the page maintliso, it is much easier to
have a page with many outgoing links than one with many incoming links.

For the graph components, we use the bow-tie structure proposed tgrBroal. [BKM™00]; but we

146

Fraction of sites

le-04 ¢+

1e-05

0.1}
0.01¢

0.001 ¢

1 10 100
Number of documents in site

Figure 8.25: Comparison of the distribution of the number of pages persiteb

1
n
Q
o
©
o
©
c 0.01}
§e)
3]
©
o 0.001 ¢
le-04
1
3
= 0.1;
a
ks
c 0.01¢
§=)
©
]
i 0.001 ¢}

le-04

0.1¢

1 10 100
Number of incoming links

Greece
Chile ——

1 10 100
Number of outgoing links

Figure 8.26: Comparison of the distributions of in-degree and out-degre

considered only links between different websites, collapsing all thespafgeewebsite to a single node of the

graph. We show the relative size of components in Figure 8.27.

147

Note that that th&Rl N (the giant strongly connected component) seems to be larger in the Grbek we
in expense of theSLAND component - this can be an indicator of a better connected Web, althougtetie s
for the Chilean crawling had more islands.

100%

90 %

80 %-

70%

‘ [] TENTACLE IN

60% WN

50 % | i | . MAIN

EouT

40% ; :- —— |[J TENTACLE OUT
30% ==

0% ! .. |

10% ! -

0%

Chile ' Greece

Figure 8.27: Comparison of the relative size of graph components.

We also studied the relationship of the collections with other top level domaiestiefl cultural and
economic relationships. The most linked domains (COM, ORG, NET, etc.) qaalg important in both
collections, but there are differences which are presented in Tabla\hile the top linked Web sites for
Greece are in Europe and Asia, for Chile they are mostly in America.

8.8 Conclusions

In this chapter, we have analyzed several characteristics of a lamyg@esaf the Web, and most of those
characteristics suggest a distribution of quality that is very skewed. Thyisad for Web search, because
only a few of the Web pages have some relevance, but this is also badeforck&iwling, because it is

necessary to download large amounts of pages that are probablyanelev

World Wide Web users have a certain perception of how the World Wide Webhis perception is
based on what they see while interacting with the Web with the usual tool: a Wfelsdr. The behavior of
different users involves different parts of the Web, but in most casedimited to a few highly important
Web sites with topics such as news, shopping or Web-based e-mail.

Most users do not go too deep inside Web sites. This means that therewsarts or millions of pages
that are visited very rarely, or that are not visited at all. When chaiaictgithe Web, we must forget what

148

Greece Chile
COM 49.2% COM 58.6%
ORG 17.9% ORG 15.4%
NET 8.5% NET 6.4%
Germany 3.7% Germany 2.6%
United Kingdom 2.6% | United Kingdom 1.4%
EDU 2.6% EDU 1.3%
TV 1.3% Mexico 1.2%
Russian Federation 1.3% Brazil 1.1%
Taiwan 1.1% Argentina 0.9%
Netherlands 0.9% Spain 0.9%
Italy 0.8% Japan 0.6%
GOV 0.6% France 0.6%
Norway 0.6% Netherlands 0.6%
France 0.5% Italy 0.6%
Canada 0.5% Australia 0.6%

Table 8.7: Comparison of the most referenced external top-level dosai

we have seen while browsing Web pages, because what we see tlar@glhbrowser is just the surface of

something much deeper. For instance, there are very large and verypsiged, pages with thousands of
in-links and pages with only one, and so on.

Our results also show a dominance of standard formats such as PDF degtaand open source tools
such as PHP and GZIP, which is quite natural given the open nature Wfehe

149

Chapter 9

Conclusions

During this thesis, we studied Web crawling at many different levels. Our oigattives were to develop a
model for Web crawling, to study crawling strategies and to build a Web cramf@ementing them. This
section points out what we have done and what could be done as futtke w

The next section summarizes our contributions, Section 9.2 describes satabérgs for future work,
and Section 9.3 discusses open problems for Web crawling.

9.1 Summary of our contributions

This thesis dealt with Web crawling from a practical point of view. From tlisipof view, we worked in a
series of problems that appeared during the design and implementation &f eravder.

We started by describing Web crawling in the context of information retrigmdl summarizing rele-
vant literature on the topic. Although there are many studies about Wethsé&#eb crawler designs and
algorithms are mostly kept as business secret, with some exceptions (@)apter

Our model divides the problem of Web crawling into short-term and long-techeduling. We ex-
plained why this separation is possible and how we can exploit it for effi¥i@ip crawling, by generating
batches of pages using a long-term scheduling policy, and then rargrdisese batches to apply a short-
term scheduling policy. The long-term scheduling is related to page qualitle the short-term scheduling
is related to network efficiency (Chapter 3).

We also proposed a better integration between the Web crawler and toé tiessearch engine, and a
framework for measuring the quality of a crawl. Within this framework, wesifeesl several existing Web
crawlers according to the relevance they give to different paramdters snodel (Chapter|3).

Regarding page quality, we compared several scheduling algorithmafptéom scheduling, and we
found a very simple and fast strategy for downloading important paglysrethe crawl. We ran experiments

150

in both a simulated and a real Web environment for proving that this strategyyctessful. For short-
term scheduling —network efficiency— we showed the effect of dowdihgaseveral pages using the same
connection and explained why a long waiting time between accesses to pahesame server decreases
crawling efficiency (Chapter 4).

It become clear very quickly that if the crawler downloads dynamic pagesttie space of URLs to
download from is practically infinite. In this context, it is important to know wi@stop a crawl. Instead
of setting and arbitrary crawling depth, we studied this problem by estimatingstiraate the value of the
pages that were not crawled. To do this, user behavior was studiedadeled using a Markov chain created
from data from actual Web sites. The conclusion was that users etipftgare in general very shallow, and
we were able to set an appropriate crawling depth (Chapter 5).

To improve freshness in the search engine, there are a number of dboléeb server administrators
can take. We proposed and compared several cooperation schamWsldcservers and Web crawlers,
including polling and interrupt versions for them. These cooperation schearehelp a Web crawler in
detecting changes in Web sites, and lower the network usage of the crgndicgss, which is beneficial for
both the search engine and the Web site (Chapter 6).

We implemented a high-performance Web crawler in C/C++. This crawler impksntiea schedul-
ing algorithms proposed in this thesis, and serves as a proof of cormepefcooperation schemes. Our
implementation is publicly available as it is released under the GNU public licerigs Web crawler can
efficiently download several million pages per day, and can be useddbrs@arch and Web characterization
(Chapter 7).

We downloaded and analyzed the Chilean Web using our crawler, extrataitistics on HTML pages,
multimedia files, Web sites and link structure. We also used the crawler forldaging the Greek Web and
compared both datasets, finding that despite large differences in thetooinbeth countries —for instance,
the GDP per capita of Greece doubles the one of Chile, as well as the nofpiagres— both Web collections
are very similar. (Chapter 8).

During the crawling processes that we carried out, we discoveredtadied several practical issues
that arise only after large crawls. Those issues are mostly anomalies in thenempégions of the underlying
protocols that form the Web, and must be taken into account when devgkp\Veb crawler (Appendix A).

9.2 Future work

As most research, this thesis opens more problems than it solves. Revigwar work and ourselves found
several avenues for future work. We consider the following as the nmas:o

Validating the collection The Chilean Web with its 3.5 million pages represents 1/1000 of the World Wide
Web. We have been studying this collection since 2000, and the distributgmveral variables seems

151

very similar to the data published for other samples of the Web, but this sheuksted with other
collections.

A related question would be if the Web is a representative collection of text. aflwer given by
Kilgariff and Grefenstette [KG04] is very pragmatical:

“The Web is not representative of anything else. But neither are ottrpoa, in any
well-understood sense.”

Considering the contents of Web page®Besides checking for duplicates, we largely ignore the text of
pages. This is done on purpose: we wanted to study only links to use therdegendent infor-
mation, which can be combined later with other evidence.

In particular, we think that the methods of focused crawling [CvD99], iictvla crawler is directed
to pages orspecifictopics based on properties of the text, can be adapted to direct the ctawler
interesting pages aall topics.

Developing complex models of user behavioThe models of user behavior we presented in Chapter 5
were chosen for their simplicity. A more complex model would be a model with menmomhich the
probability of users following a link depends on their previous actions. ®ve lobserved that this is
indeed the case, because users that go deeper into the Web site hdver iagability of continuing
to follow links. We also pointed out that user behavior in Blogs is differea thn other sites.

Testing short-term scheduling strategiesWe have focused mostly on long-term scheduling strategies, al-
though we made experiments on short-term scheduling and described ti@&mapier 4. The most
important issue would be to implement persistent connections in the Web griodewnload several
pages from the Web site without re-connecting. In theory, this has a samifpositive impact on Web
crawl, but further testing is required.

Continuous crawling We focused mostly in a “crawl-and-stop” type of crawl, in which we onlyndr@ach
page once. Our crawler can also continuously check pages for gpdaiag the value function to
decide when to check for a page for changes, and when to downl@agages. In this context, the
measure of importance is not the time it takes to complete the crawl, but the @versigness and/or
the average quality when a stationary state is reached. This is also relatedgorenkow good are
the change prediction in a real Web environment.

Benchmarking Measuring the efficiency of a Web crawler —considering only short-satmeduling —is not
an easy task. We need a framework for comparing crawlers that asdourthe network usage, the
processing power required, and the memory usage. It would be goadeémhmeasure that allows us
to compare, e.g., 30 pages per second in a 1GHz processor with 1Gb RRAKMOpages per second
in a 800MHz processor with 640Mb RAM. A more important problem is that ngtwonditions vary
so for testing different Web crawlers we must consider the time of the dayonk capacity, etc.

152

Finding combined strategies Specifically the best parameters for the manager program, in terms of the
importance that should be given to intrinsic quality, representational qualityrashness. We also
consider that the scheduling policies should adapt to different Web aitélspur model provides a
framework for that kind of adaptability.

Exploiting query logs for Web crawling The usage of user query logs in a search engine for guiding a Web
crawling is an important step in integrating the collection and search praceEke query logs can
be used to refresh frequently returned pages faster, so the crafvistres the active set of the search
engine more often. Moreover, the query terms used in Web search aavelepriority, so the Web
crawler scheduling could be biased toward pages that contains thetguesy/that are being queried
more frequently by the search engine’s users.

9.3 Open problems
The importance of a good crawler strategy depends on the balance béhgse quantities:

1. The total amount of information available on the Web.
2. The amount of bandwidth available for the Web crawler.

3. The amount of good information about specific topics on the Web.

Web search is difficult today because the Web is very large, the bandavidiflable at most locations is
relatively small, and good pages are also relatively scarce. The thaeitips are very dynamic, and their
evolution is very difficult to predict. For instance, there is no clear edgitaf a “Moore’s law” for network
connectivity. Thus, we do not know if the problem of keeping the repositba search engine is going to
get easier or harder.

It is likely that Web crawling continues to be a difficult problem, at least duthe next years, and
we expect several challenges. Multimedia information such as digital ptaptioigs and recordings could
account for a larger proportion of the Web content, and the number bfpdisting in Blogs will be larger
than the number of Web pages, further reducing the signal-to-noise fatie dVeb. Finally, pages with
semantic markup could become a significant fraction of Web pages, radibalhging the problem of Web
search.

153

Appendix A

Practical Web Crawling Issues

When we tested our implementation, which is described in Chapter 7, we foahth#re were several
problems of Web crawling that did not become evident until a large crawlexacuted. Our experiences
arise from several crawls of the Greek, Spanish and Chilean Weabdaaut during the this thesis.

We are interested in documenting these problems for two reasons:

e To help other crawler designers, because most of the problems wedoeinelated to the characteris-
tics of the Web, independent of the Web crawler architecture chosen.

e To encourage Web application developers to check their software afiguw@tions for compliance
to standards, as this can improve their visibility on search engine’s resdltatact more traffic to
their Web sites.

The rest of this chapter is organized as follows: Section A.1 deals with rlefwoblems in general.
Section A.2 deals with more specific problems with massive DNS resolving. 8&ctopresents the prob-
lems of dealing with wrong implementations of HTTP. Regarding the server-Sitgion A.4 deals with
bad HTML coding, Section A.5 with problems in the contents of the pages, ectib8 A.6 with difficulties
arising from the programming logic of some Web sites.

A.1 Networking in general

An estimation for the cost of an entire crawl of the World Wide Web is abou$US Million [CCHMO04],
considering just the network bandwidth necessary to download the,mm#ds very important to use the
network resources efficiently to maximize the crawler throughput and awasting the allocated bandwidth.

154

A.1.1 Variable quality of service

One of the most challenging aspects of Web crawling is how to download ffiaige multiple sources in a
stream of data that is as uniform as possible, considering that Wely sespense times are very variable.

Web server up-time cannot be taken for granted, and it is usual to filds@fgers that are down for a
long time, even days or weeks, and re-appear later. This is why sometigsbjdges” are called “comatose
pages” [Koe04]. If the Web crawler aims for a comprehensive cgeedd the Web, it should consider that
some of the pages which are not available now, could become available utuhe. f

Recommendation:the crawler should re-try each Web page a number of times if the page is thevn
interval should be several hours. We used 12 hours as the default).

A.1.2 Web server administrators concerns

Web crawlers prompted suspicion from Web site administrators when theggpeared, mostly because of
concerns about bandwidth usage and security, and some of thosarreelace still in place today. In our
experience, repeated access to a Web page can trigger some alarm¥\et therver, and complaints from
its administrator.

We consider that the two most important guidelines given by Koster [Kca@3]

o A crawler must identify itself, including an e-mail address for contact, ores@/eb site administrators
will send complaints to the listed owner of the entire originating network segment.

e A crawler must wait between repeated accesses to the same Web site.

These guidelines are even more important if we consider that many hoss menimé to the same |P,
usually belonging to a Web hosting provider, and in general severalsitebare hosted by a few physical
servers. Being unpolite with a Web site can result in being banned fronealVéb sites hosted by the same
ISP.

Recommendation: the crawler should avoid overloading Web sites, and it must provide anile-ma
address in thér omHTTP header, and/or a Web site address as a commentlis¢heAgent HTTP header.

A.1.3 Inconsistent firewall configurations

Some Web servers are behind a firewall, and we have found firewdijooations that we did not expect.
We detected cases when ttennect () call succeeds, i.e. a TCP connection is established withgfoof
the Web server, then thvei t e() call succeeds, but there is no answer from the Web server.

155

This appears to be a problem with data packets to §btheing dropped, but connections accepted,
which is not a consistent configuration. This caused some threads ditbester to hang up indefinitely in
one of our early versions.

Recommendation: all network operations should have a timeout. The crawler must be prefeed
cause at any point of the download operation it could stop receiving data

A.2 Massive DNS resolving

A.2.1 Crashing your local DNS servers

We found that some of our local DNS servers crash under heavy,loedsad of just queuing or denying
connections. From the Web crawler’s point of view, a DNS failure of tleallservers is a critical situation
because, if after repeated attempts it cannot get an IP address fmotiog, it has to assume the Web site
does not exist, and if all DNS lookups are failing, this can make an entivd aseless.

Recommendation:local DNS servers should be tested for their response to high work. [dads/Neb
crawler should detect a condition in which, e.g.: 90% of DNS lookups faileithd one cycle, and stop under
this condition. The Web crawler also could avoid resolving more than a finethar of domain names at
the same time and with the same DNS server.

A.2.2 Temporary DNS failures

This is related to the quality of service of Web servers themselves, as fdr amanizations typically
the Web server and the DNS server are both under the same administratiemeamin the same physical
computer. A DNS failure (e.g.: a DNS server crash) is very likely to go tioed, because of the default
caching policy: one week. People who visit the Web site often will not notiaesthimething is wrong until
several days have passed.

Recommendation:if high coverage is desired, at least one attempt to resolve a DNS renouttisbe
done one week after a DNS failure. However, it can also be argued Whab site with DNS problems has
a lower quality than other Web sites and should not be added to the collectionr model, Web server
response quality can be used as a component of the intrinsic quality of pafeb

A.2.3 Malformed DNS records

DNS report/[Per04] is a tool for analyzing DNS records. Its authpores that a significant fraction of DNS
records present some problems, ranging from inconsistencies in thkergenbers to misspelling errors or
malformed responses.

156

Recommendation: DNS resolvers should be tolerant to errors in DNS records, and trytrieve the
IP address for a host name even if other portions of the record seentsmedf.

A.2.4 Wrong DNS records

Consider the scenario depicted in Figure A.1:

Home page of Home page of

XCorp.com —9;> YCorp.com

DNS record Search results for “xcorp”:

was wrong at

Considered 2 crawling time 1.- [www.YCorp.com]

Welcome to XCorp.com ...

duplicate wh
uplicate when DNS record

crawled again

corrected at 2.-[...]
‘ query time
XCorp.com YCorp.com
DNS record DNS record

Figure A.1: A misconfiguration in the DNS record for “Ycorp.com” resutan the wrong
contents being assigned to its URL.

1. At crawling time, the DNS record fofcor p. compointed to the Website ofcor p. com so the con-
tents of the later were indexed as if their URL wa&®r p. com This DNS misconfiguration can be

accidental, or malicious.

2. When the home page &tor p. comwas downloaded, its contents were found to be a duplicate of

Ycor p. com so the pages ofcor p. comwere not downloaded again.
3. The wrong DNS record ofcor p. comwas fixed later.

4. In the search results, when users search for “Xcorp”, they eanistakenly redirected to the Web site
of “Ycorp”.

Recommendation: it is possible for Web site administrators to avoid these kind of problems by a

careful configuration of virtual hosts. Any access to the IP addreg®dNVeb server that does not contain a
knownHost field in the request, should be redirected to the default virtual hosterefing the later by its

canonical name.

157

A.2.5 Use of the “www” prefix

Due to the usage of thewv prefix for the host part of the URLSs, in most Websites both “www.exampte’.co
and “example.com” names resolve to the same IP address, and have theoséemésc Indeed, we have
found that for many Web site administrators, this is the expected behavenmesusers do not type the full
address when browsing.

However, if the Web site is built using some application that includes small elsanghe pages (e.g.:
the current date and time, or a poll question, or advertising, etc.), the k&fetlec may not be able to detect
that both Web sites are duplicates, and crawl the same contents twice.

Recommendation: we considered thdtt t p: / / ww. exanpl e. conl andhtt p://exampl e. conl are
the same URL.

A.3 HTTP implementations

A.3.1 Accept headers not honored

In some cases, it is impossible to tell the type of a file just by looking at its URmMeSORLs have no
extensions, and some URL have extensions that are ambiguous, e.g.: liiks émding in. exe could be
either links to dynamically generated HTML pages in the server side, or lingsograms that should be
downloaded.

A user agent, such as a Web browser or a Web crawler, can have limgetili#zes and only be able
to handle some data types. If it cannot handle a file (e.g.: an image), thesultstot download it. For
instance, a Web crawler searching only for plain text and HTML padpesild issue a request of the form:

CGET /page.htm HITP/ 1.1
Accept: text/plain, text/htm

This indicates that the Web crawler can only handle plain text or HTML doatsnéccording to the
HTTP specification, “the server SHOULD send a 406 (not acceptagdgonse code” [FGNMI9] when a
valid object of the desired type is not present at the given URL.

Several Web browsers simply issue a header of the farcept: */*, so some Web server imple-
mentations do not check the “accept” header at all. It has somehow legimee, and today a Web server
can send a response with almost any data type.

A related concern is that some Web sites return a header indicating corgentffyML, but the in-
formation returned is a large binary file (such as a ZIP archive, etc.). cidwler can waste bandwidth
downloading such a file.

158

Recommendation: the returnedCont ent - t ype header should always be checked in the downloaded
pages, as it might not be a data type that the Web crawler can handle.adallimit is necessary because
potentially any file type can be returned by the Web server, even when dicgmting HTML content type.

A.3.2 Range errors

To ensure a good coverage of the Web, we must limit the amount of data tteatidoaded from every Web
server. This can be done by limiting both the maximum page size, and the nufiieb@ages that are
downloaded from a single Web site.

We limit page size usualy to a default of 300-400 Kb per Web page. Wedmnthat this should
capture enough keywords to index each document. To inform the Wekrseaf the download limit, we use
the HTTPRange header:

CET /page. htm HITP/ 1.1
Range: 0-400000

However, a few Web sites return a response code 416 (range. &it@have found that these responses
correspond to files that are smaller than the desired size. This is nottodaeeause the HTTP specification
indicates that “if the [second] value is greater than or equal to the duemgth of the entity-body, last-byte-
pos is taken to be equal to one less than the current length of the entityirbloghes” [FGM™99].

Recommendation:in the case of range errors, a second attempt for download could bewithdet
theRange header. In all cases, the Web server may ignore the range, so the&dbranust be prepared to
disconnect from the Web server, or discard part of the contents, sieihver sends a long document.

A.3.3 Response lacking headers

We have found that most Web browsers are very tolerant to strangibelfrom the Web servers. For
instance, we have tested Opera and Internet Explorer against a “duliviaty’server that only sends the
contents of the Web page requested, withstatus line and no heademBoth browsers displayed the down-
loaded pages. The browser Mozilla shows an error message.

Some real Web sites exhibit the same misbehavior as our dummy Web seredabhlp because of
misconfigured software, or misconfigured firewalls. The Web crawleulshbe prepared to receive content
without headers.

A related problem is that of imcomplete headers. We have found, for irsste@gponses indicating a
redirection, but lacking the destination URL.

159

Recommendation: from the point of view of Web crawlers or other automated user agenggspa
from Web sites that fail to comply with basic standards should be considéteder quality, and consis-
tently, should not be downloaded. We consider a lack of responsefseagrotocol error and we close the
connection.

A.3.4 Found where you mean error

It is hard to build a Web site without internal broken links, and the messagensiip Web servers when a
page is not found, i.e.: when the Web server returns a 404 (not foesppnse, is considered by many Web
site administrators as too annoying for users.

Indeed, the default message looses the context of the Web site, so tret&Vatiministrators of some
Web sites prefer to build error pages that maintain visual and navigationsistency with the rest of their
Web sites.

The problem is that in many cases the response for a page that doegst®isgjust a normal redirect
to a custom-built error page, without the response header signalingrtirecendition. Bar-Yosett al.
[BYBKTO04], refer to these error pages as “soft-404”, and obsdhat about 29% of dead links point to
them.

The indexing process could consider a redirect to a “soft-404” @age as a link between the URL in
which the page was not found and the error page, and this can inthesseore of the later.

Recommendation: Web site administrators should configure their Web servers in such a wah¢ha
error messages have the correct response codes signaling theoadidions. Servers can be tested by Web
crawlers issuing a request for a known non-existent page (e.g.iste@URL concatenated with a random
string [BYBKTO04]) and checking the result code.

A.3.5 Wrong dates in headers

A significant fraction of computers are configured to a wrong date, gvtinne, or wrong time zone. These
configurations are sometimes done on purpose, e.g.: to extend the trial peslwareware software.

During Web crawling, we found that 17% of Web servers returned rtentaslification data, dates in
the future, or a date prior to the invention of the Web, as shown in Section(@&y& 128). These wrong
dates affect théast - Modi fi ed field in the Web server response, which in these cases cannot beoused f
estimating freshness.

However, not all wrong dates should be discarded: if a Web serpiiesewith a time stamp in the
future, but just a few minutes or a few hours, we can consider that it iy likat the Web server clock is just
skewed with respect to ours (e.g.: it has the wrong time zone, or it is wroaply s

160

Recommendation:we consider that a last modification date for a Web page older than the9@&isl
wrong and should be ignored. For dates in the future, we considerghiata4 hours can be considered just
a small problem, so those time stamps are changed into the current date. atehie thore than 24 hours
ahead it is ignored. This is depicted in Figure A.2.

Web server time - } } } -

1993 Crawler T+1 day
time (T)

Figure A.2: Diagram showing how we deal with last-modification datedmresponses.

A.4 HTML coding

A.4.1 Malformed markup

HTML coding, when done by hand, tends to be syntactically very relalkxkt HTML coders only check
if the page can be seen in their browsers, without further checkingofoptiance. We have found several
errors in HTML coding, and we have adapted our parser accordifghse errors include:

e Mixing single quotes, double quotes, and no quotes in attributes<éMs: ALT="This is a phot 0"
SRC=' phot o.j pg’ border=1>.
e Mixing empty tags in HTML form (such asBR>) and in XHTML form (such asBR/ >).

e Unbalanced tags, e.ccSMALL>. . . </ SMALL></ B>.

¢ Mixed case in tags and attributes, eg.MG src="...">. For HTML, the tags should be written in
uppercase, and for XHTML, in lowercase.

e Unterminated strings, e.g<l MG ALT="...>. This can be very problematic, because it will cause a
buffer overflow if the parser is not properly written. These unterminatéoing strings can also appear
in HTTP response codes.

Recommendation: as described in Section 7.2.3 (page 117), we use an events-oriersed foarthe
HTML pages, as in many cases it is very difficult to map the Web page to dRoe&Veb site administrators,
the usage of a tool for cleaning markup such as “HTML tidy” [Rag04] soemaged.

161

A.4.2 Physical over logical content representation

The search engine must build an index of the Web pages. This index msigleoonly the text, or it may
also consider the HTML tags by, e.g.: assigning a higher weight to termsrappéasection headers.

However, HTML markup is usually oriented to the visual characteristics efttcuments; consider
this HTML fragment:

<div align="center">l nportant facts</div>
<p>Read this ...</p>

The visual characteristics of the phrase “Important facts” are: |dogersize, red color, aligned to the
center of the page. These visual aspects indicate an important block,dfuethey are not visible by most
search engines.

Recommendation:the following markup should be preferred:

<style>

hl {

font-size: larger;

color: red;

text-align: center

}

</style>

<hl>I nportant facts</hl>
<p>Read this ...</p>

This markup separates content from representation, and visuallyg@edoe same results. For im-
proved maintainability, the style rules can be provided in a separate file.

A.5 Web content characteristics

A.5.1 Blogging, mailing lists, forums

Blogs, Web forums and mailing list archives are large repositories ofrirdtion, comprised of many small
postings by individual users. They can be a useful source of inflsmavhen the topic is not covered
somewhere else; typical examples are technical support messagaly; describing solutions to problems
with very specific software or hardware configurations.

162

However, sometimes individual postings are not as valuable as othes, @ythey are very short, or
lack clarity or factual information. Also, there is a problem with the granulaitthe data, i.e.: a single
posting contains little information, but the complete conversation can be valuable

There is no easy solution for this problem, but as Web sites archivingliseerssions can have hundreds
of thousands of pages, they make even more important the use of a dqealiibieg order to try to download
important pages first.

A.5.2 Duplicate detection

The prevalence of mirrored content on the web is very high. For exgoticates, it is estimated in over 30%
[CSGM99].
We calculate a hash function of the contents of the pages to avoid storirgntieecentent twice. To ac-

count for minor variations in the Web pages, this hash function is calcuétixdthe page have been parsed
so two pages with identical content but different colors or formatting will séldetected as duplicates.

Note that this method only avoids storing the duplicate Web pages, it doesenenpdownloading the
page, and duplicate content can generate a waste of valuable netaoukaes.

Recommendation:in our case, the crawler does not follow links from a Web page if the Wek &=
found to be a duplicate; applying this heuristic, we downloaded just al6wtf@luplicates.

A.6 Server application programming

A.6.1 Embedded session ids

As a way of tracking users, some Web sites embed identifiers in the URLs [dig./ page. htni ; -

j sessi d=09A89732). These identifiers are later used for detecting logical sessions in I&gsemdrom the
point of view of the Web crawler, these session ids are an importantesotiduplicates, because the crawler
cannot accuratelly tell when two pages have semantically the same content.

A Web crawler must consider session-ids. “Unless prior knowledgésdibt is given to a crawler, it
can find an essentialy unbounded number of URLSs to crawl at this ondaiie’ §EMTO04] .

Typical variable names for storing session ids in the URLs include €D, CFTOKEN, PHPSESSI D,
j sessi oni d, etc. These variables are widely used in Web sites, and two pages tbabdilff in the session
id are very likely to hold the same contents.

Recommendation:the crawler has a manually-built list of known session-id variables, arehexer
it detects one, it changes the variable to a null value. We found that thgl€&omwler does not seem
to download any page with a not-null value in tPdPSESSI D variable (verified in June 2004), this can be

163

checked by issuinga | i nurl : phpsessi d query.

A.6.2 Repeated path components

A common mistake when encoding links is to forget to include the root direatagy, referencing/ b/ ¢
when we want to referende/ b/ c. This problem can accumulate, and it is common to find URLs with path
components repeated several times, suc bisc/ ¢/ ¢/ ¢/ ; this is due to dynamic pages in which the author
has mistakenly created a relative link when it should be an absolute link.

These repeated path components usually refer to the same page, araviee downloads repeatedly
the same information.

Recommendation:some crawler implementations, such as CobWeb [dS84} discard repeated com-
ponents in paths, as an heuristic to avoid this problem. Our heuristic of lhmwifog links from duplicate
Web pages helps to avoid this problem, so we do not check explicitly for dlpgath components.

A.6.3 Slower or erroneous pages

Dynamically generated pages are, in general, slower to transfer thanpstgéis, some times by a factor of
10 or 100, depending on the implementation and of caching issues. In seasthkis is because building the
page requires querying different sources of information, and in ates this can be due to a programming
error. A slow page can waste crawler resources by forcing it to keepaection open for a long time.

Recommendation:besides a timeout, a lower speed limit should be enforced by the crawler.

A.7 Conclusions

The practical problems of Web crawling are mostly related to bad implementafisome Web servers and
Web applications. These issues are not visible until a substantial amopage$ have been downloaded
from the Web, and can affect the design of the Web crawler.

Implementing a Web crawler is, in a certain way, like building a vehicle for expiattie surface of
mars: you need to build the vehicle to explore the terrain, but once youtéstesl it, you know more about
the terrain and you have to modify your vehicle’s design accordingly. dhgénse, the wrong implementa-
tions we have presented in this chapter are just constraints that the Wabratasigner must consider: the
Web crawler must accommodate to bad coding in the same way as Web brdasers

However, the lack of good implementations imposes costs on the design of @dl édrapplications.
The idea of standards is to be able to interoperate. If the standars aespetted, then the only alternatives
are either design for the smallest common denominator, or design for aqteopy fixed platform. Both
alternatives are detrimental to the quality of the Web.

164

Bibliography

[ACGM*01] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, AndreagpBlee and Sriram Raghavan.

[AHOO]

[Ail04]

[AM99]

[AOPO3]

[APCO3]

[arc04]
[asp04]
[ava04]

[BA99]

[Bar01]
[Bar02]

[Bar04]

Searching the WebACM Transactions on Internet Technology (TQIT§1):2—-43, August
2001.

Eytan Adar and Bernardo A. Huberman. The economics of wefirg). InPoster Proceedings
of the Ninth Conference on World Wide Walmsterdam, Netherlands, May 2000.

Sebastien Ailleret. Larbin. http://larbin.sourceforge.net/index-eing),ti2004. GPL software.

J. Allen and M. Mealling. RFC 2651: The architecture of the Commmheking Protocol.
http://www.ietf.org/rfc/rfc2651.txt, 1999.

G. Amati, I. Ounis, and V. Plachouras. The dynamic absorbindeifor the web. Technical
Report TR-2003-137, Department of Computing Science, UniversiBlaggow, April 2003.

Serge Abiteboul, Mihai Preda, and Gregory Cobena. Adapii-line page importance com-
putation. InProceedings of the twelfth international conference on World Wide Yeipes
280-290. ACM Press, 2003.

Internet archive project. http://www.archive.org/, 2004.
Microsoft developer network - asp resources. http://msdn.saftroom/asp, 2004.
AvantGO. http://www.avantgo.com/, 2004.

Albert-Laszb Baralasi and Rka Albert. Emergence of scaling in random netwofksience
286(5439):509-512, October 1999.

Albert-Laszb Baralasi. The physics of the wePhysicsWeh.ORG, online journduly 2001.
Albert-Laszb Baralasi. Linked: the new science of networlerseus Publishing, 2002.

Bradford L. Barrett. WebAlizer: log file analysis program. httpafwmrunix.net/webalizer/,
2004.

165

[BBDHOO]

[BCF+03]

[BCGMS00]

[BCS+00]

[BCSV04]

[Ber01]

[BHO8]

[BK97]

[BKM *00]

[BMNO3]

[bot04]

[Bou04]

Krishna Bharat, Andrei Z. Broder, Jeffrey Dean, andrika Rauch Henzinger. A compar-
ison of techniques to find mirrored hosts on the WWWdurnal of the American Society of
Information Sciences1(12):1114-1122, 2000.

Andras A. Bencir, Karoly Csalo@ny, Daniel Fogaras, Eszter Friedman, Tasbabs, Mate
Uher, and Eszter Windhager. Searching a small national domain — a prelymaport. In
Poster Proceedings of Conference on World Wide \Beldlapest, Hungary, May 2003.

Onn Brandman, Junghoo Cho, Hector Garcia-Molina, aa@yanan Shivakumar. Crawler-
friendly web servers. IfProceedings of the Workshop on Performance and Architecture of
Web Servers (PAWSJanta Clara, California, USA, June 2000.

Brian Brewington, George Cybenko, Raymie Stata, Krishna Bhanat,Farzin Maghoul.
How dynamic is the web? IRroceedings of the Ninth Conference on World Wide \Wabes
257 — 276, Amsterdam, Netherlands, May 2000.

Paolo Boldi, Bruno Codenotti, Massimo Santini, and SebastianwaVigbiCrawler: a scal-
able fully distributed Web crawleSoftware, Practice and Experienc@(8):711-726, 2004.

Michael K. Bergman. The deep web: Surfacing hidden valaarnal of Electronic Publish-
ing, 7(1), 2001.

Krishna Bharat and Monika R. Henzinger. Improved algorithorstdpic distillation in a
hyperlinked environment. IRroceedings of the 21st Annual International ACM SIGIR Con-
ference on Research and Development in Information Retripagles 104-111, Melbourne,
Australia, August 1998. ACM Press, New York.

S. Brandt and A. Kristensen. Web push as an Internet Ndiidicsgservice. InW3C workshop
on push technologyBoston, MA, USA, 1997.

Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar RaghaSridhar Rajagopalan,
Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in theBxperiments

and models. IrProceedings of the Ninth Conference on World Wide Vigalges 309-320,
Amsterdam, Netherlands, May 2000.

Sourav Bhowmick, Sanjay Kumar Madria, and Wee Keong Ngtebéng and representing
relevant web deltas in WHOWEDAEEE Transactions on Knowledge and Data Engineering
(2):423-441, 2003.

Botspot. http://www.botspot.com/, 2004.

Thomas Boutell. WUsage: Web log analysis software. http://wwudliczom/wusage/,
2004.

166

[BP9S]

[Bro03]

[BS00]

[BSV04]

[Bur97]

[Buz03]

[BVO04]

[BY03]

[BY04]

[BYBKT04]

[BYCO1]

[BYCO02]

Sergei Brin and Lawrence Page. The anatomy of a large-sgpkrtextual Web search en-
gine. Computer Networks and ISDN SysteB®(1-7):107-117, April 1998.

Terrence A. Brooks. Web search: how the Web has clahimg@rmation retrievallnformation
Research8(3):(paper no. 154), April 2003.

Bettina Berendt and Myra Spiliopoulou. Analysis of navigationavésur in web sites inte-
grating multiple information system3.he VLDB journal (9):56—75, 2000.

Paolo Boldi, Massimo Santini, and Sebastiano Vigna. Do yourtMomake the best: Para-
doxical effects in pagerank incremental computations?risceedings of the third Workshop
on Web Graphs (WAWYolume 3243 ot.ecture Notes in Computer Scienpages 168—-180,
Rome, Italy, October 2004. Springer.

Mike Burner. Crawling towards eternity - building an archive o thiorld wide web.Web
Techniques2(5), May 1997.

Marina Buzzi. Cooperative crawling. Rroceedings of Latin American Conference on World
Wide Web (LA-WEBpages 209-211. IEEE CS Press, 2003.

Paolo Boldi and Sebastiano Vigna. The webgraph framewodin@ession techniques. In
Proceedings of the 13th conference on World Wide ,Weabes 595 — 602, New York, NY,
USA, May 2004. ACM Press.

Ricardo Baeza-Yates. The Web of SpailPGRADE 3(3):82—-84, 2003.

Ricardo Baeza-Yates. Challenges in the interaction of informattnieral and natural lan-
guage processing. Rroceedings of 5th international conference on Computational Linguis-
tics and Intelligent Text Processing (CICLingolume 2945 ofLecture Notes in Computer
Sciencepages 445-456. Springer, February 2004.

Ziv Bar-Yossef, Andrei Z. Broder, Ravi Kumar, anchdrew Tomkins. Sic transit gloria telae:
towards an understanding of the web’s decayiioceedings of the 13th conference on World
Wide Webpages 328 — 337, New York, NY, USA, May 2004.

Ricardo Baeza-Yates and Carlos Castillo. Relating Web chaistate with link based Web
page ranking. IfProceedings of String Processing and Information Retrigpabes 21-32,
Laguna San Rafael, Chile, November 2001. IEEE CS Press.

Ricardo Baeza-Yates and Carlos Castillo. Balancing volumdijtg@ad freshness in web
crawling. InSoft Computing Systems - Design, Management and Applicapages 565—
572, Santiago, Chile, 2002. IOS Press Amsterdam.

167

[BYCO4]

[BYCSJ04]

[BYDO4]

Ricardo Baeza-Yates and Carlos Castillo. Crawling the infinite:\Vifeb levels are enough.
In Proceedings of the third Workshop on Web Graphs (WAMIUme 3243 ofecture Notes
in Computer Scienggages 156-167, Rome, Italy, October 2004. Springer.

Ricardo Baeza-Yates, Carlos Castillo, and Felipe Saint-J@&i Dynamicschapter Web
Dynamics, Structure and Page Quality, pages 93—-109. Springer, 2004.

Ricardo Baeza-Yates and Emilio Davis. Web page ranking usikgglittibutes. InAlternate
track papers & posters of the 13th international conference on World Wiele pages 328—
329. ACM Press, 2004.

[BYdSV'04] Ricardo A. Baeza-Yates, Javier Ruiz del Solar, Rodrigo VerscBarlos Castillo, and Car-

[BYPO3]

[BYPO4]

[BYRN99]

[BYSJCO02]

[CA04]

[Cas03]

[CBY02]

los A. Hurtado. Content-based image retrieval and characterizationemifispNVeb collec-
tions. InThird international conference on image and video retrieval (Cl\flajjes 189-198,
Dublin, Ireland, July 2004. Springer LNCS.

Ricardo Baeza-Yates andBvara Poblete. Evolution of the Chilean Web structure composi-
tion. InProceedings of Latin American Web Conferemzges 11-13, Santiago, Chile, 2003.
IEEE CS Press.

Ricardo Baeza-Yates andafbara Poblete. Dynamics of the Chilean Web structurd?rdén
ceedings of the 3rd International Workshop on Web Dynanpiages 96 — 105, New York,
USA, May 2004.

Ricardo Baeza-Yates and Berthier Ribeiro-Nd#ndern Information RetrievalACM Press
/ Addison-Wesley, 1999.

Ricardo Baeza-Yates, Felipe Saint-Jean, and Carlos Castith structure, dynamics and
page quality. InProceedings of String Processing and Information Retrieval (SRIR&)es
117 — 132, Lisbon, Portugal, 2002. Springer LNCS.

Junghoo Cho and Robert Adams. Page quality: In search ohliased Web ranking. Tech-
nical report, UCLA Computer Science, 2004.

Carlos Castillo. Cooperation schemes between a web serverwaed search engine. In
Proceedings of Latin American Conference on World Wide Web (LA-WiaBgs 212-213,
Santiago, Chile, 2003. IEEE CS Press.

Carlos Castillo and Ricardo Baeza-Yates. A new crawling modePRokter proceedings of
the eleventh conference on World Wide Webnolulu, Hawaii, USA, May 2002. (Extended
Poster).

168

[CCHMO4]

[CCMWO1]

[CDR*98]

[CGMOO0]

[CGMO2]

[CGMO033]

[CGMO3b]

[CGMP98]

[Cha02]

[Cha03]

[Cho0O0]

[cit04]

[CK97]

Nick Craswell, Francis Crimmins, David Hawking, and Alistair Madff Performance and
cost tradeoffs in web search. Rroceedings of the 15th Australasian Database Conference
pages 161-169, Dunedin, New Zealand, January 2004.

Erik Christensen, Francisco Curbera, Greg Meredith Sargiva Weerawarana. WSDL: Web
services description language. http://www.w3.0org/TR/wsdl, 2001.

Soumen Chakrabarti, Byron Dom, Prabhakar Raghavan, Sridghagépalan, David Gibson,
and Jon Kleinberg. Automatic resource compilation by analyzing hyperlinktstel and
associated text. IWorld Wide Web Conferencpages 65—74, Brisbane, Australia, 1998.
Elsevier Science Publishers B. V.

Junghoo Cho and Hector Garcia-Molina. Synchronizing adatato improve freshness. In
Proceedings of ACM International Conference on Management of BIaMOD) pages
117-128, Dallas, Texas, USA, May 2000.

Junghoo Cho and Hector Garcia-Molina. Parallel crawlensPrbceedings of the eleventh
international conference on World Wide Welages 124-135, Honolulu, Hawaii, USA, May
2002. ACM Press.

Junghoo Cho and Hector Garcia-Molina. Effective pagesh policies for web crawlers.
ACM Transactions on Database Syste@®(4), December 2003.

Junghoo Cho and Hector Garcia-Molina. Estimating frequefhcitange ACM Transactions
on Internet Technologyd(3), August 2003.

Junghoo Cho, Hector GaeMolina, and Lawrence Page. Efficient crawling through URL
ordering. InProceedings of the seventh conference on World Wide Bfbane, Australia,
April 1998.

Ben Charny. CNET news: Wireless Web embraces “push”.://nvs.com/2100-1033-
958522.html, 2002.

Soumen Chakrabari¥ining the Web Morgan Kaufmann Publishers, 2003.

Junghoo Cho. The evolution of the web and implications for aremental crawler. In
Proceedings of 26th International Conference on Very Large Dateh@¢L. DB) pages 527—
534, Cairo, Egypt, September 2000. Morgan Kaufmann Publishers.

Cite seer. http://citeseer.nj.nec.com/, 2004.

S. Jeromy Carérre and Rick Kazman. Webquery: searching and visualizing the welgthrou
connectivity. Computer Networks and ISDN Syste2®(8-13):1257-1267, September 1997.

169

[CMRBYO04] Carlos Castillo, Mauricio Marin, Andrea Rdduez, and Ricardo Baeza-Yates. Scheduling al-

[CMS99]

[CPY5]

[CSGM99]

[CvD99]

[Dac02]

[Dav00]

[Dav03]

[dc04]

[DCL*00]

[Der04]

[DFKM97]

[DGMO04]

gorithms for Web crawling. Ii.atin American Web Conference (WebMedia/LA-WPapes
10-17, Riberao Preto, Brazil, October 2004. IEEE CS Press.

Robert Cooley, Bamshad Mobasher, and Jaideep Srigastata preparation for mining
world wide web browsing pattern&nowledge and Information System$1):5-32, 1999.

L. Catledge and J. Pitkow. Characterizing browsing behaviote@world wide webCom-
puter Networks and ISDN Systeri§27), 1995.

J. Cho, N. Shivakumar, and H. Garcia-Molina. Finding reydid web collections. IACM
SIGMOD, pages 355-366, 1999.

Soumen Chakrabarti, Martin van den Berg, and Byron Dom.used crawling: a new ap-
proach to topic-specific web resource discov&lgmputer Networks31(11-16):1623—-1640,
1999.

Lois Dacharay. WebBase. http://freesoftware.fsf.org/wsdba002. GPL Software.

Brian D. Davison. Topical locality in the web. Rroceedings of the 23rd annual international
ACM SIGIR conference on research and development in informatiaavatrpages 272-279.
ACM Press, 2000.

Emilio Davis. Mbdulo de lisqueda en texto completo para la web con un nuevo ranking
esttico, October 2003. Honors Thesis.

Dublin Core Metadata Initiative. http://dublincore.org/, 2004.

Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee @GitesMarco Gori. Fo-
cused crawling using context graphs. Rroceedings of 26th International Conference on
Very Large Databases (VLDBpages 527-534, Cairo, Egypt, September 2000.

Renaud Deraison. Nessus: remote security scanner. http:/essus.org/, 2004.

Fred Douglis, Anja Feldmann, Balachander Krishnamurthy deffrey C. Mogul. Rate of
change and other metrics: a live study of the world wide webUSENIX Symposium on
Internet Technologies and Systemages 147-158, Monterey, California, USA, December
1997.

Michelangelo Diligenti, Marco Gori, and Marco Maggini. A unifietbpabilistis framework
for Web page scoring system3sEEE Transactions on Knowledge and Data Engineering
16(1):4-16, 2004.

170

[DKM T02] Stephen Dill, Ravi Kumar, Kevin S. Mccurley, Sridhar RajagopalanSidakumar, and An-
drew Tomkins. Self-similarity in the welACM Trans. Inter. Tech2(3):205-223, 2002.

[DMPS04] Michelangelo Diligenti, Marco Maggini, Filippo Maria Pucci, andfco Scarselli. Design
of a crawler with bounded bandwidth. Klternate track papers & posters of the 13th inter-
national conference on World Wide Wetages 292—-293. ACM Press, 2004.

[dSVGT99] Altigran Soares da Silva, Eveline A. Veloso, Paulo Braz GolgherthBerA. Ribeiro-Neto,
Alberto H. F. Laender, and Nivio Ziviani. Cobweb - a crawler for thazilran web. InPro-
ceedings of String Processing and Information Retrieval (SPIR&Jes 184-191, Cancun,
México, September 1999. IEEE CS Press.

[Eco02] The Economist. What does the internet look likéfe EconomistOctober 2002.

[Eco03] Umberto Eco. Vegetal and mineral memory: The future of books.
http://weekly.ahram.org.eg/2003/665/bo3.htm, 2003.

[EGC98] R. Weber Edward G. Coffman, Z. Liu. Optimal robot schedulimgvieb search engines.
Journal of Schedulingl(1):15-29, 1998.

[Eic94] D. Eichmann. The RBSE spider: balancing effective searamagweb load. IiProceedings
of the first World Wide Web Conferenégeneva, Switzerland, May 1994.

[EMTO1] Jenny Edwards, Kevin S. McCurley, and John A. Tomlin. Aagttve model for optimizing
performance of an incremental web crawlerPhoceedings of the Tenth Conference on World
Wide Webpages 106-113, Hong Kong, May 2001. Elsevier Science.

[EMTO4] Nadav Eiron, Kevin S. McCurley, and John A. Tomlin. Rankingleb frontier. InProceed-
ings of the 13th international conference on World Wide Welges 309-318. ACM Press,
2004.

[ER60] Paul Erds and Alfred Rnyi. Random graphsPublication of the Mathematical Institute of
the Hungarian Acadamy of Sciené&el17 — 61, 1960.

[Fal97] Sean Falton. Linux threads frequently asked questions. http:/Adpverg/FAQ/Threads-
FAQ/, January 1997.

[FGMT99] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leaag Tim Berners-Lee.
RFC 2616 - HTTP/1.1, the hypertext transfer protocol. http://w3.org/Potstréc2616/-
rfc2616.html, 1999.

[FMNWO03] Dennis Fetterly, Mark Manasse, Marc Najork, and Jan&Viener. A large-scale study of the
evolution of web pages. IRroceedings of the Twelfth Conference on World Wide, \Matpes
669 — 678, Budapest, Hungary, May 2003. ACM Press.

171

[GAO04]

[GCO1]

Thanaa M. Ghanem and Walid G. Aref. Databases deepen the®@@mmputer 37(1):116 —
117, 2004.

Vijay Gupta and Roy H. Campbell. Internet search engine feeshhy web server help. In
Proceedings of the Symposium on Internet Applications (SANGes 113-119, San Diego,
California, USA, 2001.

[GCGMP97] Luis Gravano, Kevin Chen-Chuan Chang, Hector Gaviwhna, and Andreas Paepcke.

[goo04]
[gru04]

[GS96]

[GS03]

[HA99]

[Hav02]

[HenO1]

[HHMNO99]

[HHMNOO]

[HMO8]

[HN99]

STARTS: Stanford proposal for internet meta-searching. In Joakhaen, editorProceed-
ings of International Conference on Management of Data (SIGM@B)yes 207-218. ACM
Press, 1997.

Google search engine. http://www.google.com/, 2004.
Grub, a distributed crawling project. http://www.grub.org, 200BRLGoftware.

James Gwertzman and Margo Seltzer. World-wide web cachestmty. InProceedings of
the 1996 Usenix Technical Conferen&an Diego, California, USA, January 1996.

Daniel Gomes and Mrio J. Silva. A characterization of the portsgweeb. InProceedings
of 3rd ECDL Workshop on Web Archiy@sondheim, Norway, August 2003.

Bernardo A. Huberman and Lada A. Adamic. Evolutionary dynanutthe World Wide
Web. Condensed Mattedanuary 1999. (paper 9901071).

Taher H. Haveliwala. Topic-sensitive pagerankPmceedings of the Eleventh World Wide
Web Conferengepages 517-526, Honolulu, Hawaii, USA, May 2002. ACM Press.

Monika Henzinger. Hyperlink analysis for the wdBEE Internet Computings(1):45-50,
2001.

Monika R. Henzinger, Allan Heydon, Michael Mitzenmacherdaviarc Najork. Measuring
index quality using random walks on the WeBomputer Networks31(11-16):1291-1303,
1999.

Monika Henzinger, Allan Heydon, Michael Mitzenmacher, addrc Najork. On near—
uniform url sampling. InProceedings of the Ninth Conference on World Wide Vigalges
295-308, Amsterdam, Netherlands, May 2000. Elsevier Science.

Susan Haigh and Janette Megarity. Measuring web site usaggfilecanalysis. Network
Notes 57, 1998.

Allan Heydon and Marc Najork. Mercator: A scalable, extensitdd crawler.World Wide
Web Conference(4):219-229, April 1999.

172

[HPPL9S8] Bernardo A. Huberman, Peter L. T. Pirolli, James E. Pitkow, Rajan M. Lukose. Strong
regularities in world wide web surfingcience280(5360):95-97, April 1998.

[htd04] HT://Dig. http://www.htdig.org/, 2004. GPL software.
[Jac02] lan Jackson. ADNS. http://www.chiark.greenend.oreg-igd/adns/, 2002.
[Jae04] Andreas Jaeger. Large file support in linux. http://www.suseaglinux_Ifs.html, June 2004.

[JdSVT03] A.Jaimes, J. Ruiz del Solar, R. Verschae, D. Yaksic, R. BaatesYE. Davis, and C. Castillo.
On the image content of the Chilean Web.Rroceedings of Latin American Conference on
World Wide Web (LA-WEBpages 72-83, Santiago, Chile, 2003. IEEE CS Press.

[KamO03] Poul-Henning Kamp. OpenBSD CTM. http://www.openbsd.org/ctm.htn@i320
[Ken70] Maurice G. KendallRank Correlation Method<Griffin, London, England, 1970.

[KG04] Adam Kilgarriff and Gregory Grefenstette. Introduction to theapl issue on the Web as
corpus.Computational Linguistic29(3):333-348, 2004.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked envinent. Journal of the ACM
46(5):604—-632, 1999.

[KNL98] Tuula Kapyla, Isto Niemi, and Aarno Lehtola. Towards an asitds web by applying push
technology. InFourth ERCIM Workshop on “User Interfaces for AlIStockholm, Sweden,
1998.

[Koe04] Wallace Koehler. A longitudinal study of Web pages continuedinsicleration of document
persistencelnformation Researctd(2):(paper 174), January 2004.

[Kos93] Martijn Koster. Guidelines for robots writers. http://www.robotstxglaic/guidelines.html,
1993.

[Kos95] Matrtijn Koster. Robots in the web: threat or trea€@8nneXions9(4), April 1995.

[Kos96] Martijn Koster. A standard for robot exclusion. http://www.rolixtterg/wc/exclusion.html,
1996.

[KRRT00] R.Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. TopdimsE. Upfal. Stochastic
models for the web graph. IRroceedings of the 41st Annual Symposium on Foundations of
Computer Science (FOCS)ages 57-65. IEEE CS Press, 2000.

[LBLO1] Mark Levene, Jose Borges, and George Loizou. Zipf’s famweb surfers. Knowledge and
Information System$(1):120-129, 2001.

173

[LF98]

[LGOS]

[LG99]

[LGOO]

[LHO8]

[Li98]

[Lib0O]
[lib02]

[Liuos]

[LO99]

[LS99]

[LVO3]

[LWP+01]

[LZY04]

B. Liu and E. A. Fox. Web traffic latency: Characteristics and ingilans. J.UCS: Journal
of Universal Computer Sciencé(9):763—-778, 1998.

Steve Lawrence and C. Lee Giles. Searching the World Wide \8elence280(5360):98—
100, 1998.

Steve Lawrence and C. Lee Giles. Accessibility of information onwed. Nature
400(6740):107-109, 1999.

Steve Lawrence and C. Lee Giles. Accessibility of information onwké. Intelligence
11(1):32-39, 2000.

Rajan M. Lukose and Bernardo A. Huberman. Surfing as hagon. InProceedings of
the first international conference on Information and computation ec@®mages 45-51.
ACM Press, 1998.

Yanhong Li. Toward a qualitative search engin&EE Internet Computingpages 24 — 29,
July 1998.

Dan Libby. History of RSS. http://groups.yahoo.com/group/syraiodmessage/586, 2000.
Libxml - the xml ¢ library for gnome. http://www.xmlsoft.org/, 2002.

Binzhang Liu. Characterizing web response time. Master’s thegiginia State University,
Blacksburg, Virginia, USA, April 1998.

Danny B. Lange and Mitsuru Oshima. Seven good reasons fobilenagents.Communica-
tions of the ACM42(3):88-89, 1999.

Ora Lassila and Ralph Swick. World Wide Web Consortium - RDF.
http://www.w3.0rg/TR/REC-rdf-syntax, 1999.

Peter Lyman and Hal R. Varian. How much information. http://www.sim&éley.edu/how-
much-info-2003, 2003.

Lipyeow Lim, Min Wang, Sriram Padmanabhan, Jeffrey Scott Vitted, Ramesh Agarwal.
Characterizing Web document change.Pimceedings of the Second International Confer-
ence on Advances in Web-Age Information Managenveiime 2118 ofLecture Notes in
Computer Scien¢pages 133-144, London, UK, July 2001. Springer-Verlag.

Jiming Liu, Shiwu Zhang, and Jie Yang. Characterizing web asagularities with informa-
tion foraging agentsIEEE Transactions on Knowledge and Data Engineeribg(5):566 —
584, 2004.

174

[MAR'00] D. Menasce, V. Aimeida, R. Riedi, F. Pelegrinelli, R. Fonseca, anM¥ia Jr. In search
of invariants for e-business workloads. Mmoceedings of the second ACM Conference on
Electronic CommerceMinneapolis, October 2000.

[MB98] Robert Miller and Krishna Bharat. Sphinx: A framework for atimg personal, site-specific
web crawlers. IrProceedings of the seventh conference on World Wide Brfedbhane, Aus-
tralia, April 1998.

[MBO03] John Markwell and David W. Brooks. Link-rot limits the usefulaed Web-based educational
materials in biochemistry and molecular biolo@jochem. Mol. Biol. Edu¢31:69-72, 2003.

[McB94] Oliver A. McBryan. GENVL and WWWW: Tools for taming the weln IProceedings of the
first World Wide Web Conferenc8eneva, Switzerland, May 1994,

[McLO02] Gregory Louis McLearn. Autonomous cooperating web crasyl2002.

[MDFK97] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balaater Krishnamurthy. Potential
benefits of delta encoding and data compression for HTTRRraceedings of ACM confer-
ence of Applications, Technologies, Architectures and Protocols forp@tan Communica-
tion (SIGCOMM) pages 181-194, Cannes, France, 1997.

[Meg04] David Megginson. Simple API for XML (SAX 2.0). http://sax.soudarge.net/, 2004.

[Mil04] Rob Miller. Websphinx, a personal, customizable web crawler. httgpnliw
2.cs.cmu.edu/ rcm/websphinx, 2004. Apache-style licensed, operesaftaare.

[MT93] S. P. Meyn and R. L. TweedieMarkov Chains and Stochastic Stabilit$springer, London,
1993.

[NCO04] Alexandros Ntoulas, Junghoo Cho, and Christopher Olstonat¥/hew on the web?: the
evolution of the web from a search engine perspectiv@rateedings of the 13th conference
on World Wide Welpages 1 — 12, New York, NY, USA, May 2004. ACM Press.

[nic04] Network Information Center, NIC Chile. http://www.nic.cl/, 2004.

[Nie03] Jakob Nielsen. Statistics for traffic referred by search esgamel navigation directories to
useit. http://www.useit.com/about/searchreferrals.html, 2003.

[NWO1] Marc Najork and Janet L. Wiener. Breadth-first crawling ysefdigh-quality pages. IRro-
ceedings of the Tenth Conference on World Wide, YMafpes 114—-118, Hong Kong, May 2001.
Elsevier Science.

[Pat00] Nick Paton. Information overloadThe Guardian 2000. (Gallup/Institute for the Future
study).

175

[Pat04]

[PBMW98]

[Per04]

[PFLT02]

[Php04]

[Pin94]

[PlaBC]

[POAO3]

[Pro04]

[Rag04]

[RAW*02]

[RGMO1]

[RMO2]

[RRDB02]

[Sal71]

Anna Patterson. Why writing your own search engine is ha@M Queuepages 49 — 53,
April 2004.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Teriyogfad. The Pagerank citation
algorithm: bringing order to the web. Technical report, Stanford Digitatdmp Technologies
Project, 1998.

R. Scott Perry. DNS report. http://www.dnsreport.com/, 2004.

David M. Pennock, Gary W. Flake, Steve Lawrence, Eric J. GJama C. Lee Giles. Win-
ners don't take all: Characterizing the competition for links on the waioceedings of the
National Academy of ScienceX9(8):5207-5211, April 2002.

Php - the hypertext preprocessor. http://www.php.net/, 2004.

Brian Pinkerton. Finding what people want: Experiences with teb@Vawler. InProceed-
ings of the first World Wide Web ConferenGeneva, Switzerland, May 1994.

Plato.Phaedrus 360 BC.

V. Plachouras, I. Ounis, and G. Amati. A Utility-oriented Hyperlikalysis Model for the
Web. InProceedings of the First Latin Web Conferenpages 123-131. IEEE Press, 2003.

ProChile. Estddticas de exportaciones (statistics of exports). http://www.prochile.cl/-
servicios/estadisticas/exportacion.php, 2004.

Dave Raggett. HTML tidy. http://tidy.sourceforge.net/, 2004. Géttware.

Andreas Rauber, Andreas Aschenbrenner, Oliver WitvoeteRadl. Bruckner, and Max
Kaiser. Uncovering information hidden in web archivBsLib Magazine 8(12), 2002.

Sriram Raghavan and Hector Garcia-Molina. Crawling the hiddeb. InProceedings of the
Twenty-seventh International Conference on Very Large Datab&4d3R), pages 129-138,
Rome, Italy, 2001. Morgan Kaufmann.

Knut Magne Risvik and Rolf Michelsen. Search engines and @etamics. Computer
Networks 39(3), June 2002.

J.F. Reschke, S. Reddy, J. Davis, and A. Babich. DASRLY Bearching and locating proto-
col. http://www.webdav.org/dasl/, 2002.

Gerard SaltoriThe SMART retrieval system - experiments in automatic document pirnges
Prentice-Hall, 1971.

176

[SB88] Gerard Salton and Christopher Buckley. Term-weighting afpbesin automatic text re-
trieval. Information Processing and Management: an International Joyr24(5):513-523,
1988.

[SMO02] Torsten Suel and Nasir Memdrossless compression handbpokapter Algorithms for delta
compression and remote file synchronization. Academic Press, 2002.

[Sob03] Markus Sobek. Google dance — the index update of the Goaglechs engine.
http://dance.efactory.de/, 2003.

[Spi03] Diomidis Spinellis. The decay and failures of web referenGzsnmunications of the ACM
46(1):71-77, January 2003.

[SS02] Vladislav Shkapenyuk and Torsten Suel. Design and implementdtiohigh-performance
distributed web crawler. IRroceedings of the 18th International Conference on Data Engi-
neering (ICDE) pages 357 — 368, San Jose, California, February 2002. IEEE&3S.Pr

[SS03] Anubhav Savant and Torsten Suel. Server-friendly delta ssipn for efficient web ac-
cess. InProceedings of the Eighth International Workshop on Web ContentitGaend
Distribution (WCW) September 2003.

[SS04] Danny Sullivan and Chris Sherman. Search Engine Watchtsetp://www.searchengine-
watch.com/reports/, 2004.

[Sta03] StatMarket. Search engine referrals nearly double worldwidép://websidestory.com/-
pressroom/pressreleases.html?id=181, 2003.

[SYO01] Torsten Suel and Jun Yuan. Compressing the graph strudttine Beb. InProceedings of
the Data Compression Conference Dfages 213 — 222. IEEE CS Press, 2001.

[TGIT7] Linda Tauscher and Saul Greenberg. Revisitation patternsrid wide web navigation. In
Proceedings of the Conference on Human Factors in Computing Systeh®s C1997.

[TGM93] Anthony Tomasic and Hector Garcia-Molina. Performance oéiited indices in shared-
nothing distributed text document informatioon retrieval system®raceedings of the sec-
ond international conference on Parallel and distributed information syst@ages 8-17.
IEEE Computer Society Press, 1993.

[The02] The Economist. Country Profiles, 2002.

[TKO2] Pang-Ning Tan and Vipin Kumar. Discovery of web robots sesbised on their navigational
patterns.Data Mining and Knowledge discover§(1):9-35, 2002.

177

[TLNJO1]

[TomO3]

[TPO3]

[TR99]

[TTO4]

[Turo4]
[Uni02]
[Uni03]

[VAMG*+00]

[VHGH*97]

[web04a]
[web04b]

[WEDMOO0]

[wik04]

Jerome Talim, Zhen Liu, Philippe Nain, and Edward G. CoffmanClintrolling the robots
of web search engines. IRroceedings of ACM Joint International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS/Perfoeinpages 236—244,
Cambridge, Massachusetts, USA, June 2001.

John A. Tomlin. A new paradigm for ranking pages on the worldewveb. InProceedings of
the Twelfth Conference on World Wide Wphges 350-355, Budapest, Hungary, May 2003.
ACM Press.

Andrew Tridgell and Martin Pool. RSYNC: fast incremental file nsfer.
http://samba.anu.edu.au/rsync/, 2003.

W. Theilmann and K. Rothermel. Maintaining specialized search eagiimough mobile filter
agents. In M. Klusch, O. Shehory, and G. Weil3, editBrec. 3rd International Workshop on
Cooperative Information Agents (CIA'9®ages 197-208, Uppsala, Sweden, 1999. Springer-
Verlag: Heidelberg, Germany.

Doru Tanasa and Brigitte Trousse. Advanced data prepsowes$or intersites Web usage
mining. IEEE Intelligent System49(2):59-65, 2004.

Stephen Turner. Analog: WWW log file analysis. http://www.anakig2004.
United Nations. Population Division, 2002.
United Nations. Human Development Reports, 2003.

Eveline A. Veloso, Edleno de Moura, P. Golgher, A. da Silva, R. Almeil. Laender,
B. Ribeiro-Neto, and Nivio Ziviani. Um retrato da web brasileira. Froceedings of Sim-
posio Brasileiro de Computaca@uritiba, Brasil, July 2000.

Arthur van Hoff, John Giannandrea, Mark Hapner, Steve Gaatedt Milo Medin. DRP -
distribution and replication protocol. http://www.w3.org/TR/NOTE-drp, 1997.

WebDAV resources. http://www.webdav.org/, 2004.
WebTrends corporation. http://www.webtrends.com/, 2004.

Larry Wall, Paul Eggert, Wayne Davison, and David Macken GNU patch.
http://www.gnu.org/software/patch/patch.html, 2000.

Library of Alexandria. http://en.wikipedia.org/wiki/Librargf_Alexandria, 2004. (Article on
the Wikipedia).

178

[WMB99]

[YL96]

[ZYDO02]

lan H. Witten, Alistair Moffat, and Timothy C. BelManaging GigabytesMorgan Kaufmann
Publishing, 1999.

Budi Yuwono and Dik Lun Lee. Search and ranking algorithmslécating resources on the
world wide web. InProceedings of the twelfth International Conference on Data Engineering
(ICDE), pages 164-171, Washington, DC, USA, February 1996. IEEE €&Pr

Demetrios Zeinalipour-Yazti and Marios D. Dikaiakos. Desigd anplementation of a dis-
tributed crawler and filtering processor. Pmoceedings of the fifth Next Generation Informa-
tion Technologies and Systems (NGIM®Jume 2382 of.ecture Notes in Computer Science
pages 58-74, Caesarea, Israel, June 2002. Springer.

179

	Introduction
	Motivation
	The WIRE project
	Scope and organization of this thesis

	Related Work
	Web characterization
	Indexing and querying Web pages
	Connectivity-based ranking
	Web crawling issues
	Web crawler architecture
	Conclusions

	A New Crawling Model and Architecture
	The problem of crawler scheduling
	Problems of the typical crawling model
	Separating short-term from long-term scheduling
	Combining page freshness and quality
	A software architecture
	Conclusions

	Scheduling Algorithms for Web Crawling
	Experimental setup
	Simulation parameters
	Long-term scheduling
	Short-term scheduling
	Downloading the real Web
	Conclusions

	Crawling the Infinite Web
	Static and dynamic pages
	Random surfer models for an infinite Web site
	Data from user sessions in Web sites
	Model fit
	Conclusions

	Proposals for Web Server Cooperation
	Cooperation schemes
	Polling-based cooperation
	Interruption-based cooperation
	Cost analysis
	Implementation of a cooperation scheme in the WIRE crawler
	Conclusions

	Our Crawler Implementation
	Programming environment and dependencies
	Programs
	Data structures
	Configuration
	Conclusions

	Characterization of the Chilean Web
	Reports generated by WIRE
	Collection summary
	Web page characteristics
	Web site characteristics
	Links
	Links between Web sites
	Comparison with the Greek Web
	Conclusions

	Conclusions
	Summary of our contributions
	Future work
	Open problems

	Practical Web Crawling Issues
	Networking in general
	Massive DNS resolving
	HTTP implementations
	HTML coding
	Web content characteristics
	Server application programming
	Conclusions

	Bibliography

