
Data Min Knowl Disc (2009) 19:227–244
DOI 10.1007/s10618-009-0141-6

Taxonomy-driven lumping for sequence mining

Francesco Bonchi · Carlos Castillo ·
Debora Donato · Aristides Gionis

Received: 12 June 2009 / Accepted: 24 June 2009 / Published online: 21 July 2009
Springer Science+Business Media, LLC 2009

Abstract Given a taxonomy of events and a dataset of sequences of these events,
we study the problem of finding efficient and effective ways to produce a compact rep-
resentation of the sequences. We model sequences with Markov models whose states
correspond to nodes in the provided taxonomy, and each state represents the events in
the subtree under the corresponding node. By lumping observed events to states that
correspond to internal nodes in the taxonomy, we allow more compact models that
are easier to understand and visualize, at the expense of a decrease in the data like-
lihood. We formally define and characterize our problem, and we propose a scalable
search method for finding a good trade-off between two conflicting goals: maximizing
the data likelihood, and minimizing the model complexity. We implement these ideas
in Taxomo, a taxonomy-driven modeler, which we apply in two different domains,
query-log mining and mining of moving-object trajectories. The empirical evaluation
confirms the feasibility and usefulness of our approach.

Keywords Data mining · Sequence analysis · Markov models · Query-log analysis ·
Spatial-data analysis

Responsible editors: Aleksander Kołcz, Wray Buntine, Marko Grobelnik, Dunja Mladenic,
and John Shawe, Taylor.

F. Bonchi · C. Castillo · D. Donato · A. Gionis (B)
Yahoo! Research, Diagonal 177, Barcelona 080018, Spain
e-mail: gionis@yahoo-inc.com

F. Bonchi
e-mail: bonchi@yahoo-inc.com

C. Castillo
e-mail: chato@yahoo-inc.com

D. Donato
e-mail: debora@yahoo-inc.com

123

228 F. Bonchi et al.

1 Introduction

Many real-world application domains are naturally equipped with hierarchically
organized ontologies or taxonomies, and such knowledge can be useful when modeling
the data because, first, we can produce more compact, meaningful and understand-
able abstractions of the data by presenting it in terms of more general nodes in the
taxonomy, and second, taxonomies can constraint the search space of data-mining
algorithms, allowing to devise more efficient and scalable techniques.

Taxonomy-driven data mining has been mainly considered in the context of fre-
quent pattern extraction: originally taxonomies were used for mining association rules
(Srikant and Agrawal 1995) and sequential patterns of itemsets (Srikant and Agrawal
1996) in market-basket data, where each item is a member of a hierarchy of product
categories. More recently taxonomy-based methods were used for mining frequent-
subgraph patterns in biological pathways, where graphs of interacting proteins anno-
tated with functionality concepts form a very large taxonomy (Cakmak and Özsoyoglu
2008).

The problem we address in this paper is of a different nature. Given a taxonomy tree
on a set of events (or symbols, or items), and a dataset of event sequences, we study the
problem of finding efficient and effective ways of producing a compact representation
of the sequences. We then use this representation to cluster the sequences.

Example scenarios. Many different application domains fit within our framework:
in general any problem regarding user profiling, where the set of possible actions is
hierarchically structured. As an example consider a large web site containing different
pages and providing different services. The site owner may be interested in profiling
users with respect to their activities (Manavoglu et al. 2003), and understanding which
pages and services appear to be sequentially connected.

As another example application consider the interaction between a software sys-
tem and its users. The system may record user activities, that can later be analyzed in
order to understand how users interact with the system and how to improve it. User
actions are commands which are naturally organized in a hierarchy, e.g. in the different
toolbars and menus of the software system.

Other contexts in which our framework is useful are the two applications that we
present in Sect. 5: (1) query-log mining, where user queries are classified in a topi-
cal taxonomy, and (2) mining trajectories of moving objects, where the hierarchy is
given by the natural spatial proximity. In all of the above-mentioned applications it
is interesting and challenging to automatically define the most appropriate level of
granularity to represent the information.

Sequence model. The representation we adopt is a Markov model. The states of the
model are nodes in the taxonomy, where the last level (leaves) contains the observable
symbols. Upon visiting each state, the Markov model emits one symbol, which can
be any leaf in the sub-tree under the node corresponding to that state. Since we speak
about transitions and emissions, one notices immediately the connection to hidden
Markov models (HMMs). However, our model is not an HMM: due to the one-to-
many mapping from states to symbols, we can always recover exactly the emitting
state.

123

Taxonomy-driven lumping for sequence mining 229

By using internal nodes in the taxonomy tree to represent the Markov states, we
decrease the likelihood of the data given the model with respect to a model created
at the leaf level. The higher we go in the taxonomy the more we decrease the like-
lihood, but the more we gain in the simplicity of the obtained models, which help
making them more general, more meaningful for the domain experts, and easier to
visualize. As usual, we are faced with the model selection problem, and the decision
between alternative models needs to be taken based on the following criteria: (1) the
data likelihood should be maximal, and (2) the model complexity should be minimal.
The approach of using (non-hidden) Markov states to represent disjoint subsets of
symbols is inspired by the fundamental ideas of lumpability and approximate lum-
pability in Markov chains (see Sect. 2). In our case, in addition to lumping, we also
consider the emission probabilities of the symbols at the lumped states to express the
total likelihood of the data. We note that since the model we consider does not have
hidden states we can bypass the computational challenges of the HMMs, such as the
estimation of the model parameters using the Baum-Welch algorithm. In the model
we consider the parameters that yield the maximum likelihood, and those are given
by simple frequency counts. The computation of the likelihood of a sequence given
a model is also done by counting, and not by using a sequence decoder such as the
Viterbi algorithm. This allows our method to scale to large data sets.

Another nice feature of our model is that it provides a direct and effective visu-
alization: e.g., in a trajectory clustering application, we can lay the lumped nodes of
the Markov model directly over the geographic map, to represent large or small areas
with the associated transition probabilities among them.

Contributions. In contexts where the data is organized in sequences events, and events
are naturally structured in taxonomy, we provide the following contributions:

– We introduce the new problem of learning a Markov model in which the observed
states can be grouped along the nodes of the hierarchy. We prove that the maxi-
mum likelihood model is the one with the maximum number of states. In order to
reduce model complexity we suggest to optimize a function that balances the data
likelihood and the number of states.

– We present a family of search algorithms based on state merging, for finding the
best model. The commonly used agglomerative algorithm is a specific instance in
the family of search algorithms we present, and our experimental results show that
other strategies outperform it.

– We describe a direct and efficient evaluation method for computing the likelihood
of a dataset after merging states in a model, enabling a fast exploration of the model
space.

– We demonstrate the relevance of our problem on real-world applications, and we
perform experiments on synthetic and real data sets that validate our algorithmic
solution.

Roadmap. This paper is organized as follows. Section 2 surveys previous work related
to ours. Section 3 formally states the problems we study, for which algorithms are pre-
sented in Sect. 4. We implement those algorithms and describe experimental results
in Sect. 5. The last section presents our conclusions and outlines future work.

123

230 F. Bonchi et al.

2 Related work

We survey previous related works related to ours, ranging from Hidden Markov
Models to sequence clustering. There is a wealth of literature on these topics, and
our coverage of previous work is by no means complete.

Hidden Markov Models. Markov chains are fundamental mathematical structures
widely used for describing and predicting processes from natural and physical sci-
ences, computer science and engineering systems. For a detailed discussion we refer
the reader to e.g. (Tijms 1986). A Hidden Markov Model (HMM) is an extension of a
Markov chain in which observable symbols are emitted in each of the states, but it is
not possible to know exactly the current state from the symbol observed. The HMM
parameters of a model can be adjusted by the well-known Baum-Welch method (Welch
2003) to increase the likelihood of observed sequences of symbols. Another class of
techniques for learning HMM parameters from data are based on model merging (Stol-
cke and Omohundro 1994). These approaches start with a maximum likelihood HMM
that directly encode all the observable samples. At each step more general models are
produced by merging previous simpler submodels. The submodel space is explored
using a greedy search strategy and the states to be merged are chosen so to maximize
the data likelihood.

In our algorithm, the initial model is built starting from the relative frequencies of
each sample and it is a maximum likelihood model for the data. Our model differs
from the previous ones in two aspects. First, the constraint on how symbols are emitted
allow us to infer the states directly, with the advantage of not having hidden states.
Moreover, since the greedy search is “guided” by such a hierarchical structure, two
states can be merged only if they have the same parent in the taxonomy. In this way,
the hierarchy-based merging drastically reduces the search space.

State aggregation in Markov models. Many of the processes that can be represented
by HMMs suffer from the state space explosion problem. Since minimizing memory
and time is a crucial requirements for most of the applications, aggregation tech-
niques (Meyer 1989; Simon and Ando 1961) for reducing the number of states have
been extensively studied. Many approaches are based on the notion of lumpability
(Kemeny and Snell 1959; White et al. 2000) that is a property of Markov chains for
which there exists a partition of the original state space into aggregated states such
that the aggregated Markov chain maintains the characteristics of the original one.
Bicego et al. (2001) present a different approach that reduces the structure of HMM
by partitioning the states using the bi-simulation equivalence, so that equivalent states
can be aggregated in order to obtain a minimal set that do not significantly affect
model performance. A simple heuristic for HMMs is to merge states that have the
most similar emission probabilities, this is applied to the domain of gesture recogni-
tion in Lee and Kim (1999). It is worth noting the different perspective that we have:
in our context states aggregation, or abstraction, is done for the sake of useful and
actionable knowledge modeling, and not for reducing computational requirements.

Sequence clustering and applications. Sequence clustering is one of the most com-
mon tasks in sequence mining and bioinformatics. Such a task has been handled by
using frequent subsequences or n-grams statistics as features (Guralnik and Karypis

123

Taxonomy-driven lumping for sequence mining 231

2001; Manning et al. 1997) or considering the edit distances among all the candidate
sequence (Wang et al. 2007). Traditional methods often require sequence alignment
and do not handle efficiently variable-length sequences. One of the first works using
HMM for sequence clustering was presented by Smyth (1997) who computed the
pairwise-distance matrix for all the observed sequences by training an HMM for each
sequence. The log-likelihood of each model given the sequence is used to cluster the
sequences in K clusters using EM algorithm. In Law and Kwok (2000), the HMMs
are used as cluster prototypes. The clustering is computed by a combined approach
of the HMMs and a rival-penalized competitive learning procedures. Bicego et al.
(2003) extend the paradigm introduced by Smyth (1997): they use HMMs to build a
new representative space, where the features are the log-likelihoods of each sequence
to be clustered with respect to a predefined number of HMMs trained over a set of
reference sequences.

In Sect. 5 we experiment our method in the context of web usage mining. Markov
models have been applied for modelling user web navigation sessions (Borges and
Levene 2004), describing user behavior (Manavoglu et al. 2003), mining web access
logs (Girolami and Kaban 2003; Felzenszwalb et al. 2004) and for query recommenda-
tion (Cao et al. 2008). The other application that we present in Sect. 5 is in the domain
of mobility data analysis, a research area rapidly gaining a great deal of attention as
witnessed by the amount of spatio-temporal data mining techniques that have been
developed in the last years, see e.g. (Nanni and Pedreschi 2006; Lee et al. 2007, 2008;
Li et al. 2007).

Markov models with or without hidden states, first-order or higher-order, with or
without lumping of states, have been extensively applied to sequence mining in the
past. To the best of our knowledge, the problem stated in the next section, that intro-
duces a natural constraint and leads to a scalable algorithmic solution, has not been
described before in the literature.

3 Problem statement

We first introduce our notation, and review some well-known background concepts,
in order to facilitate the presentation of the method in the next section.

3.1 Preliminaries

We are given a set of r sequences D = {σ1, . . . , σr }, over a set of m > 2 symbols
Σ = {α1, . . . , αm}, and a taxonomy T , which is simply a tree whose leaves are the
symbols in Σ . We also consider two special symbols: a starting symbol α1 = �, with
which all sequences start, and a terminal symbol αm = �, with which all sequences
end. For any symbol α ∈ Σ we denote by cα the total number of times that α appears
in all sequences. We extend this notation by using cαβ to denote the total number of
times that symbol β follows symbol α in all sequences.

Markov models. Consider a set of s states X = {x1, . . . , xs}. A Markov model on X
is defined by transitional probabilities px,y, for each pair of states x, y ∈ X , which
determine the probability that the next state will be y given that the current state is x.
For all x ∈ X , we have

∑
y∈X px,y = 1.

123

232 F. Bonchi et al.

A hidden Markov model (HMM) is a Markov model, which at each state outputs a
symbol from the set Σ . It is considered that the output symbols are observed while the
states are hidden. The output of symbols is governed by emission probabilities qx,α ,
defined for each x ∈ X and all α ∈ Σ . Again we have

∑
α∈Σ qx,α = 1, for all x ∈ X .

In our setting we consider a Markov model M with s > 2 states X = {x1, . . . , xs},
where each state x ∈ X corresponds to a set of symbols A(x) ⊆ Σ , and we assume
that {A(x)} forms a partition of Σ . In other words, we have

⋃
x∈X A(x) = Σ and

A(x) ∩ A(y) = ∅ for all x, y ∈ X . Conversely, for a symbol α we denote by x(α)

the unique state to which α is assigned, i.e., α ∈ A(x(α)). We assume that x1 and xs

are special states, used for denoting the starting and terminal symbols, and no other
symbols are assigned to those states.

Overall a Markov model in our setting is denoted by M = (X, A, p, q), where X
is the set of states, A is the function mapping states to sets of symbols, and p and q
are vectors containing the transition and emission probabilities.

Since our model is described in terms of transition and emission probabilities, it
appears to be a hidden Markov model. However, as we mentioned in our introduction,
due to the fact each symbol corresponds to a unique state, there are no truly hidden
states. We give a more formal statement of the fact that there are no hidden states,
because it is needed in the proof of Lemma 4. Given a model M = (X, A, p, q) as
described above, we can define a Markov model M′ = (Σ, r), whose set of states is
the set of symbols Σ . We can show that M and M′ are equivalent, and that M′ is a
proper first-order Markov model with no hidden states.

Lemma 1 Given a model M = (X, A, p, q) with transition and emission probabil-
ities there is an equivalent Markov model M′ = (Σ, r) with no hidden states, where

rα,β = px(α),x(β)qx(β),β .

Likelihood of a dataset. Given a dataset of sequences D = {σ1, . . . , σr }, and a Markov
model M = (X, A, p, q), we compute the likelihood of the data given the model as

L(D | M) =
∏

α,β∈Σ

(
px(α),x(β)

)cαβ
∏

α∈Σ

(
qx(α),α

)cα .

The first product is due to transitions among states, and the second product is due to
emissions of symbols. As usual, to avoid numerical underflow it is convenient to work
with the minus log-likelihood, which is

SL(D | M) = −
∑

α,β∈Σ

cαβ log px(α),x(β) −
∑

α∈Σ

cα log qx(α),α. (1)

Maximum-likelihood estimation. We now assume that we are given the input sequences
D = {σ1, . . . , σr }, and a Markov model M in which only the states X and the state-
to-symbol mapping A have been specified. The task is to compute the transition and
emission probabilities, p and q, so that the SL(D | M) function is minimized. It is
well known that the maximum-likelihood probabilities are estimated as the observed
frequencies

123

Taxonomy-driven lumping for sequence mining 233

px,y = cxy

cx
, (2)

and

qx,α =
{

cα/cx if α ∈ A(x) and
0 otherwise,

(3)

where cxy = ∑
α∈A(x);β∈A(y) cαβ is the total number of times that a symbol of state x

is followed by a symbol of state y, and cx = ∑
α∈A(x) cα is the total number of times

that a symbol of state x appears in the data. We have.

Lemma 2 Given a set of sequences D, and a Markov model M = (X, A, ·, ·) for
which only the states are prespecified, the optimal score of the minus log-likelihood
function is given by

S∗
L(D | M) = −

∑

x,y∈X

cxy log
cxy

cx
−

∑

α∈Σ

cα log
cα

cx(α)

. (4)

3.2 Problem definition: optimal model

The next task is to the model that yields the highest likelihood for a dataset. That
is, among all possible cuts in the taxonomy tree, the cut that gives a model M∗ that
minimizes the score in Eq. 4. We have the following.

Lemma 3 The Markov model that minimizes Eq. 4 is the “leaf-level” model with
|Σ | = m states X = {x1, . . . , xm}, where xi = {αi }.
Lemma 3 is a direct consequence of the following more general fact.

Lemma 4 Consider Markov models M1 and M2 for which for every state x of M1
and every state y of M2 it is either A(x) ⊆ A(y) or A(x)∩ A(y) = ∅. In other words,
the states of M1 is a sub-partition of the states of M2. Then

S∗
L(D | M1) ≤ S∗

L(D | M2).

Intuitively, we want models that have small number of states, since such models are
more useful to understand the data, and they avoid overfitting. However, as the previ-
ous Lemma shows, there is a trade-off between likelihood and simplicity of the model.
A natural problem to consider is finding the best model for a given number of states.

Problem 1 (k-state-optimal model) Given a set of sequences D = {σ1, . . . , σr } and
a number k, find a Markov model M that has at most k states and minimizes the score
S∗

L(D | M).

However, the constraint of using k states might be too stringent and in many cases
we may not know which is the correct number of states. We would like to have an objec-
tive function that balances the likelihood score and the number of states. The problem

123

234 F. Bonchi et al.

we are facing is a typical model-selection problem, and many different approaches
have been proposed, including minimum-description length (MDL) criteria, Bayes-
ian information criterion (BIC), cross-validation methods, etc. We experimented with
BIC (Schwarz 1978), and found that it does not perform well for the size of the data
we were working with. Essentially, for large data, the logarithmic factor of the BIC
formula is orders of magnitude smaller than the minus log-likelihood score, and thus
there is no sufficient penalization for model complexity.

What we found to work well in practice is a model-selection objective in which
the minus log-likelihood and the model complexity are considered together, and the
task is to find the model that is as close as possible to a model with an ideal score (but
probably not feasible). In particular, let M0 be the model with the minimum possible
number of states smin that achieves the maximum possible score S∗

L ,max, and let Mm

be the model with the maximum possible number of states smax = m that achieves
the minimum possible score S∗

L ,min. Then, for a model M with s states that achieves
score S∗

L = S∗
L(D | M), we define the objective function

Dist2(M) =
(

s − smin

smax − smin

)2

+ w ·
(

S∗
L − S∗

L ,min

S∗
L ,max − S∗

L ,min

)2

.

The parameter w is a scale factor controlling the importance of the two terms. We then
consider the corresponding model-selection problem.

Problem 2 Given a set of sequences D = {σ1, . . . , σr }, find a Markov model M that
minimizes the objective Dist2(M).

We also find it useful to consider a hybrid objective function, in which we have an
upper bound on a desirable number of states, and still want to minimize the objective
Dist2(M).

Problem 3 Given a set of sequences D = {σ1, . . . , σr } and a number k, find a Markov
model M that has at most k states and minimizes the score Dist2(M).

4 Algorithms

4.1 State-merging algorithm

Our main algorithm is a generic “bottom-up” search algorithm with respect to the
taxonomy tree. The algorithm has the following components: (1) an objective func-
tion g; (2) a search policy p; (3) a priority queue Q of candidate models to evaluate;
(4) a set E of models already evaluated.

We consider a family of objective functions {g} defined as g : R × N → R, where
the first argument represents a minus log likelihood score and the second argument
represents the number of states of a model. For Problems 1 and 3, if a model has more
than k states we assume that g returns the value ∞.

The search policy p is a total ordering on pairs (v, s) where again v represents a
log likelihood score and s represents the number of states of a model. The algorithm

123

Taxonomy-driven lumping for sequence mining 235

also takes as input a hierarchy T on the symbol set Σ , so that each state-merging step
done by the algorithm is by merging the children of a single node x in T to x.

The algorithm starts by putting in the queue Q the “leaf-level” model, i.e., the model
with states X = {x1, . . . , xm}, where xi = {αi }. In the main iteration, as long as the
queue Q is not empty and a maximum number of iterations has not been reached, the
model M with the best score according to the policy p is removed from the queue. The
log-likelihood v = S∗

L(D | M) is evaluated for M, and the number of states of M is
assigned to s. The model M is inserted in the set E of evaluated models, along with
the score g(v, s). In addition, all models Mi that result from M with one merging
according to the hierarchy T are generated. If Mi has not already been evaluated
(check in E), then Mi is put in the queue of candidates Q, according to the ordering
p(v, s). When the algorithm terminates, it returns the model with the best score g,
among all models that have been evaluated and put in the set E .

Notice that each candidate model is inserted in Q with the minus log likelihood
score of its parent, which is a lower bound on its own score.

Let Mi and M j be two models to be compared, respectively with scores vi and v j

and states si and s j . We experiment with the three following policies.

(1) ProbabilityFirst: p(vi , si) > p(v j , s j) if vi < v j or (vi = v j and si < s j);
(2) StatesFirst: p(vi , si) > p(v j , s j) if si < s j or (si = s j and vi < v j);
(3) DistSqFirst: p(vi , si) > p(v j , s j) if g(vi , si) < g(v j , s j).

In the first case, we favor the likelihood minimization with respect to the complexity
of the model. The converse is done in the second case. Notice that the first iterations of
the strategy StatesFirst correspond to a typical agglomerative algorithm that makes
consequtive merges along the hierarchy. In the last case we balance the likelihood score
and the number of states, selecting the model that minimizes the objective function.

Even though we do not know the complexity of Problem 3 and thus we cannot
exclude the case that a polynomial solution exists, the search algorithm we suggest
is an exhaustive search over the search space. In practice, the algorithm stops after a
certain number of iterations and the best solution found at that point is returned. Thus
the effect of the different search strategies is to explore different parts of the search
space, and thus, to return different solutions.

4.2 Model-evaluation algorithm

Without the constraint imposed by the taxonomy, the search space of the algorithm
is the set of all possible partitions of the symbol set Σ . Allowing to perform merges
only along the hierarchy reduces dramatically the search space.

Even with the use of a hierarchy, the search space has exponential size, so in practice
it is impossible to explore it completely for all but toy-size datasets. Finding a good
solution depends mostly on using a search policy that allows to reach such a good
solution fast. But assuming a given search policy, it is also very important to be able
to evaluate fast candidate models.

The costly part of evaluating the objective function of a model is computing the
score S∗

L . We note that for computing S∗
L we only need the counts cα , and cαβ . So we

123

236 F. Bonchi et al.

have to read the input dataset D only once, summarize all the information in the counts
cα and cαβ , and then perform all evaluation using those counts. In fact, assuming a
sparse representation of the matrix cαβ , the number of its non-zero entries can be at
most n, where n is the cummulative length of all sequences Considering also that
cαβ is a matrix of dimension m × m, the amount of space (and time) needed for the
evaluation of each model is O(min{n, m2}).

A faster model evaluation can be done incrementally, by computing the score of
a model with respect to the S∗

L score of its “parent” model, which has already been
evaluated as a by-product of our bottom-up algorithm. In particular, consider a model
M1 with state space X , and a child model M2 which is built from M1 by merg-
ing a subset of d states of M1 into a single state in M2. Lemma 2 allows us to
express the difference in the S∗

L score of the two models in terms only of the counters
cxy that involve the states x, y participating in the merging, without computing over
the whole frequency matrix c. The evaluation of each child model can be done in
time O(min{n, md}) given that the score of the parent node is known. The update
formula for the incremental evaluation is included in Appendix 2.

4.3 Clustering algorithm

Given the methods described above, we can devise a simple clustering solution based
on them. In particular, we adopt standard Expectation-Maximization (EM) method in
which cluster representatives are the models described so far.

Let k be the number of clusters we want to obtain; the clustering will be a par-
tition of the sequences D into k sets D1,D2, . . . ,Dk . To initialize the method, an
initial partition is done, in our particular case we do a random initial assignment
but other initialization procedures can be used. The algorithm then proceeds itera-
tively. On each iteration, using the algorithms previously described, we find the model
M∗

i that maximizes SL(Di | M) for each subset Di . Next, we scan the whole set of
sequences D = {σ1, . . . , σr } and find for each sequence σ j the index k∗

j that maximizes
the likelihood of that particular sequence: k∗

j = argmaxk j ∈{1,2,...,k} SL({σ j } | M∗
k j

).
Finally, we partition again the sequences such that sequence σ j ∈ Dk∗

j
, that is, we

re-assign each sequence to the partition whose model gives the maximum likelihood
for that sequence. We stop when the fraction of elements re-assigned becomes negli-
gible.

The model inference phase in each iteration is faster than the one using HMMs
given the absence of hidden states. Also, in the evaluation phase for each sequence σ ,
one Viterbi evaluation having cost m2|σ | where m is the number of states, is turned
into a simple summation of 2|σ | terms

5 Experiments

We built an efficient sequence mining tool implementing the ideas described in Sect. 4.
Our reference implementation, named Taxomo(“TAXOnomy-driven markovian
MOdeler”) provides the following features:

– Model inference given a taxonomy, a set of sequences, and a search strategy.

123

Taxonomy-driven lumping for sequence mining 237

– EM-based clustering given a taxonomy, a set of sequences, a number of clusters,
and a search strategy for modeling each partition.

– Computation of log-likelihood of a set of sequences for a given model.
– Generation of a set of sequences given a model.

Taxomo is written in Java, uses a sparse-matrix representation of the sequence data-
base by the counters cα and cαβ , and uses the fast candidate model evaluation method
presented in Sect. 4.2.

5.1 Datasets

We use Taxomoto compare search strategies in three datasets having alphabets of 64,
100 and 1,024 symbols, respectively.

Known generative model dataset. We first experimented on a toy problem in which the
generative model is known. We started with a binary tree with 64 leaves as a synthetic
“taxonomy”. In this tree, we generated 100 tree-cuts at random, and used the leaves
of each tree-cut as states. For each of the 100 sets of states, we generated a random
Markov model, and a database of 10,000 sequences using that model.

Query-log dataset. Our set of queries is a sample of 85,000 queries obtained in 2008
from Yahoo! search engine. Each query in each session is automatically assigned to a
topical category using majority voting among the Yahoo! directory categories in the
top 200 results for the query. For instance if a user enters the three queries “fer-
rari photos”, “motorcycles”, and “car racing”, then the input sequence
for our mining method would be: “recreation/automotive/autos”, “rec-
reation/automotive/motorcycle” and “recreation/sports/auto-
racing”. The categories form an unbalanced tree of maximum height 6 with 100
categories at the leaf level.

Trajectories dataset. We generate a large database containing 500,000 spatio-tempo-
ral points for 80,000 trajectories using Brinkhoff’s network-based synthetic generator
of moving objects (Brinkhoff 2003), over the Oldenburg city map. In order to obtain
sequences from the trajectories, the map has been discretized using a 32 × 32 regular
grid, obtaining an alphabet of 1,024 symbols. To create a hierarchy over the points, a
tree is created by taking an area covering the whole city as the root, and then recur-
sively dividing this area in quadrants until the 32 × 32 grid is reached. Figure 1a, b
shows this dataset.

It is worth noting that the number of sequences is not the crucial factor for the
running time of our modeling methods, as the sequences are read only once at the
beginning, and all the information is recorded in the frequency tables cα and cα,β . So,
the number of states is the variable that dominates the running time of the computation.

5.2 Experiment with known generative model

The purpose of this experiment is to compare for each database, the log likelihood
obtained by the models that result from our search procedure, with the log likelihood
obtained by the actual model used to generate the sequences. To make this comparison

123

238 F. Bonchi et al.

(a) (b) (c)

Fig. 1 a Road network used to generate the trajectories dataset. b Markov model of the whole dataset at
the leaves level (i.e., the original grid with 1,024 states). c Markov model of the whole dataset with 175
states, found by Taxomo. Arc thickness represents the probability of the transition

0 2000 4000 6000 8000 10000
1.035

1.04

1.045

1.05

1.055

1.06

1.065

1.07

Number of iterations

lo
g−

lik
el

ih
oo

d
ra

tio

Synthetic data set

States
DistSq 1
DistSq 10

Fig. 2 Approximation error versus number of iterations

fair, we compared models having the same number of states, that is, if the generative
model has m states, then we get the best m-states model found by our search procedure.

The results are shown in Fig. 2; we are presenting the average obtained after 10,000
iterations for each search strategy and each of the 100 databases. The strategy Proba-
bilityFirst is not included as it almost always outputs only models having a number
of states larger than m. The other three strategies perform very well and very quickly
they reach to less than 5% error, where the DistSqFirst and DistSqFirst- 10 strate-
gies (for the values of the parameter w equal to 1 and 10, respectively) perform slightly
better than StatesFirst.

5.3 Search strategies comparison

We experiment with the three strategies described in Sect. 4: ProbabilityFirst,
StatesFirst, and DistSqFirst. For the last strategy we have two versions DistSq-
First-1 and DistSqFirst-10, for the values of the parameter w equal to 1 and 10,
respectively.

123

Taxonomy-driven lumping for sequence mining 239

20 30 40 50 60 70 80 90 100

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55
x 10

5

Number of states

M
in

us
 lo

g
lik

el
ih

oo
d

Query−log dataset

States
Probability
DistSq 1
DistSq 10

0 200 400 600 800 1000

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

6

Number of states

M
in

us
 lo

g
lik

el
ih

oo
d

Trajectories dataset

States
Probability
DistSq 1
DistSq 10

(a) (b)

Fig. 3 Search space profile: probability of the best model found by the search algorithms, at each number
of states, within 10,000 iterations

To compare the strategies, we assume a fixed budget of 10,000 model evaluations,
and run the different search strategies. In a commodity 1.7GHz Intel-based PC with
1 GB of RAM under Linux, 10,000 models in the query dataset (100 states) are tested
in 20 s, while in the trajectories dataset (1,024 states) the same number of models can
be evaluated in 7–8 min.

After the search strategy is run, we select the model with the higher probability
for each number of states. The result for both datasets is shown in Fig. 3a, b. For the
query-log dataset, DistSqFirst-10 outperforms the other methods as it can generate
models with the same number of states as the others, but having a higher data likeli-
hood. For the trajectories dataset, all the methods are comparable with DistSqFirst-1
and DistSqFirst-10 winning by a small margin at different ranges of the number of
states

The method ProbabilityFirst gives models with very good likelihood scores,
especially for the trajectories dataset, but it reduces the number of states too slowly, so
it does not even reach the appropriate exploration depth to be compared with the others
within the same budget of model evaluations. This observation is evident by examining
Fig. 4, in which we show where the search methods spend most of their exploration
budget. Clearly, the methods DistSqFirst and StatesFirst explore more models
having less number of states. The running time depends on the number of states in the
model being evaluated, so the method ProbabilityFirst also has the disadvantage
of being slower, basically because of the candidate generation phase which generates
one candidate for every node that can be merged from the current set of states. Thus,
its applicability is limited to settings where a small but conservative reduction on the
size of the model is desired.

To see the effect of increasing the budget of model evaluations we fix the search
strategy to the winning DistSqFirst-10 and we plot the number of states vs. likelihood
profile for three different budget values. This is shown in Fig. 5. For the query-log
dataset we see that a larger budget allows the method to find a higher-probability
model for the same number of states, particularly at intermediate values of the number

123

240 F. Bonchi et al.

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

Number of states

N
um

be
r

of
 m

od
el

s
vi

si
te

d
Query−log dataset

States
Probability
DistSq 1

0 200 400 600 800 1000
0

1000

2000

3000

4000

5000

6000

7000

Number of states

N
um

be
r

of
 m

od
el

s
vi

si
te

d

Trajectories dataset

States
Probability
DistSq 1
DistSq 10

DistSq 10

Fig. 4 Distribution of the number of states visited by the search algorithms

0 20 40 60 80 100
3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6
x 10

5

Number of states

M
in

us
 lo

g
lik

el
ih

oo
d

Query−log dataset

DistSq 10 −− 100 iter
DistSq 10 −− 1K iter
DistSq 10 −− 10K iter

0 200 400 600 800 1000

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

x 10
6

Number of states

M
in

us
 lo

g
lik

el
ih

oo
d

Trajectories dataset

DistSq 10 −− 100 iter
DistSq 10 −− 1K iter
DistSq 10 −− 10K iter

Fig. 5 Profile of search space explored by DistSqFirst-10 policy for different number of iterations

of states (neither too high nor too low), where the search space is correspondingly
bigger. For the trajectories dataset, we see that the quality achieved stabilized very
fast; the likelihood scores found for 100 model evaluations is not much worse than the
likelihood scores found for 10,000 model evaluations.

Qualitatively, we observe that the pruning of the original taxonomy that is done
by the model, is not uniform, but guided by the data. For instance, in the trajectories
dataset, in the areas where traffic is more homogeneous the lumping of states is more
aggressive than in other areas. In Fig. 1b, c we compare the Markov model obtained at
the leaf level (1,024 states) with a model obtained after 10,000 iterations (175 states).

5.4 Clustering

Figure 6 shows the models of 4 clusters (from a total of 8) for the trajectories dataset.
For the EM algorithm 50 iterations are performed, which is enough for convergence.

Each figure provides a direct visualization of the representative model of a cluster.
An edge between two neighboring grid squares denotes that there is a high-probability
transition between the squares, and edge thickness is proportional to the probability.

123

Taxonomy-driven lumping for sequence mining 241

Fig. 6 Four example clusters from the trajectories dataset

Each cluster has its own model, and the flexibility of the modeling phase in terms of
adaptively merging states is evident. This also highlights a nice visualization feature
of our model: just laying the nodes of the Markov model directly over the geographic
map, we can have an immediate and effective visual representation of a cluster.

6 Conclusions

We presented a scalable method for taxonomy-driven sequence mining based on Mar-
kov models. The method receives a database of sequences of symbols, and a taxonomy
over those symbols. An initial Markov model is created for the sequences without con-
sidering the taxonomy, and then refine it iteratively by merging states driven by the
taxonomy. The likelihood of the data given a new model generated by this merging
procedure, can be computed directly from the likelihood of the data given the model
before the merging. This yields a fast model evaluation method that can explore many
configurations in a short time. We also implement efficient strategies that guide the
search process.

There are many applications for this approach to sequence mining that we plan to
explore in the future, in particular those related to modeling and clustering the actions
of people, among others.

123

242 F. Bonchi et al.

Appendix 1 Proofs

Proof (of Lemma 2) If we denote by S1 the first sum in Eq. 1, using 2 we have

S1 = −
∑

α,β∈Σ

cαβ log
cx(α)x(β)

cx(α)

= −
∑

x,y∈X

∑

α∈A(x)
β∈A(y)

cαβ log
cx(α)x(β)

cx(α)

= −
∑

x,y∈X

log
cxy

cx

∑

α∈A(x)
β∈A(y)

cαβ = −
∑

x,y∈X

cxy log
cxy

cx

The second sum, due to the emission probabilities, is straightforward.
�
Proof (of Lemma 1) First notice that r is a proper stochastic matrix defining the
Markov model M′. Indeed, for all α ∈ Σ we have

∑

β∈Σ

rα,β =
∑

β∈Σ

px(α),x(β)qx(β),β =
∑

y∈X

∑

β∈A(y)

px(α),yqy,β =
∑

y∈X

px(α),y

∑

β∈A(y)

qy,β

=
∑

y∈X

px(α),y = 1.

Second, notice that any transition in M′ can be simulated (and vice versa) by a tran-
sition and an emission in M, with exactly the same probabilities.
�
Proof (of Lemma 4) Let the two models M1 and M2 be defined on the set of states
X1 and X2, respectively. We first assume that there is a set of states Y ⊆ X1, so that
X2 = X1 \ Y ∪ {z}. In other words, X2 is obtained by a single merge of a subset Y of
states of X1 into a new state z. The more general case of a relation between X1 and
X2 can be handled by induction.

From Lemma 2, the models M1 = (X1, A1, p1, q1) and M2 = (X2, A2, p2, q2)

that minimize the score functions S∗
L(D | M1) and S∗

L(D | M2) have transition and
emission probabilities that are obtained by the observed frequencies, as in Eqs. 2 and 3.

Consider now the Markov models M′
1 = (Σ, r1) and M′

2 = (Σ, r2), as defined in
Lemma 1, that is, M′

1 and M′
2 are Markov models on the set of symbols and they are

equivalent to M1 and M2, respectively. The crucial observation is that S∗
L(D | M1)

and S∗
L(D | M2) correspond to H(M′

1) and H(M′
2) (respectively), where H(M) is

the entropy rate of a Markov chain. For more details and the definition of the entropy
rate of a Markov chain see (Cover and Thomas 1991, Chapter 4). Here we assume that
the Markov chains are irreducible. The fact that our definition of a Markov chain con-
tains starting and terminal states, can be handled by adding a transition of probability
1 from the terminal state to the starting state. Such a transition signifies the beginning
of a new sequence in D.

On the other hand, we can show that H(M′
1) = H(M′

2 | Y), where Y is a random
variable that denotes a transition in the set of states Y for M1 corresponding to a tran-
sition in z for M2. Intuitively, the additional information in M1 with respect to M2

123

Taxonomy-driven lumping for sequence mining 243

can be recovered by conditioning on the outcome of the transitions in Y . Since con-
ditioning always decreases entropy, we have H(M′

2 | Y) ≤ H(M′
2), which proves

our claim.
�

Appendix 2 Incremental model evaluation

Let M1 be the optimal model having states X . Let M2 be a model built from by
merging the states Y ⊆ X into one new state z. Let |Y | = d and let X = X \ Y . From
Eq. 4, an optimal model M for a database of sequences D has:

S∗
L(D | M) = −

∑

x,y∈X

cxy log
cxy

cx
−

∑

α∈Σ

cα log
cα

cx(α)

,

the difference � = S∗
L(D | M2) − S∗

L(D | M1) is given by:

� =
∑

x∈X

(

cxz log
cxz

cx
+ czx log

czx

cz

)

+ czz log
czz

cz

−
∑

x∈X

∑

y∈Y

(

cxy log
cxy

cx
+ cyx log

cyx

cy

)

−
∑

y1∈Y

∑

y2∈Y

(

cy1y2 log
cy1y2

cy1

)

+
∑

α∈A(z)

cα log
cy(α)

cz(α)

,

The last term only involves the emission probabilities of the symbols under the sub-
tree of the merged state z. The value of � can be computed in time O(min{n, md}).
The number of states merged d is bounded by the maximum degree in the taxonomy
tree.

References

Bicego M, Dovier A, Murino V (2001) Designing the minimal structure of hidden Markov model by
bisimulation. Energy Minimization Methods Comput Vis Pattern Recognit 2001:75–90

Bicego M, Murino V, Figueiredo M (2003) Similarity-based clustering of sequences using hidden Markov
models. Mach Learn Data Min Pattern Recognit 2003:95–104

Borges J, Levene M (2004) A dynamic clustering-based Markov model for web usage mining.
arxiv:cs/0406032

Brinkhoff T (2003) Generating traffic data. IEEE Data Eng Bull 26(2):19–25
Cakmak A, Özsoyoglu G (2008) Taxonomy-superimposed graph mining. In: Proceedings of 11th interna-

tional conference on Extending Database Technology (EDBT)
Cao H, Jiang D, Pei J, He Q, Liao Z, Chen E, Li H (2008) Context-aware query suggestion by mining

click-through and session data. In: Proceeding of the 14th ACM SIGKDD international conference
on Knowledge Discovery and Data Mining (KDD)

Cover TM, Thomas JA (1991) Elements of information theory. Wiley-Interscience
Felzenszwalb PF, Huttenlocher DP, Kleinberg JM (2004) Fast algorithms for large-state-space hmms with

applications to web usage analysis. In: Advances in Neural Information Processing Systems (NIPS)
Girolami M, Kaban A (2003) Simplicial mixtures of Markov chains: distributed modelling of dynamic user

profiles. In: Advances in Neural Information Processing Systems (NIPS)

123

244 F. Bonchi et al.

Guralnik V, Karypis G (2001) A scalable algorithm for clustering protein sequences. In: BIOKDD
Kemeny J, Snell JL (1959) Finite Markov chains. Springer-Verlag
Law MH, Kwok JT (2000) Rival penalized competitive learning for model-based sequence clustering.

Pattern Recognition, International Conference on 2
Lee HK, Kim JH (1999) An hmm-based threshold model approach for gesture recognition. IEEE Trans

Pattern Anal Mach Intell 21(10):961–973
Lee JG, Han J, Li X, Gonzalez H (2008) raClass: trajectory classification using hierarchical region-based

and trajectory-based clustering. In: Proceedings of the 34th international conference on Very Large
Databases (VLDB)

Lee JG, Han J, Whang KY (2007) Trajectory clustering: a partition-and-group framework. In: Proceedings
of the 2007 ACM SIGMOD international conference on management of data (SIGMOD)

Li X, Han J, Lee JG, Gonzalez H (2007) Traffic density-based discovery of hot routes in road networks.
In: Proceedings of the 10th international Symposium on Advances in Spatial and Temporal Databases
(SSTD)

Manavoglu E, Pavlov D, Giles CL (2003) Probabilistic user behavior models. In: Proceedings of 3rd IEEE
International Conference on Data Mining (ICDM)

Manning AM, Brass A, Goble CA, Keane JA (1997) Clustering techniques in biological sequence analysis.
In: PKDD

Meyer CD (1989) Stochastic complementation, uncoupling Markov chains, and the theory of nearly reduc-
ible systems. SIAM Rev 31(2):240–272

Nanni M, Pedreschi D (2006) Time-focused clustering of trajectories of moving objects. J Intell Inf Syst
27(3):267–289

Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2)
Simon H, Ando J (1961) Aggregation of variables in dynamic systems. Econometrica 29:111–138
Srikant R, Agrawal R (1995) Mining generalized association rules. In Proceedings of 21th international

conference on Very Large Data Bases (VLDB)
Srikant R, Agrawal R (1996) Mining sequential patterns: generalizations and performance improvements.

In: Proceedings of 5th international conference on Extending Database Technology (EDBT)
Smyth P (1997) Clustering sequences with hidden Markov models. In: Advances in neural information

processing systems, vol 9, pp 648–654
Stolcke A, Omohundro SM (1994) Best-first model merging for hidden Markov model induction
Tijms H (1986) Stochastic modelling and analysis: a computational approach. Wiley, New York
Wang J, Zhang Y, Zhou L, Karypis G, Aggarwal CC (2007) Discriminating subsequence discovery for

sequence clustering. In: SDM
Welch LR (2003) Hidden Markov models and the baum-welch algorithm. IEEE Inf Theory Soc Newsl

53(4)
White LB, Mahony R, Brushe GD (2000) Lumpable hidden Markov models - model reduction and reduced

complexity filtering. IEEE Trans Automat Contr 45(12)

123

	Taxonomy-driven lumping for sequence mining
	Abstract
	1 Introduction
	2 Related work
	3 Problem statement
	3.1 Preliminaries
	3.2 Problem definition: optimal model

	4 Algorithms
	4.1 State-merging algorithm
	4.2 Model-evaluation algorithm
	4.3 Clustering algorithm

	5 Experiments
	5.1 Datasets
	5.2 Experiment with known generative model
	5.3 Search strategies comparison
	5.4 Clustering

	6 Conclusions
	Appendix 1 Proofs
	Appendix 2 Incremental model evaluation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

