
Know your Neighbors: Web Spam Detection using the Web
Topology

Carlos Castillo1

chato@yahooinc.com

Debora Donato1

debora@yahooinc.com

Aristides Gionis1

gionis@yahooinc.com

Vanessa Murdock1

vmurdock@yahooinc.com

Fabrizio Silvestri2

f.silvestri@isti.cnr.it

1 Yahoo! Research Barcelona 2 ISTI – CNR
C/Ocata 1, 08003 Barcelona Via G. Moruzzi 1, 56124 Pisa

Catalunya, SPAIN ITALY

ABSTRACT

Web spam can significantly deteriorate the quality of search
engine results. Thus there is a large incentive for commer-
cial search engines to detect spam pages efficiently and ac-
curately. In this paper we present a spam detection system
that uses the topology of the Web graph by exploiting the
link dependencies among the Web pages, and the content
of the pages themselves. We find that linked hosts tend to
belong to the same class: either both are spam or both are
non-spam. We demonstrate three methods of incorporating
the Web graph topology into the predictions obtained by
our base classifier: (i) clustering the host graph, and assign-
ing the label of all hosts in the cluster by majority vote, (ii)
propagating the predicted labels to neighboring hosts, and
(iii) using the predicted labels of neighboring hosts as new
features and retraining the classifier. The result is an accu-
rate system for detecting Web spam that can be applied in
practice to large-scale Web data.

Categories and Subject Descriptors: H.4.m [Informa-
tion Systems Applications]: Miscellaneous

General Terms: Algorithms, Measurement.

Keywords: Link spam, Content spam, Web spam

1. INTRODUCTION
Traditional information retrieval algorithms were devel-

oped for relatively small and coherent document collections
such as newspaper articles or book catalogs in a library.
Very little, if any, of the content in such systems could be
described as “spam.” In comparison to these collections, the
Web is massive, changes more rapidly, and is spread over ge-
ographically distributed computers [1]. Distinguishing be-
tween desirable and undesirable content in such a system
presents a significant challenge, but an important one, as
every day more people are using search engines more often.

From the point of view of a search engine, the Web is a
mix of two types of content [11]: the “closed Web”, which
more closely resembles the smaller, trusted collections re-
trieval systems were originally designed for, and the “open
web”, which includes the vast majority of Web pages. The
openness of the Web has been the key to its rapid growth

Copyright is held by the author/owner(s).
Draft version, updated: November 23, 2006
.

and success, but also the source of the increasing challenges
for information retrieval.

Adversarial information retrieval addresses tasks such as
gathering, indexing, filtering, retrieving and ranking infor-
mation from collections wherein a subset has been manip-
ulated maliciously. On the Web, the predominant form of
such manipulation is “search engine spamming,” or spamdex-

ing, which is a malicious attempt to influence the outcome
of ranking algorithms, for the purpose of getting an unde-
servedly high rank. There is an economic incentive to ob-
taining a higher rank, because rank is strongly correlated
with traffic, and a higher rank often translates to more rev-
enue. Thus, there is an economic incentive for Web site own-
ers to invest resources in spamming search engines, instead
of investing the same resources to improve their Web sites.
Spamming the Web is cheap, and in many cases, successful.

Search engine spam is not a new problem, and is not
likely to be solved in the near future. According to Hen-
zinger et al. [25] “Spamming has become so prevalent that
every commercial search engine has had to take measures
to identify and remove spam. Without such measures, the
quality of the rankings suffers severely”. Web spam dam-
ages the reputation of search engines and it weakens the
trust of its users [24], and therefore, on the “open web” a
naive application of ranking methods is no longer an op-
tion. For instance, Eiron et al. [19] ranked 100 million pages
using PageRank [29] and found that 11 out of the top 20
were pornographic pages, which achieved such high ranking
through link manipulation, indicating that the PageRank al-
gorithm is highly susceptible to spam. Spamming techniques
are so widely known that there have been even spamming
competitions (e.g., the contest to rank highest for the query
“nigritude ultramarine” [18] among others).

From the perspective of the search engine, even if the
spam pages are not ranked sufficiently high to annoy users,
there is a cost to crawling, indexing and storing spam pages.
Ideally search engines would like to avoid spam pages al-
together before they use resources that might be used for
storing, indexing and ranking legitimate content.

Our main contributions are summarized as follows:

• To the best of our knowledge this is the first paper
that integrates link and content attributes for building
a system to detect Web spam.

• We investigate the use of a cost sensitive classifier to
exploit the inherent inbalance of labels in this classifi-
cation problem. In our data most of the Web content
is not spam.

• We demonstrate improvements in the classification ac-
curacy using dependencies among labels of neighboring
hosts in the Web graph. We incorporate these depen-
dencies by means of clustering and random walks.

• We apply stacked graphical learning [14] to improve
the classification accuracy, exploiting the link struc-
ture among hosts in an efficient way.

The rest of this paper is organized as follows. Section 2
describes the previous work on Web Spam Detection. In
Section 3 we discuss our data set and experimental frame-
work. Section 4 describes the features we extract for the
automatic classification system. In Section 5 we present the
classification algorithms and propose methods to improve
their accuracy. Section 6 shows how to improve the classi-
fication accuracy by exploiting the graph topology. Finally,
Section 7 presents our conclusions and discusses future work
on spam detection.

2. PREVIOUS WORK
Previous work on Web spam detection has focused mostly

on the detection of three types of Web spam: link spam,
content spam, and cloaking.

Link spam consists of the creation of a link structure,
usually a tightly knit community of links, aimed at affecting
the outcome of a link-based ranking algorithm. Methods for
the detection of link-based spam rely on automatic classi-
fiers [16, 5], propagating trust or distrust through links [21,
32], detecting anomalous behavior of link-based ranking al-
gorithms [35, 2], or removing links that look suspicious for
some reason [15, 7].

Content spam is done by maliously crafting the content
of Web pages [22], for instance, by inserting keywords that
are more related to popular query terms than to the actual
content of the pages. Methods for detecting this type of
spam use classifiers [28] or look at language model disagree-
ment [27]. To some extent, these techniques overlap with
some of the methods used in e-mail spam filtering.

Cloaking consists of sending different content to a search
engine than to the regular visitors of a web site [31, 33, 13].
The version of the web page that is sent to the search engine
usually includes content spam, and can be detected using
methods such as those described above, or by comparing
the indexed version of a page to the page that regular users
actually see. Unfortunately, this requires the search engine
crawler to pose as a regular browser, which violates de facto

standards of good behavior for Web crawlers.

The fact that non-spam pages link more often to non-spam
pages than to spam pages has been used for propagating the
“non-spam” label in TrustRank [21], for propagating the
“spam” label in BadRank [32], or for propagating both [34,
6]. In contrast, the detection of Web spam presented in
this paper is based on smoothing the predictions obtained
by a classification system, and not on propagating the la-
bels themselves. This is related to recent work by Zhang et
al. [36], who applied regularization to the categorization of
the topic of a given Web page.

3. DATASET AND FRAMEWORK

3.1 Data set
We use the publicly available WEBSPAM-UK2006 dataset [12].

It is based on a set of pages obtained from a crawl of the
.uk domain. The data set was collected in May 2006 by the
research group of the Laboratory of Web Algorithmics1 at
the Università degli Studi di Milano.

The data set was obtained using the UbiCrawler [9] soft-
ware using breadth-first search. The crawl started from a
large set of seed pages listed in the Open Directory Project.2

The seed set contained over 190,000 URLs in about 150,000
hosts. As a result, 77.9 million pages were collected, corre-
sponding to roughly 11,400 hosts.

For each page in the collection, both its links and content
were obtained. The full graph has over 3 billion edges and
is stored in the compressed format described in Boldi and
Vigna [10] using 2.9 bits per edge, for a total size of about
1.2 GB. The page content is stored in WARC/0.9 format.3

The content data is distributed in 8 compressed volumes of
about 55 GB each.

A group a volunteers, coordinated by the Università di
Roma “La Sapienza”, was asked to label each host as “nor-
mal”, “borderline” or “spam”. A complete description of
the labeling process and the data set is presented in [12], in-
cluding the instructions to the assessors. The first collection
was made available at the end of October 2006.4

At the end of the process, 2,725 hosts were evaluated by
at least two assessors and were classified as “normal” or
“spam”. In the case that the two assessors did not agree on
the classification, the host was evaluated by a third asses-
sor. Moreover 3,106 hosts in the .ac.uk, .sch.uk, .gov.uk,
.mod.uk, .nhs.uk and .police.uk domains, were automat-
ically considered normal and not were assessed. In total
6,552 hosts received an evaluation. The most common la-
bel assigned was “normal”, followed by “spam”, followed by
“borderline”. The distribution of the labels assigned by the
assessors is shown below.

Table 1: Distribution of host labels, as judged by
human volunteers.

Label Frequency Percentage

Normal 4,046 61.75%
Spam 1,447 22.08%

Borderline 709 10.82%
Could not be classified 350 5.34%

A summary of the crawl was obtained by taking the first
400 pages reachable by breadth-first search for each host.
The summarized sample contains 3.3 million pages stored
in 8 volumes of about 1.7 GB each. All of the content data
used in the rest of this paper were extracted from a summa-
rized version of the crawl. Note that the assessors spent on
average 5 minutes per host, so the vast majority of the pages
they inspected were contained in the summarized sample.

1http://law.dsi.unimi.it/
2http://www.dmoz.org/
3http://www.niso.org/international/SC4/N595.pdf
4http://www.yr-bcn.es/webspam/datasets/

3.2 Framework
The foundation of our spam detection system is a cost-

sensitive decision tree. The features used to learn the tree
were derived from a combined approach based on link and
content analysis to detect different types of Web spam pages.
Most of features we used were previously presented in [4,
5, 28], but we believe ours is the first attempt to combine
both link-based and content-based features.

s.4. Feature extraction

s.5. Classification

s.5. Bagging

s.6.2. Clustering

s.6.3. Propagation

s.6.4. Stacked graphical
learning

s.6. Smoothing

Figure 1: The classification process and smoothing
techniques shown on this paper.

The attributes used to build the classifiers are presented
in Section 4. After the initial classification, shown on Sec-
tion 5 we applied several smoothing techniques, presented
in Section 6. The process is outlined in Figure 1.

Evaluation. The evaluation of the overall process is
based on a set of measures commonly used in Machine Learn-
ing and Information Retrieval [3] and focused on the spam
detection task. Given a classification algorithm C, we con-
sider its confusion matrix:

Prediction
Non-spam Spam

True Label
Non-spam a b

Spam c d

Where a represents the number of non-spam examples
that were correctly classified, b represents the number of
non-spam examples that were falsely classified as spam, c
represents the spam examples that were falsely classified
as non-spam, and d represents the number of spam exam-
ples that were correctly classified. We consider the following
measures:

• True positive rate, or recall: R = d
c+d

.

• False positive rate: b
b+a

.

• F-measure: F = 2 PR
P+R

, where P is the precision

P = d
b+d

.

For evaluating the classification algorithms, we focus on
the F-measure F as it is a standard way of summarizing both
precision and recall. We also report the true positive rate
and false positive rate as they have a direct interpretation
in practice. The true positive rate R is the amount of spam
that is detected (and thus deleted or demoted) by the search
engine. The false positive rate is the fraction of non-spam
objects that are mistakenly considered to be spam by the
automatic classifier.

Cross-validation. All the predictions reported in the
paper were computed using tenfold cross validation. For

each classifier we report the true positives, false positives
and F-measure. Given a classifier whose prediction we want
to estimate, we train the classifier 10 times, each time using
the 9 out of the 10 partitions as training data and computing
the confusion matrix using the tenth partition as test data.
We then average the resulting ten confusion matrices and
estimate the evaluation metrics on the average confusion
matrix.

The clustering and propagation algorithms in Sections 6.2
and 6.3 operate on labels assigned by a base classifier. To
avoid providing these algorithms with an oracle, by pass-
ing along the true labels we do the following: (1) For each
unlabeled data instance we pass to the clustering and propa-
gation algorithms the label predicted by the base classifier.
(2) For each labeled data instance we pass the label predicted
by the baseline classifier when the data instance was in the
test partition.

4. ATTRIBUTES
In this section we describe the set of features that we

use to classify the web hosts. The link-based features are
extracted from the Web graph and hostgraph, while the
content-based features are extracted from individual pages.
We obtain a set of content features for each host by aggre-
gating the content features of all pages in that host.

4.1 Linkbased features
Most of the link-based features are computed for the home

page and the page in each host with the maximum Page-
Rank. The remainder of link features, such as those re-
lated to TrustRank, are computed directly over the graph
between hosts (obtained by collapsing pages of the same
host together). All of the link-based features we extract
were presented in Becchetti et al. [4], and a more complete
discussion can be found there.

Degree-related measures. These attributes are easily
computed in one or two passes over the Web graph. We
compute a number of measures related to the in-degree and
out-degree of the hosts and their neighbors. In addition, we
consider various other measures, such as the edge-reciprocity

(the number of links that are reciprocal) and the assortativ-

ity (the ratio between the degree of a particular page and
the average degree of its neighbors). We obtain a total of
16 degree-related attributes.

PageRank. PageRank [29] is a well known link-based rank-
ing algorithm that computes a score for each page. Following
an idea by Benczúr et al. [8] we compute various measures
related to the PageRank of a page and the PageRank of
its in-link neighbors. We obtained a total of 11 PageRank-
based attributes.

TrustRank. Gyöngyi et al. [23] introduced the idea that if
a page has high PageRank, but it does not have any relation-
ship with a set of known trusted pages then it is likely to be
a spam page. TrustRank [23] is an algorithm that, starting
from a subset of hand-picked trusted nodes and propagating
their labels through the Web graph, estimates a TrustRank

score for each page. Using TrustRank we can also estimate
the spam mass of a page, i.e., the amount of PageRank re-
ceived from a spammer. The performance of TrustRank de-
pends on the seed set, in our case we used 3,800 nodes chosen
at random from the Open Directory Project, excluding those
that were labeled as spam. As shown in Figure 2, the rela-

tive non-spam mass for the home page of each host (the ratio
between the TrustRank score and the PageRank score) is a
very effective measure for separating spam from non-spam
hosts. However, using this measure alone is not sufficient
for building an automatic classifier because it yields a high
number of false positives (around the 25%).

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

100001000100101

Normal
Spam

Figure 2: Histogram of the ratio between TrustRank
and PageRank in the home pages.

Truncated PageRank. Becchetti et al. [5] described Trun-
cated PageRank, a variant of PageRank that diminishes the
influence of a page to the PageRank score of its close neigh-
bors. Thus, the Truncated PageRank score is a useful fea-
ture for spam detection because spam pages typically try to
reinforce their PageRank scores by linking to each other.

Estimation of supporters. Given two nodes x and y, we
say that x is a d-supporter of y, if the shortest path from x
to y has length d. Let Nd(x) be the set of the d-supporters
of page x. An algorithm for estimating the set Nd(x) for
all pages x is described in [5]. It is based on the classical
probabilistic counting algorithm proposed by Flajolet and
Martin [20] and it can be executed simultaneously with the
computation of PageRank and Truncated PageRank scores.
For each page x, the cardinality of the set Nd(x) is an in-

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

4.523.873.312.842.432.081.781.531.311.12

Normal
Spam

Figure 3: Histogram of the minimum ratio change
of the # of neighbors from distance i to distance i−1

creasing function with respect to d. A measure of interest
is the bottleneck number bd(x) of page x, which we define
to be bd(x) = minj≤d{|Nj(x)|/|Nj−1(x)|}. This measure in-
dicates the minimum rate of growth of the neighbors of x
up to a certain distance. We expect that spam pages form
clusters that are somehow isolated from the rest of the Web
graph and they have smaller bottleneck numbers than non-
spam pages. Figure 3 shows a histogram of b4(x) for spam

and non-spam pages. For most of the non-spam pages, the
bottleneck number is around 2.2, while for many of the spam
pages it is between 1.3 and 1.7.

4.2 Contentbased features
For each web page in our data set we extract a number of

features based on the content of the pages. We use most of
the features reported by Ntoulas et al. [28], with the addition
of several new features. One such new feature is the entropy

(see below) which is meant to capture the compressibility
of the page. Ntoulas et al. [28] use a set of features that
measures the precision and recall of the words in a page
with respect to the set of the most popular terms in the
whole web collection. Motivated by this idea, we add a new
set of features that measures the precision and recall of the
words in a page with respect to the q most frequent terms
from an in-house query log, where q = 100, 200, 500, 1000.
A more detailed discussion of each feature is presented in
Ntoulas et al. [28].

Number of words in the page, number of words in
the title, average word length. For these features we
count only the words in the visible text of a page, and we
consider words consisting only of alphanumeric characters.

Fraction of anchor text. Fraction of the number of words
in the anchor text to the total number of words in the visible
text.

Fraction of visible text. Fraction of the number of words
in the visible text to the total number of words in the page,
include html tags and other invisible text.

Compression rate. We compress the visible text of the
page using bzip. Compression rate is the ratio of the size of
the compressed text to the size of the uncompressed text.

Corpus precision and corpus recall. We find the k most
frequent words in our data collection, excluding stopwords.
We call corpus precision the fraction of words in a page that
appear in the set of popular terms. We define corpus recall

to be the fraction of popular terms that appear in the page.
For both corpus precision and recall we extract 4 features,
for k = 100, 200, 500 and 1000.

Query precision and query recall.
We consider the set of q most popular terms in a query

log, and query precision and recall are analogous to cor-
pus precision and recall. Our intuition is that spammers
might use terms that make up popular queries. As with
corpus precision and recall, we extract eight features, for
q = 100, 200, 500 and 1000.

Independent trigram likelihood. A trigram is three con-
secutive words. Let {pw} be the probability distribution of
trigrams in a page. Let T = {w} be the set of all trigrams
in a page and k = |T (p)| be the number of distinct trigrams.
Then the independent trigram likelihood is a measure of the
independence of the distribution of trigrams. It is defined
in Ntoulas et al. [28] to be − 1

k

P
w∈T

log pw.

Entropy of trigrams. The entropy is another measure of
the compressibility of a page, in this case more macroscopic
than the compressibility ratio feature because it is computed
on the distribution of trigrams. The entropy of the distribu-
tion of trigrams, {pw}, is defined as H = −

P
w∈T

pw log pw.

The above list gives a total of 24 features for each page.
We inspect the quality of those features by plotting the dis-
tribution of each feature for the spam and the non-spam

0.00

0.02

0.04

0.06

0.08

0.10

0.12

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

Normal
Spam

Figure 4: Histogram of the average word length in
non-spam vs. spam pages.

pages. In general we found that, for our data set, the
content-based features do not provide as good separation
between spam and non-spam pages as for the data set used
in Ntoulas et al. [28]. For example, Figure 4 shows the distri-
bution of average word length in spam and non-spam pages
and one sees that the two distribution are almost identical.
In contrast, for the data set of Ntoulas et al. [28] that par-
ticular feature provides very good separation. The same is
true for many of the other content features. Some the best
features (judging only from the histograms) are the corpus
precision and query precision, shown in Figures 5 and 6,
respectively.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Normal
Spam

Figure 5: Histogram of the corpus precision in non-
spam vs. spam pages.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Normal
Spam

Figure 6: Histogram of the query precision in non-
spam vs. spam pages for k = 500.

4.3 From page features to host features
In total, we extract 140 features for each host (described

in Section 4.1) and 24 features for each page (described in
Section 4.2). The total number of link-based features, as
described in Section 4.2, is 140 features for each host. We
aggregate the content-based features of pages in order to
obtain content-based features for hosts.

Let h be a host containing m web pages, denoted by the
set P = {p1, . . . , pm}. Let bp denote the home page of host h
and p∗ denote the page with the largest PageRank among all
pages in P . Let c(p) be the 24-dimensional content feature
vector of page p. For each host h we form the content-based
feature vector c(h) of h as follows

c(h) = 〈c(bp), c(p∗),E[c(p)], Var[c(p)]〉.

Here E[c(p)] is the average of all vectors c(p), p ∈ P , and
Var[c(p)] is the variance of c(p), p ∈ P . Therefore, for each
host we have 4×24 = 96 content features. In total, we have
140 + 96 = 236 link and content features.

In the process of aggregating page features, we ignore
hosts h for which the home page bp or the maxPR page p∗ is
not present in our summary sample. This leaves us with a
total of 8,944 hosts, out of which 5652 are labeled.

5. CLASSIFIERS
We used as the base classifier the implementation of C4.5

(decision trees) given in Weka [30]. Using both link and
content features, the resulting tree used 45 unique features,
of which 18 are content features.

In our data, there are about four times as many non-spam
hosts as spam hosts. In the decision tree algorithm the fea-
tures are sorted by their Information Gain scores, and then
a value k is determined for each feature such that instances
less than the value are assigned one class label, and instances
greater than the value are assigned the other class label.
The value of k is determined to maximize the accuracy of
the classifier. In our data, the non-spam examples outnum-
ber the spam examples to such an extent that the value of
k that maximizes the classifier accuracy misclassifies a dis-
proportionate number of spam examples. At the same time,
intuitively, the penalty for misclassifying spam as normal is
not equal to the penalty for misclassifying normal examples
as spam. To minimize the misclassification error, and com-
pensate for the imbalance in class representation in the data,
we used a cost-sensitive decision tree. We imposed a cost of
zero for correctly classifying the instances, and set the cost
of misclassifying a spam host as normal to be R times more
costly than misclassifying a normal host as spam. Table 2
shows the results for different values of R. The value of R
becomes a parameter that can be tuned to balance the true
positive rate and the false positive rate. In our case, we wish
to maximize the F-measure. Note that R = 1 is equivalent
to having no cost matrix, and is the baseline classifier.

Table 2: Cost-sensitive decision tree
Cost ratio (R) 1 10 20 30 50

True positive rate 64.0% 68.0% 75.6% 80.1% 87.0%
False positive rate 5.6% 6.8% 8.5% 10.7% 15.4%

F-Measure 0.632 0.633 0.646 0.642 0.594

Bagging is a technique that creates an ensemble of clas-
sifiers by sampling with replacement from the training set

to create N classifiers whose training sets contain the same
number of examples as the original training set, but may
contain duplicates. The labels of the test set are determined
by a majority vote of the classifier ensemble. In general, any
classifier can be used as a base classifier, and in our case we
used the cost-sensitive decision trees described above. Bag-
ging improved our results by reducing the false-positive rate,
as shown in Table 3. The decision tree created by bagging
was roughly the same size as the tree created without bag-
ging, and used 49 unique features, of which 21 were content
features.

Table 3: Bagging with a cost-sensitive decision tree
Cost ratio (R) 1 10 20 30 50

True positive rate 65.8% 66.7% 71.1% 78.7% 84.1%
False positive rate 2.8% 3.4% 4.5% 5.7% 8.6%

F-Measure 0.712 0.703 0.704 0.723 0.692

The results of classification reported in Tables 2 and 3
use both link and content features. Table 4 shows the con-
tribution of each type of feature to the classification. The
content features serve to reduce the false-positive rate, with-
out diminishing the true positive result, and thus improve
the overall performance of the classifier. The classifier that
serves as the foundation for future experiments in this pa-
per uses bagging with a cost-sensitive decision tree, where
R = 30.

Table 4: Comparing link and content features
Both Link-only Content-only

True positive rate 78.7% 79.4% 64.9%
False positive rate 5.7% 9.0% 3.7%

F-Measure 0.723 0.659 0.683

6. SMOOTHING
In general, traditional machine learning methods assume

that the data instances are independent. In the case of the
Web there are dependencies among pages and hosts. One
such dependency is that links are not placed at random and
in general, similar pages tend to be linked together more
frequently than dissimilar ones [17].

Such a dependency holds also for spam pages and hosts;
spam tends to be clustered on the Web. One explanation
for this behavior is that spam pages often adopt link-based
rank-boosting techniques such as link-farming. These tech-
niques can be as simple as creating a pool of pages linking
to a page whose rank is to be raised. In practice spammers
use sophisticated structures that are difficult to detect.

In this section we investigate techniques that exploit the
connections between spam hosts in order to improve the
accuracy of our classifiers. We assume that hosts that are
well-linked together are likely to have the same class label
(spam or non-spam). More generally, we can assume that
two hosts in the same class should be connected by short
paths going mostly through hosts in the same class.

Figure 7 shows a visualization of the host graph. An edge
between two hosts is shown only if there are at least 100
links between the two hosts. In the figure, black nodes are
spam and white nodes are non-spam.

The layout of the nodes in the figure was done automat-
ically using a spring model. For the larger connected com-
ponent of the graph, we can see that spam nodes tend to be
clustered together (in the upper right corner of the central
group of nodes of Figure 7). For the nodes that are not con-
nected to this larger connected component (or are connected
by links below the threshold), we can see that most of the
groups are either exclusively spam, or exclusively non-spam.

In the following section we describe a different usage of
the link structure of the graph than the one presented in
section 4. During the extraction of link-based attributes, all
nodes in the network were anonymous, while in this regu-
larization phase, the identity (and predicted label) of each
node is known, and important to the algorithm.

6.1 Topological dependencies of spam nodes
Before describing how to use the aggregation of spam

hosts to improve the accuracy of spam detection, we provide
experimental evidence for the following two hypotheses:

Non-spam nodes tend to be linked by very few
spam nodes, and usually link to no spam nodes.

Spam nodes are mainly linked by spam nodes.

Examining the out-link and the in-link graphs separately, we
count the number of spam hosts contained in the adjacency
list of each one of the hosts.

(a) Fraction of spam nodes in out-links

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 0.2 0.4 0.6 0.8 1.0

Out-links of non spam
Outlinks of spam

(b) Fraction of spam nodes in in-links

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

0.0 0.2 0.4 0.6 0.8 1.0

In-links of non spam
In-links of spam

Figure 8: Histogram of the fraction of spam hosts
in the links of non-spam or spam hosts.

Let SOUT(x) be the fraction of spam hosts linked by host
x out of all labeled hosts linked by host x. Figure 8 (a) shows
the histogram of SOUT for spam and non-spam hosts. We
see that almost all non-spam hosts link mostly to non-spam
hosts. The same is not true for spam hosts, which tend to
link both spam and non-spam hosts.

Figure 7: Graphical depiction of the hostgraph (undirected), prunned to include only labeled nodes with a
connection of over 100 links between them. Black nodes are spam, white nodes are non-spam. Most of the
spammers in the larger connected component are clustered together (upper-right end of the center portion).
Most of the other connected components are single-class (either only spam nodes, or only non-spam nodes).

Similarly, let SIN(x) be the fraction of spam hosts that link
to host x out of all labeled hosts that link to x. Figure 8 (b)
shows the histograms of SIN for spam and non-spam hosts.
In this case there is a clear separation between spam and
non-spam hosts. The general trend is that spam hosts are
linked mostly by other spam hosts. More than 85% of the
hosts have an SIN value of more than 0.7. On the other hand,
the opposite is true for non-spam hosts; more than 75% of
the non-spam hosts have an SIN value of less than 0.2.

6.2 Clustering
We use the result of a graph clustering algorithm to im-

prove the prediction obtained from the classification algo-
rithm. Intuitively, if the majority of a cluster is predicted
to be spam then we change the prediction for all hosts in
the cluster to spam. Similarly if the majority of a cluster is
predicted to be non-spam then we predict that all hosts in
this cluster are non-spam.

We consider the undirected graph G = (V, E,w) where V
is the set of hosts, w is a weighting function from V × V

to integers so that the weight w(u, v) is equal to the the
number of links between any page in host u and any page
in host v, and E is the set of edges with non-zero weight.
Ignoring the direction of the links may result in a loss of
information for detecting spam, but it drastically simplifies
the graph clustering algorithm.

We cluster the graph G using the METIS graph clustering
algorithm algorithm [26].5 We partition the 11400 hosts of
the graph into 1000 clusters, so as to split the graph into
many small clusters. We found that the number of clusters is
not crucial, and we obtained similar results for partitioning
the graph in 500 and 2000 clusters.

Two examples of clusters are shown in Figure 9 and they
demonstrate the following points: (i) With respect to the la-
beled hosts, both of these two clusters are relatively “pure”,
i.e., one is mostly spam, and the other is mostly non-spam.
(ii) The hosts in each of the clusters seem to be related,
indicating that the graph clustering algorithm performs rea-
sonably well.

5http://glaros.dtc.umn.edu/gkhome/views/metis/

cluster A
S www.sportswear.cheapcat.co.uk

www.cosmetics.cheapcat.co.uk
www.experiences.cheapcat.co.uk
www.fashion-women.cheapcat.co.uk
www.fashion.cheapcat.co.uk
www.jewellery.cheapcat.co.uk

N www.bathrooms.cheapcat.co.uk
www.fashion-men.cheapcat.co.uk

U www.sports.cheapcat.co.uk
www.body-and-soul.cheapcat.co.uk
www.candles.cheapcat.co.uk
www.catalogue-shopping.cheapcat.co.uk
www.furniture.cheapcat.co.uk
www.garden.cheapcat.co.uk
www.gifts.cheapcat.co.uk
www.healthcare.cheapcat.co.uk
www.silver.cheapcat.co.uk

cluster B
N www.bargainbuys365.co.uk

www.europc.co.uk
www.inspired-bathrooms.co.uk
www.mobilephonesdirect.co.uk
www.showerright.co.uk

U www.the-scream.co.uk
www.time2talk.co.uk
www.uk-shop-online.co.uk
www.cheap-nokia-motorola-samsung-phones.co.uk
www.compshopper.co.uk
www.computers-parts-components-shop.co.uk

Figure 9: Example of two clusters obtained by the
clustering algorithm. For each cluster we show the
spam (S), non-spam (N), and unlabeled (U) hosts.

To quantify the observation that the clusters are relatively
“pure” with respect to spam and non-spam hosts, for all
clusters we compute the ratio of hosts that are labeled as
spam in our labeled data. The histogram of those ratios
is shown in Figure 10. For computing the histograms we
considered only clusters that have more than 2 labeled hosts
in order to avoid singleton and 2-member clusters, which
would contribute ratios 0, 1

2
, and 1. For comparison we also

show the predicted distribution of the same measure, if the
spam/non-spam labels were assigned randomly in the hosts.
In particular we fix the clustering produced by METIS and
we repeat the random assignment of labels 10,000 times.
The resulting distribution is shown with the continuous line
in Figure 10. The peak of the predicted distribution at 0.2
corresponds to the percentage of spam in our data, and large
clusters tend tocontain around 20% spam hosts. The peak
at 0.33 is an artifact of the large number of clusters of size
three. For a cluster of size three, the ratio of hosts can be
0, 0.33, 0.67 or 1. Because only 20% of the labels are spam,
a ratio of 0.33 is more probable than a ratio 0.67. Note that
the actual distribution has larger values at ratios close to
zero and one than the predicted distribution.

The clustering algorithm can be described as follows. Let
the clustering of G consist of m clusters C1, . . . , Cm, which
form a disjoint partition of V . Let p(h) ∈ [0..1] be the
prediction of a particular classification algorithm C so that
for each host h a value of p(h) equal to 0 indicates non-
spam, while a value of 1 indicates spam. (Informally, we
call p(h) the predicted spamicity of host h) For each cluster
Cj , j = 1, . . . , m, we compute its average spamicity p(Cj) =

1
|Cj |

P
h∈Cj

p(h). Our algorithm uses two thresholds, a lower

threshold tl and an upper threshold tu. For each cluster Cj

if p(Cj) ≤ tl then all hosts in Cj are marked as non-spam,

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Actual labeling
Random labeling

Figure 10: Histogram of the ratios
#{spam}/#{total labeled} hosts for the clus-
ters obtained by the clustering algorithm.

and p(h) is set to 0 for all h ∈ Cj . Similarly, if p(Cj) ≥ tu

then all hosts in Cj are marked as spam, and p(h) is set
to 1. The results of the clustering algorithm are shown in
Table 5. The improvement of the F-measure obtained over
classifier without bagging is statistically significant at the
0.05 confidence level; the improvement for the classifier with
bagging is much smaller. Note that this algorithm never has
access to the true labels of the data, but uses only predicted
labels, as explained at the end of section 3.2.

Table 5: Results of the clustering algorithm
Baseline Clustering

Without bagging
True positive rate 75.6% 74.5%
False positive rate 8.5% 6.8%

F-Measure 0.646 0.673
With bagging

True positive rate 78.7% 76.9%
False positive rate 5.7% 5.0%

F-Measure 0.723 0.728

We considered variations of the above algorithm that change
the labels of only clusters larger than a given size threshold,
or of clusters of a small relative cut (the ratio of the weight
of edges going out of the cluster with respect to weight of
edges inside the cluster). However, none of these variations
yielded any noticable improvement over the performance of
the basic algorithm, so we do not discuss them in more de-
tail. We note that the implementation of the clustering al-
gorithm we use might not be scalable to arbitrarily large
web collections. For such data one might want to use more
efficient clustering algorithms, for instance, pruning edges
below a threshold and finding connected components.

6.3 Propagation
We use the graph topology to smooth the predictions by

propagating them using random walks, following Zhou et
al. [37].

As above, let p(h) ∈ [0..1] be the prediction of a par-
ticular classification algorithm C so that for each host h a
value of p(h) equal to 0 indicates non-spam, while a value

of 1 indicates spam. Let v(0) be a vector such that v
(0)
h =

p(h)/
P

h∈H p(h) is a normalized version of the predicted
spamicity.

Next we update v in the following way:

v
(t+1)
h = (1 − α)v(0) + α

X

g:g→h

v
(t)
g

outdeg(g)

In which outdeg(g) is the out-degree of g. In the limit this
process converges to the stationary probabilities of a random
walk with restart probability 1−α, similar to the one used by
personalized PageRank. When the random walk is restarted
it returns to a node with high predicted spamicity.

After this process was run, we used the training part of the
data to learn a threshold parameter, and used this threshold
to classify the testing part as non-spam or spam.

We tried three forms of this random walk: on the host
graph, on the transposed host graph (meaning that the ac-
tivation goes backwards) and on the undirected host graph.
We tried different values of the α parameter and got im-
provements over the baseline with α ∈ [0.1, 0.3], implying
short chains in the random walk. In Table 6 we report on
the results when α = 0.3, after 10 iterations (this was enough
for convergence in this graph).

Table 6: Result of applying propagation
Baseline Fwds. Backwds. Both

Classifier without bagging
True positive rate 75.6% 70.9% 69.4% 71.4%
False positive rate 8.5% 6.1% 5.8% 5.8%

F-Measure 0.646 0.665 0.664 0.676
Classifier with bagging

True positive rate 78.7% 76.5% 75.0% 75.2%
False positive rate 5.7% 5.4% 4.3% 4.7%

F-Measure 0.723 0.716 0.733 0.724

As shown in Table 6, the classifier without bagging can be
improved (and the improvement is statistically significant at
the 0.05 confidence level), but the increase of accuracy for
the classifier with bagging is small.

6.4 Stacked graphical learning
Stacked graphical learning is a meta-learning scheme de-

scribed recently by Cohen and Kou [14]. It uses a base
learning scheme C to derive initial predictions for all the ob-
jects in the dataset. Then it generates a set of extra features
for each object, by combining the predictions for the related
objects in the graph. Finally, it adds this extra feature to
the input of C, and runs the algorithm again to get new,
hopefully better, predictions for the data.

Let p(h) ∈ [0..1] be the prediction of a particular classifi-
cation algorithm C as described above. Let r(h) be the set
of pages related to h in some way. We compute:

f(h) =

P
g∈r(h) p(g)

|r(h)|

Next, we add f(h) as an extra feature for instance h in
the classification algorithm C, and run the algorithm again.
This process can be repeated many times, but most of the
improvement is obtained with the first iteration.

Table 7 reports the results of applying stacked graphical
learning, by including one extra feature with the average

predicted spamicity of r(h). For the set r(h) of pages related
to h we use either the in-links, the out-links or both.

Table 7: Results with stacked graphical learning
Avg. Avg. Avg.

Baseline of in of out of both

True positive rate 78.7% 84.4% 78.3% 85.2%
False positive rate 5.7% 6.7% 4.8% 6.1%

F-Measure 0.723 0.733 0.742 0.750

We observe that there is an improvement over the base-
line, and the improvement is more noticeable when using the
entire neighborhood of the host as an input. The improve-
ment is statistically significant at the 0.05 confidence level.
In comparison with the other techniques we studied, this
method is able to significantly improve even the classifier
with bagging.

A second pass of stacked graphical learning yields an even
better performance; the false positive rate increases slightly
but the true positive rate increases by almost 3%, compen-
sating for it and yielding a higher F-measure. The feature
with the highest information gain is the added feature, and
so serves as a type of summary of other features. With
the added feature, the resulting decision tree is smaller, and
uses fewer link features; the tree uses 40 features, of which
20 are content features. Consistently with [14], doing more
iterations does not improve the accuracy of the classifier
significantly.

Table 8: Second pass of stacked graphical learning
Baseline First pass Second pass

True positive rate 78.7% 85.2% 88.4%
False positive rate 5.7% 6.1% 6.3%

F-Measure 0.723 0.750 0.763

7. CONCLUSIONS
There is a clear tendency of spammers to be linked to-

gether and this tendency can be exploited by search engines
to detect spam more accurately.

There is a lot of related work on spam detection, however,
we can compare our results with previous results only indi-
rectly. The reason is that the majority of prior research on
Web spam has been done on data sets that are not public.
With respect to using content only, we note that our set
of content-based features includes the the set described in
Ntoulas et al. [28]. In their paper, they report an F-Measure
of 0.877 [28, Table 2] using a classifier with bagging. Us-
ing essentially the same technique, we obtain a performance
that is much lower than theirs (our F-Measure is 0.683 in
Table 4 compared to their 0.877). This is consistent with
the observation presented at the end of Section 4.2, that is,
the content of the spam pages in our data resembles much
more closely the content of non-spam pages.

Similarly, our link-based features were extracted from a
public dataset used previously by Becchetti et al. [4], and
again, the accuracy of the same classifier is much lower
on the new dataset (our F-Measure is 0.683 compared to
the previous F-Measure of 0.879), supporting the conclu-
sion that distinguishing between spam and non-spam is in-
herently more difficult in the new data. Nevertheless, our

best classifier detects 88.4% of the spam hosts with 6.3%
false positives. If the error rate is too high for the appli-
cation or search engine policies at hand, it can be adjusted
by adjusting the cost matrix, for more conservative spam
filtering (at the expense of a lower detection rate).

Finally, we note that the system we have proposed is scal-
able in large Web data collections; we have used only fea-
tures and smoothing techniques that scale well and can be
used on Web datasets of any size.

The work presented in this paper relates to both infor-
mation retrieval and machine learning. The information re-
trieval aspects of the problem are the extraction of features
and the system evaluation. The machine learning aspects
are related to the use of the graph topology in the link prop-
agation, and stacked graphical learning frameworks. The
connected nature of spam on the Web graph suggests that
the use of regularization is a promising area of future work.
While we explored such regularization methods in isolation
and we assess their performance independently, an interest-
ing direction for future work is to combine the regularization
methods at hand in order to improve the overall accuracy.

Acknowledgements

We thank the support of the EU within the 6th Framework
Programme under contract 001907 “Dynamically Evolving,
Large Scale Information Systems” (DELIS). This work has
been done while Fabrizio Silvestri was visiting the Yahoo!
Research Laboratories in Barcelona.

8. REFERENCES
[1] A. Arasu, J. Cho, H. Garcia-Molina, A. Paepcke, and

S. Raghavan. Searching the web. ACM Transactions on
Internet Technology (TOIT), 1(1):2–43, 2001.

[2] R. Baeza-Yates, C. Castillo, and V. López. Pagerank increase
under different collusion topologies. In AIRWeb, 2005.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison Wesley, May 1999.

[4] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and
R. Baeza-Yates. Link-based characterization and detection of
Web Spam. In AIRWeb, 2006.

[5] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and
R. Baeza-Yates. Using rank propagation and probabilistic
counting for link-based spam detection. Technical report,
DELIS – Dynamically Evolving, Large-Scale Information
Systems, 2006.

[6] A. Benczúr, K. Csalogány, and T. Sarlós. Link-based similarity
search to fight web spam. In AIRWeb, 2006.

[7] A. A. Benczúr, I. B́ıró, K. Csalogány, and M. Uher. Detecting
nepotistic links by language model disagreement. In WWW,
pages 939–940, 2006.

[8] A. A. Benczúr, K. Csalogány, T. Sarlós, and M. Uher.
Spamrank: fully automatic link spam detection. In AIRWeb,
2005.

[9] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: a
scalable fully distributed web crawler. Software, Practice and
Experience, 34(8):711–726, 2004.

[10] P. Boldi and S. Vigna. The webgraph framework I: compression
techniques. In WWW ’04: Proceedings of the 13th
international conference on World Wide Web, pages 595–602,
New York, NY, USA, 2004. ACM Press.

[11] T. A. Brooks. Web search: how the Web has changed
information retrieval. Information Research, 8(3), April 2003.

[12] C. Castillo, D. Donato, L. Becchetti, P. Boldi, M. Santini, and
S. Vigna. A reference collection for web spam detection.
Technical report, DELIS, September 2006.

[13] K. Chellapilla and D. M. Chickering. Improving cloaking
detection using search query popularity and monetizability. In
AIRWeb, 2006.

[14] W. W. Cohen and Z. Kou. Stacked graphical learning:
approximating learning in markov random fields using very
short inhomogeneous markov chains. Technical report, 2006.

[15] A. L. da Costa-Carvalho, P.-A. Chirita, E. S. de Moura,
P. Calado, and W. Nejdl. Site level noise removal for search
engines. In WWW ’06: Proceedings of the 15th international
conference on World Wide Web, pages 73–82, New York, NY,
USA, 2006. ACM Press.

[16] B. D. Davison. Recognizing nepotistic links on the Web. In
Artificial Intelligence for Web Search, pages 23–28, Austin,
Texas, USA, July 2000. AAAI Press.

[17] B. D. Davison. Topical locality in the web. In Proceedings of
the 23rd annual international ACM SIGIR conference on
research and development in information retrieval, pages
272–279, Athens, Greece, 2000. ACM Press.

[18] I. Drost and T. Scheffer. Thwarting the nigritude ultramarine:
learning to identify link spam. In Proceedings of the 16th
European Conference on Machine Learning (ECML), volume
3720 of Lecture Notes in Artificial Intelligence, pages 233–243,
Porto, Portugal, 2005.

[19] N. Eiron, K. S. Curley, and J. A. Tomlin. Ranking the web
frontier. In Proceedings of the 13th international conference
on World Wide Web, pages 309–318, New York, NY, USA,
2004. ACM Press.

[20] P. Flajolet and N. G. Martin. Probabilistic counting algorithms
for data base applications. Journal of Computer and System
Sciences, 31(2):182–209, 1985.

[21] Z. Gyöngyi and H. Garcia-Molina. Link spam alliances. In
Proceedings of the 31st International Conference on Very
Large Data Bases (VLDB), 2005.

[22] Z. Gyöngyi and H. Garcia-Molina. Web spam taxonomy. In
AIRWeb, 2005.

[23] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating
Web spam with TrustRank. In Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB),
2004.

[24] Z. Gyöngyi and H. G. Molina. Spam: It’s not just for inboxes
anymore. IEEE Computer Magazine, 38(10):28–34, October
2005.

[25] M. R. Henzinger, R. Motwani, and C. Silverstein. Challenges in
web search engines. SIGIR Forum, 36(2):11–22, 2002.

[26] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 48(1):96–129, 1998.

[27] G. Mishne, D. Carmel, and R. Lempel. Blocking blog spam
with language model disagreement. In AIRWeb, 2005.

[28] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting
spam web pages through content analysis. In Proceedings of
the World Wide Web conference, pages 83–92, Edinburgh,
Scotland, May 2006.

[29] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank
citation ranking: bringing order to the Web. Technical report,
Stanford Digital Library Technologies Project, 1998.

[30] I. H. Witten and E. Frank. Data Mining: Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann, October 1999.

[31] B. Wu and B. D. Davison. Cloaking and redirection: A
preliminary study. In AIRWeb, 2005.

[32] B. Wu and B. D. Davison. Identifying link farm spam pages. In
WWW ’05: Special interest tracks and posters of the 14th
international conference on World Wide Web, pages 820–829,
New York, NY, USA, 2005. ACM Press.

[33] B. Wu and B. D. Davison. Undue influence: eliminating the
impact of link plagiarism on web search rankings. In
Proceedings of The 21st ACM Symposium on Applied
Computing, pages 1099–1104, Dijon, France, April 2006.

[34] B. Wu, V. Goel, and B. D. Davison. Propagating trust and
distrust to demote web spam. In Workshop on Models of Trust
for the Web, Edinburgh, Scotland, May 2006.

[35] H. Zhang, A. Goel, R. Govindan, K. Mason, and B. Van Roy.
Making eigenvector-based reputation systems robust to
collusion. In Proceedings of the third Workshop on Web
Graphs (WAW), volume 3243 of Lecture Notes in Computer
Science, pages 92–104, Rome, Italy, October 2004. Springer.

[36] T. Zhang, A. Popescul, and B. Dom. Linear prediction models
with graph regularization for web-page categorization. In KDD
’06: Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages
821–826, New York, NY, USA, 2006. ACM Press.

[37] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Scholkopf.
Learning with local and global consistency. Advances in Neural
Information Processing Systems, 16:321–328, 2004.

