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Abstract—This paper presents an extensive survey of publicly
available biomedical datasets, revealing four dozen databases
connected to chronic diseases, such as cancer, diabetes, heart
diseases, and COVID-19, among others. Our main objective is
to describe these datasets, highlighting commonalities and best
practices among them, and to raise awareness about the wealth
of data available to study chronic diseases, focusing on the
importance of the sociodemographic data in biomedical research.

Index Terms—databases, health care, machine learning,
chronic diseases

I. INTRODUCTION

The incidence of chronic diseases is rapidly increasing not
only among the elderly but also in young children. Cancer,
diabetes, and cardiovascular diseases are a scourge of everyday
life as they undermine people’s health and degrade the quality
of life and well-being of society. According to the World
Health Organization, the long duration of chronic diseases
can be attributed to a combination of genetic, physiological,
environmental and behavioral factors. Chronic diseases are
responsible for the death of 41 million people each year,
equivalent to 74% of all deaths globally [1].

Research in the field of biomedicine is increasingly using
data-driven methods including artificial intelligence and ma-
chine learning. Therefore, it is critical to implement protocols
on fairness, transparency, and explainability of algorithms to
mitigate the potential risks posed by, for instance, not consid-
ering social-environmental factors (e.g., sex and age). Hence,
in this paper we present a new multidimensional collection of
datasets that contribute to the research of chronic conditions,
by giving an overview and highlighting commonalities.

II. METHODOLOGY

The target of our data survey are publicly available datasets
disseminated through scientific studies, and created either
for studying a chronic disease, or including chronic disease
patients as the majority of the study subjects. The datasets
matching these conditions were identified through extensive
research in publicly available health information repositories.

The initial step in our survey was to consider the most com-
mon and critical chronic diseases. Initially, in addition to heart
disease, cancer and diabetes, which are the leading causes of
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SUMMARY OF THE DATA COLLECTION METHODOLOGY AND RESULTS.

TABLE I

Chronic Search
Conditions Engines Results
Alzheimer’s
Cancer Google n=48 Publicly
Chron. Kidney Dis. Scholar Avalaible Databases
COPD Zenodo [6]
COVID-19 Kaggle [7] Embedded Features
Diabetes UCI ML [8] Socio-Demographics
Heart Diseases PhysioNet [9] Physical Activity
Mental Disorders NIH-Mendeley [10] Clinical Data
Multiple Sclerosis EMBL-EBI [11] Sleep Data
Parkinson’s Biometric Data
Rheumatoid Arthritis Psychometrics

death and disability in the US [2], we added multiple sclerosis,
hypertension, arthritis, chronic kidney disease, mental and
sleep disorders (e.g. chronic depression, anxiety), chronic
obstructive pulmonary disease (COPD), dementia, Alzheimer’s
and Parkinson’s diseases, which belong to the most common
chronic conditions spectrum in adults [3]- [5]. Likewise, due to
COVID-19 pandemic incidence, a challenging chronic illness,
long COVID, is identified through the persistent symptoms
upon recovery from COVID-19.

The next step, as depicted in Table I, was to perform a
series of searches in well-known search engines (e.g., Google
Scholar, PubMed, Nature) and online data repositories (e.g.,
Kaggle, Zenodo). We considered clusters of queries where in
each cluster various combinations of words, related to chronic
diseases and data science, lead to the identification of relevant
information. We combined these queries with the names of the
chronic conditions we identified as targets. The first cluster of
queries focuses on retrieving information related to biomedical
research based on time series. This cluster’s queries included:
“chronic diseases”, “symptoms”, “comorbidities”, “wearable”,
“biometric”, “smart”, “vital signs”, ‘“clinical data”, “time
series”, “cancer”, “heart disease”, “diabetes”, “degenerative”,
“multivariate data”. The second cluster includes keywords re-
lated to the investigation of mental disorders and psychological
symptoms through machine learning algorithms based on the
biometric profile and daily activity (physical activity, sleep,
wearable sensors’ data) of chronic disease patients. Specifi-
cally, the following keywords were used: “machine learning”,

“sensor”’, mental
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smartwatch”, “physical activity”,
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sleep”,



TABLE II
SUMMARY OF DATASETS RELATED TO CHRONIC CONDITIONS ALONG. THE NUMBER OF SUBJECTS IS DENOTED BY N. A DARK CIRCLE MEANS THE
DATASET INCLUDES SOCIODEMOGRAPHIC DATA (SD), CLINICAL DATA (CD), PHYSICAL ACTIVITY (PA), TIME-SERIES DATA (TSD), AND/OR
PSYCHOMETRIC DATA (PSY). WE INDICATE WHETHER THE DATASET IS HOSTED AT AN ARCHIVAL REPOSITORY AND THUS HAS A DIGITAL OBJECT
IDENTIFIER (DOI), AND IF IT IS ACCOMPANIED BY A PUBLICATION (PAPER). WE ALSO INCLUDE WHETHER THERE IS AN ETHICS STATEMENT (ETH),
AND/OR DETAILS ON THE DATA ANONYMIZATION PROCEDURE (AN).

Features Publication Details
# Dataset Therapeutic Area N SD CD PA TSD | PSY | Year | DOI | Paper | ETH AN
1 Karoly et al. [12] Brain Disease 31 [] O O @) [] 2021 [] [] [) [ ]
2 Andrzejak et al. [13] Brain Disease 500 O [ ] O [ ] O 2001 [ ] [ ] O O
3 Sada et al. [14]. Cancer 35 [ ] [ ] [ ] @] [ ] 2021 [ ] [ ] [ ) @]
4 Stump et al. [15] Cancer 50 [ ] [ ] O O O 2020 [ ] [ ] [ ] O
5 U. Hosp of Coimbra [16] Cancer 165 [ ] [ ] O O O 2015 [ ] [ ] O O
6 U. Hosp. of Caracas [17] Cancer 858 [ ] [ ] O @] O 2017 [ ] [ ] @] @]
7 Islam et al. [18] Chron. Kidney Dis. 202 [ ] [ ] O @] O 2020 [ ] [ ] O @]
8 Rogan et al. [19] Chron. Kidney Dis. 226 [ ] [ ] O @] O 2017 [ ] [ ] [ ) @]
9 Soundarapandian et al. [20] Chron. Kidney Dis. 400 [ [ J O @] O 2015 O O o o
10 PTB Diagnostic ECG [21] Common Aging Dis. 290 [ ] [ ] o] [ ] ©] 2020 [ ] [ ] O O
11 Anne Arundel Med. Center [22] COVID-19 117 [ ] [ ] O @] O 2020 [ ] [ ] [ ) [ ]
12 Welltory [23] COVID-19 186 [ J O [ J [ J [ J 2020 [ J [ J [ J [ J
13 Hajifathalian et al. [24] COVID-19 664 [ J [ J O [ J O 2020 [ J [ J [} O
14 Alavi et al. [25] COVID-19 3,318 o] o [ ([ ] ®] 2021 [ [ [ J ([ ]
15 Mishra et al. [26] COVID-19 5,262 o] o] [ J ([ ] e] 2020 [ J [ J [ J ([
16 COVID-19 focus patients [27] COVID-19 4,5M [ J [ J O O O 2020 O O O O
17 | COV19 Open Data Mexico [28] COVID-19 6,6M [ J [ J O O O 2021 O O O O
18 BIG IDEAs [29] Diabetes 16 [ J [ J [ J O O 2021 [ J [ J [} [ J
19 DINAMO [30] Diabetes 29 [ [ [ J [ ] ®] 2018 [ [ J [ (]
20 Washington U. [31] Diabetes 70 O [ ] [ ] 0] O 1994 O O o o
21 Smith et al. [32] Diabetes 768 [ J [ J O O O 1988 [ J [ J O O
22 Strack et al. [33] Diabetes 70K [ ] [ ] O @] O 2014 [ ] [ ] [ ) [ ]
23 St. Petersburg INCART [34] Heart Disease 32 [ ] [ ] O ( ] O 2008 [ ] O O O
24 U. of Creighton [35] Heart Disease 35 O [ ] O [ ] O 1986 [ ] O O O
25 MIT-BIH Arrhythmia [36] Heart Disease 47 [ ] O O ( ] O 2005 [ J [ J O O
26 European ST-T [37] Heart Disease 78 [ ] [ ] O [ ] O 1992 [ ] [ ] O O
27 SHAREE [38] Heart Disease 139 [ ] [ ] O [ ] O 2015 [ ] [ ] [ ) @]
28 Shen et al. [39] Heart Disease 200 [ J [ J O [ J O 2020 [ ] [ ] [ ] ( ]
29 Detrano et al. [40] Heart Disease 920 [ ] [ ] @] [ ] @] 1989 [ ] [ ] [ ) O
30 Guvenir et al. [41] Heart Disease 452 [ ] [ ] O [ ] O 1997 [ ] [ ] @] O
31 Golovenkin et al. [42] Heart Disease 1700 [ ] [ ] O @] O 2020 [ ] [ ] [ ) [ ]
32 Framingham heart study [43] Heart Disease 4,240 [ ] [ ] O @] O 2010 [ ] O [ ) @]
33 Zheng et al. [44] Heart Disease 10K [ J [ J O [ J O 2020 [ J [} [ J [ J
34 Cardiovascular Disease [45] Heart Disease 70K [ ] [ ] 0] @] @] N/A O @] @] @]
35 Aziz et al. [46] Hypertension 160 [ ] O O @] [ ] 2020 [ ] [ ] [ ) O
36 MMASH [47] Mental Disorder 22 [ J O [ J [ J [ J 2020 [ J [ J [ J O
37 SWELL-KW [48] Mental Disorder 25 O O o @] o 2014 [ ] [ ] [ ) [ ]
38 YAAD [49] Mental Disorder 25 O O O [ ] [ ] 2021 [ ] [ ] [ ] ( ]
39 Depresjon [50] Mental Disorder 55 [ ] o [ ] [ ] [ ] 2018 [ ] [ ] O O
40 Thmig et al. [51] Mental Disorder 57 O @] O O [ ] 2020 [ ] [ ] [ ) [ ]
41 U. of Michigan [52] Mental Disorder 62 O O [ ] @] [ ] 2019 [ ] [ ] [ ) @]
42 Rekeland et al. [53] Myalgic Encephalomyelitis 27 [ J O [ J [ J [} 2022 [ J [ J [} [ J
43 Fuller et al. [54] None 46 O O [ ] O O 2019 [ ] [ ] [ ] O
44 Sakar et al. [55] Parkinson 1040 O O 0] [ ] O 2013 [ ] [ J [ ) @]
45 Apnea-ECG [56] Sleep Disorder 21 O O 0] [ ] O 2000 [ ] [ ] O O
46 Luo et al. [57] Sleep Disorder 28 [ ] O [ ] [ ] [ ] 2020 [ ] [ ] [ ) @]
47 T. U. of Darmstadt [58] Sleep Disorder 42 [ ] O [ ] O O 2014 [ ] [ ] [ ] ( ]
48 Thyroid Disease Data Set [59] Thyroid Disease 7200 O O O O O 1987 O O O O
73% | 62% | 31% | 48% | 25% 87% 81% 60% 33%

disorder”, “stress”, “anxiety”, “psychometrics”, “emotion”,
“depression”, “mhealth”. The third cluster aims to collect in-
formation and data about COVID-19 through queries consisted
of the keywords: “COVID-19”, “symptoms”, “risk factors”,
“detection”, “heart rate”, “patients”, * prediction”,

“severe”, “illness”, “hospitalization”.

CEINNT3

mortality”,

These queries resulted in a large number of results, which
we manually reviewed using the following inclusion criteria:
must be a publicly available dataset, must refer to a chronic
condition, must include clinical information or physical ac-
tivity data, and must contain at least 10 patients. Out of
110 potential sources of data related to chronic diseases,
the presented collection consists of 48 publicly and readily
available health datasets; the majority of the excluded datasets

did not provide direct free access to the data, and instead
require a formal data request to be obtained.

III. DATASETS DESCRIPTION AND COMPARISON

In this section, we present the characteristics and descriptive
statistics extracted by examining the metadata and publications
releasing each dataset. Table II provides summary information
about each dataset’s characteristics. We include the therapeutic
areas, sample size, year of publication, as well as information
about the available features: sociodemographic data, clinical
data, physical activity, time-series data, and psychometric data.
In addition, we describe whether the dataset is hosted at an
archival repository and thus has a Digital Object Identifier
number, and whether it is accompanied by a publication.
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Fig. 1. Histogram indicating the distribution of number of subjects (N)
throughout the component databases of the introduced data collection.

Finally, we include whether the data release includes a detailed
ethics statement and/or details on the anonymization process.

Firstly, with respect to the therapeutic area, human data
from 13 different therapeutic areas have been spotted whilst
the 14th one, marked as “None”, represents wearable data
of healthy subjects in a study focused on physical activity
[54]. Because of the beneficial impact of the physical activity
and exercise on the prevention and treatment of the chronic
diseases [60], potentially relevant insights could be extracted
of that data set. Furthermore, 18% of the surveyed datasets
focus on COVID-19, having the largest sample sizes compared
to other chronic diseases, followed by cancer, diabetes, heart
diseases and mental disorders. A histogram of sample sizes is
included in Figure 1.

Secondly, sociodemographic information (such as sex and
age) linked to the participants is present in 73% of the datasets.
Figure 2 illustrates the presence of three features that we find
across many of the surveyed datasets: sex, age and Body Mass
Index (BMI). We can observe that sex and age are more
frequent than BMI, whereas at least one of these features
appears in 34 of the surveyed datasets. Moreover, clinical
features are provided in more than half of the data sets,
whilst psychological information is present in one quarter of
the proposed data collection’s components, mostly linked to
physical activity information.

Thirdly, most of the data sets are identified by a DOI number
and have been published either in public data repositories or
as supplementary material for a scientific paper. Regarding the
type of the data files, common formats (plain text, comma-
separated values, Microsoft Excel) are used in more than
40 data sets, whereas the rest of the data are stored in less
common, usually propietary formats (.hea, .qrs, .mat), for
which nevertheless free/open source libraries are available
in most popular programming languages. These libraries are
often created by reverse engineering, hence correctness when
reading the data using them cannot be always guaranteed.

Finally, about 60% of the datasets include an ethics decla-
ration statement. None of the datasets we examined includes
direct identifiers of people, but only about half of the studies
indicate the specific process done for anonymization.
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Fig. 2. Schematic representation of Sex-Age-BMI variables through Venn
diagram.

IV. DISCUSSION

We uncover that there are at least 48 publicly available
datasets to study chronic diseases, and that these datasets
cover a wide range of diseases including cancer, diabetes,
and recently long COVID. A common element we find in
these datasets is the contribution of clinicians and biomedical
researchers to their creation. In most cases, a detailed descrip-
tion of the process from collection to data release is provided,
providing credibility to the clinical annotations and ensuring
the medical relevance of the features. The datasets have a wide
range of sample sizes, which seem to follow an exponential
distribution (Figure 1 has logarithmic scale in the X axis) and
include from a few tens to several million people. Most of the
datasets we found were created in the last five years, which
suggests an accelerated process and that we will see more
dataset creation in the coming years. The datasets we surveyed
include relevant sociodemographic, clinical, biometric and
psychometric information. It was common to find sex and age
of the patients in the datasets, as well as BMI.

Data privacy protocols and regulations have been estab-
lished to control the excessive collection and illegitimate
disclosure of human subjects data. At the same time, data
about age and sex can be useful for clinical research and to
detect and mitigate unwanted biases in the dataset, or in the
models built from it. Therefore, the inclusion of sociodemo-
graphic information in healthcare databases is a positive trend
if personal data protection protocols are in place and may
lead to better statistical models with good algorithmic fairness
properties.

Future work includes the further extension of the pro-
posed Data Collection by including underrepresented diseases
(hypertension, brain diseases, among others) and other com-
mon neurodegenerative diseases (such as multiple sclerosis,
Alzheimer’s). Furthermore, we are investigating the poten-



tial unique characteristics and mechanisms of dependencies
between symptoms and outcomes in diverse subgroups. The
identification of intrinsic differences between, for instance,
statistical model performance for women and men, or younger
and older patients, could contribute to detecting and mitigating
possible algorithmic discrimination risks.
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