
Web Spam Detection: link-based and content-based
techniques

Luca Becchetti2, Carlos Castillo1, Debora Donato1, Stefano Leonardi2, and Ricardo
Baeza-Yates1

1 Yahoo! Research Barcelona
C/Ocata 1, 08003 Barcelona

Catalunya, SPAIN
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Abstract. The Web is both an excellent medium for sharing information as well as an attractive
platform for delivering products and services. This platform is, to some extent, mediated by search
engines in order to meet the needs of users seeking information. Search engines are the “dragons”
that keep a valuable treasure: information [13]. Given the vast amount of information available on
the Web, it is customary to answer queries with only a small set of results (typically 10 or 20 pages
at most). Search engines must then rank Web pages, in order to create a short list of high-quality
results for users.
Web spam can significantly deteriorate the quality of search engine results. Thus there is a large
incentive for commercial search engines to detect spam pages efficiently and accurately. Here we
present the main techniques recently introduced for Web Spam detection e demotion.

1 Introduction

Web Spam is a well known phenomenon for all the users that, on regular basis, browse
the Web by the means of a search engine. It is an annoying experience since it forces
users to load pages whose content is often completely unrelated with the query they
submitted to the search engine. Nevertheless there does not exist a common definition,
over which the scientific community agrees. It is indeed difficult to decide till which
point we can consider “licit” the efforts devoted to increase pages rankings in the list of
a search engine results. There are many and relatively easy-to-implement techniques
used to attract and/ore redirect traffic. We have observed a number of typical aspects
that characterize Web Spam pages:

– Inclusion of many unrelated keywords and links.
– Use of many keywords in the URL.
– Redirection of the user to another page.
– Creation of many copies with substantially duplicate content.
– Insertion of hide text by writing in the same color as the background of the page.

For all the reasons we have mentioned, Web spam detection is a challenging problem.
Techniques for spam detection are comprised by two main step. In the first step, all the
aspects enumerated above are formalized into a set of link-based and/or content-based
features. These features are used to build a classifier able to detect different kind of
Web spam pages.

During the last few years a lot of work has been devoted to this task. At the begin-
ning of our study we focused on link-based spam detection [4, 3], investigating which
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features are good for discovering malicious link structures on large Web graphs. The
main contributions in this area are:

– We introduce a damping function for rank propagation [1] that provides a metric
that helps in separating spam from non-spam pages.

– We propose a new technique for link spam detection that exploits the distribution
of the number of Web page supporters with respect to distance. To this purpose, we
present an improved approximate neighborhood counting algorithm [19].

– We test several metrics as degree-degree correlations, edge-reciprocity, host-base
count of neighbors, PageRank and TrustRank [16].

– We suggest an automatic classifier that only uses link attributes, without looking at
Web page content, still achieving a precision that is equivalent to that of the best
spam classifiers that use content analysis. This is an important point, since in many
cases spam pages exhibit pretty “normal” contents.

All the experiments were done on a large sample of the .uk domain where thou-
sands of domains have been inspected and manually classified as spam or non-spam
domains by only one person (one of the authors of this paper). This sample was down-
loaded in 2002 by the Dipartimento di Scienze dell’Informazione, Università degli
studi di Milano.

The experience gained put in evidence the need of a reference collection over which
comparing all the approaches presented so far. This observation led us to build such
a collection with the help of a group of volunteers recruited at the beginning of July
2006: The WEBSPAM-UK2006 is the first publicly available 3 Web spam collection
that includes page contents and links, and that has been labeled by a large and diverse
set of judges. A description of this data set can be found in [6].

In a recent work [7] we analyze the performance of an automatic classifier that
combines a set of link-based and content-based features. Great improvements in the
classification can be obtained exploiting the dependencies that exist among pages in
the Web: links are not placed at random and in general, similar pages tend to be linked
together more frequently than dissimilar ones [10].

Such a dependency holds also for spam pages and hosts: spam tends to be clus-
tered on the Web. One explanation for this behavior is that spam pages often adopt
link-based rank-boosting techniques such as link-farming. These techniques can be as
simple as creating a pool of pages linking to a page whose rank is to be raised. In
practice spammers use sophisticated structures that are difficult to detect.

We investigate techniques that exploit the connections between spam hosts in order
to improve the accuracy of our classifiers. We assume that hosts that are well-linked
together are likely to have the same class label (spam or non-spam). More generally, we
can assume that two hosts in the same class should be connected by short paths going
mostly through hosts in the same class. Figure 1 shows a visualization of the host
graph in the WEBSPAM-UK2006 collection. An edge between two hosts is shown
only if there are at least 100 links between the two hosts. In the figure, black nodes
are spam and white nodes are non-spam. The layout of the nodes in the figure was
computed using a spring model.

3 http://www.yr-bcn.es/webspam/datasets/
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Fig. 1. Graphical depiction of the hostgraph (undirected), pruned to include only labeled nodes with a connection of
over 100 links between them. Black nodes are spam, white nodes are non-spam. Most of the spammers in the larger
connected component are clustered together (upper-right end of the center portion). Most of the other connected
components are single-class (either only spam nodes, or only non-spam nodes).

For the larger connected component of the graph, we can see that spam nodes tend
to be clustered together (in the upper right corner of the central group of nodes of
Figure 1). For the nodes that are not connected to this larger connected component (or
are connected by links below the threshold), we can see that most of the groups are
either exclusively spam, or exclusively non-spam.
The main contributions of [7] can be summarized as follows:
– To the best of our knowledge this is the first work that integrates link and content
features for building a system to detect Web spam.
– We investigate the use of a cost sensitive classifier to exploit the inherent imbalance
of labels in this classification problem. In the dataset we use, most of the Web content
is not spam.
– We demonstrate improvements in the classification accuracy using dependencies
among labels of neighboring hosts in the Web graph. We incorporate these depen-
dencies by means of clustering and random walks.
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– We apply stacked graphical learning [8] to improve the classification accuracy, ex-
ploiting the link structure among hosts in an efficient and scalable way.

The following of this documents is organized as follows.
In Section 2 we give an overview of the different definition of Web Spam. In Sec-
tion 3 we characterize Web spam pages. Section 4 presents the two datasets we used
in our experiments Section 5 and Section 6 describe the two link-based algorithm we
introduced in [4]. In Section 7 we list the results of a number of link-based classifier
over the UK2002 collection, meanwhile in Section 8 we show the results of a com-
bined approach that uses both link-based and content-based features over the collection
WEBSPAM-UK2006.

2 Web Spam: a debatable problem

The term “spam” has been commonly used in the Internet era to refer to unsolicited
(and possibly commercial) bulk messages. The most common form of electronic spam
is e-mail spam, but in practice each new communication medium has created a new
opportunity for sending unsolicited messages. The Web is not absent from this list,
but as the request-response paradigm of the HTTP protocol makes it impossible for
spammers to actually “send” pages directly to the users, Web spammers try to deceive
search engines and thus break the trust that search engines establish with their users.

All deceptive actions which try to increase the ranking of a page in search engines
are generally referred to as Web spam or spamdexing (a portmanteau, or combination,
of “spam” and “indexing”). A spam page or host is a page or host that is either used
for spamming or receives a substantial amount of its score from other spam pages.

An alternative way of defining Web spam could be any attempt to get “an unjus-
tifiably favorable relevance or importance score for some web page, considering the
page’s true value” [15]. A spam page is a page which is used for spamming or re-
ceives a substantial amount of its score from other spam pages. Another definition of
spam, given in [20] is “any attempt to deceive a search engine’s relevancy algorithm”
or simply “anything that would not be done if search engines did not exist”.

Seeing as there are many steps which content providers can take to improve the
ranking of their Web sites, and given that there is an important subjective element
in the evaluation of the relevance of Web pages, to offer an exact definition of Web
spam would be misleading. Indeed, there is a large gray area between “ethical” Search
Engine Optimization (SEO) services and “unethical” spam. SEO services range from
ensuring that Web pages are indexable by Web crawlers, to the creation of thousands or
millions of fake pages aimed at deceiving search engine ranking algorithms. Our main
criteria for deciding in borderline cases is the perceived effort spent by Web authors
on providing good content, against the effort spent on trying to score highly in search
engines.

The relationship between a Web site administrator trying to rank high in a search
engine and the search engine administrator is an adversarial one, in which any unmer-
ited gain in ranking for a Web site results in a loss of accuracy for the search engine.
This relationship is however extremely complex in nature, both because it is mediated
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Fig. 2. Schematic depiction of the neighborhood of a page participating in a link farm (left) and a normal page
(right). A link farm is a densely connected sub-graph, with little relationship with the rest of the Web, but not
necessarily disconnected.

by the non univocal attitudes of customers towards spam, and because more than one
form of Web spam exists which involves search engines.

3 Characterizing Spam Pages

There are many techniques for spamming the index of a search engine [15], and they
can be broadly classified in two groups: content (or keyword) spam, and link spam.

Content spam refers to changes in the content of the pages, for instance by in-
serting a large number of keywords [9, 11]. In [18], it is shown that 82-86% of spam
pages of this type can be detected by an automatic classifier. The features used for the
classification include, amongst others: the number of words in the text of the page, the
number of hyperlinks, the number of words in the title of the pages, the compressibility
(redundancy) of the content, etc.

Link spam includes changes into the link structure of the sites, by creating link
farms [22, 2]. A link farm is a densely connected set of pages, created explicitly with
the purpose of deceiving a link-based ranking algorithm. Zhang et. al. [22] define this
form of collusion as the “manipulation of the link structure by a group of users with
the intent of improving the rating of one or more users in the group”.

The targets of link-based spam-detection algorithms are the pages that receive most
of their ranking by participating in link farms. A page that participates in a link farm
may have a high in-degree, but little relationship with the rest of the graph. In Figure 2,
we show a schematic diagram depicting the links around a spam page and a normal
page. Link farms can receive links from non-spam sites by buying advertising, or by
buying expired domains used previously for legitimate purposes.

Previous work in this direction includes the contribution of [12], based on “shin-
gles”, which can be also applied in detecting some types of link farms (those that are
dense graphs). It is clear that a spammer can construct link farms that exhibit statistical
and spectral properties that do not differ from those of normal pages. An exclusively
topological approach is clearly unfit in this case.

Link-based and content-based analysis offer two orthogonal approaches that can
prove useful if combined. On one hand, in fact, link-based analysis does not capture
all possible cases of spamming, since some spam pages appear to have spectral and
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Fig. 3. Distribution of the fraction of new supporters found at varying distances (normalized), obtained by backward
breadth-first visits from a sample of nodes, in two large Web graphs.

topological properties that are statistically close to those exhibited by non spam pages.
In this case, content-based analysis can prove extremely useful.

On the other hand, content-based analysis seems less resilient to changes in spam-
mers strategies, in much the same way that content-based techniques for detecting
email spamming are. For instance, a spammer could copy an entire Web site (creat-
ing a set of pages that may be able to pass all tests for content spam detection) and
change a few out-links in every page to point to the target page. This may be a rela-
tively inexpensive task to perform in an automatic way, whereas creating, maintaining,
reorganizing a link farm, possibly spanning more than one domain, is likely to be eco-
nomically more expensive.

We view our set of Web pages as a Web graph, that is, a graph G = (V,E) in which
the set V corresponds to Web pages in a subset of the Web, and every link (x,y) ∈ E
corresponds to a hyperlink from page x to page y in the collection. For concreteness,
the total number of nodes N = |V | in the full Web is in the order of 1010 [14], and the
typical number of links per Web page is between 20 and 30.

Link analysis algorithms assume that every link represents an endorsement, in the
sense that if there is a link from page x to page y, then the author of page x is recom-
mending page y. Following [5], we call x a supporter of page y at distance d, if the
shortest path from x to y formed by links in E has length d. The set of supporters of a
page are all the other pages that contribute towards its link-based ranking.

As suggested by Figure 2, a particular characteristic of a link farm is that the spam
pages might have a large number of distinct supporters at short distances, but this
number should be lower than expected at higher distances.

In Figure 3 we plot the distribution of distinct supporters for a random sample of
nodes in two subsets of the Web obtained from the Laboratory of Web Algorithmics.
(All the Web graphs we use in this paper are available from the Dipartimento di Scienze
dell’Informazione, Università degli studi di Milano at http://law.dsi.unimi.it/).

We can see that the number of new distinct supporters increases up to a certain
distance, between 8 and 12 links in these graphs, and then decreases, as the graph is
finite in size and we approach its effective diameter. We expect that the distribution of
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Fig. 4. Distribution of the number of new supporters at different distances, for pages in different PageRank buckets.

supporters obtained for a highly-ranked page is different from the distribution obtained
for a lowly-ranked page.

To observe this, we calculated the PageRank of the pages in the eu.int (European
Union) sub-domain. We chose this domain because it is a large, entirely spam-free,
subset of the Web. We grouped the pages into 10 buckets according to their position in
the list ordered by PageRank. Figure 4 plots the distribution of supporters for a sample
of pages in three of these buckets having high, medium and low ranking respectively.

As expected, highly-ranked pages have a large number of supporters after a few
levels, while lowly-ranked pages do not. Note that if two pages belong to the same
strongly-connected component of the Web, then eventually their total number of sup-
porters will converge after a certain distance. In that case the areas below the curves
will be equal.

As shown in Figure 2, we expect that pages participating in a link-farm present
anomalies in their distribution of supporters. A major issue is that computing this dis-
tribution for all the nodes in a large Web graph is computationally very expensive. A
straightforward approach is to repeat a reverse breadth-first search from each node of
the graph, and marking nodes as they are visited [17]; the problem is that this would
require O(N2) memory for the marks if done in parallel or O(N2) time to repeat a
BFS from each one of the N nodes if done sequentially. A possible solution could be
to compute the supporters only for a subset of “suspicious” nodes; the problem with
this approach is that we do not know a priori which nodes are spammers. An efficient
solution will be presented in Section 6.

4 Datasets

The two link-based algorithms, presented originally in [4] and here briefly described
in Section 5 and 6, are tested over the UK2002 collection. The combined classifier pre-
sented in Section 8 is trained using the WESPAM-UK2006 collection. In the following
of this section, we give some details about the 2 collections
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4.1 UK2002

This collection is a set of 18.5 million pages from the .uk domain, downloaded in
2002. The pages were located at 98,452 different hosts. Given the large size of this
collection, we decided to classify entire hosts instead of individual pages. While this
introduces errors, as some hosts are a mixture of non-spam and spam content, it allows
us to have much broader coverage. To provide class labels for the classifier, we manu-
ally inspected a sample of 5,750 hosts (5.9%) that covered 31.7% of the Web pages in
the collection.

For every host, we inspected a few pages manually and looked at the list of URLs
collected from that host by the Web crawler. Whenever we found a link farm inside
the host, we classified the entire host as spam. In practice, in only very few cases we
observed mixtures of spam and non-spam content in the same host.

The manual classification stage was done by one of the authors of this paper and
took roughly three work days. The sampling was biased towards hosts with high Page-
Rank, thus following the same approach taken by other researchers in link-spam de-
tection [5, 16]. We also marked all hosts ending in “.ac.uk” (academic domains) as
normal. When tagging, we discarded the hosts that were no longer available (about
7%) and classified the remaining 5,344 hosts into 3 categories: spam, normal and sus-
picious. Table 1 shows the number of hosts and pages in each class.

Class Hosts Pages
Spam 840 16% 329 K 6%
Normal 4,333 81% 5,429 K 92%
. . .Suspicious 171 3% 118 K 2%
Total 5,344 (5.8%) 5,877 K (31.7%)

Table 1. Relative sizes of the classes in the manually-classified sample. The last row gives the fraction of classified
hosts and pages over the entire collection.

4.2 WEBSPAM-UK2006

This publicly available Web spam collection [6] is based on a crawl of the .uk domain
done in May 2006, including 77.9 million pages and over 3 billion links in about 11,400
hosts.

This reference collection is tagged at the host level by a group of volunteers. The
assessors labeled hosts as “normal”, “borderline”, “spam”or “can not classify, and were
paired so that each sampled host was labeled by two persons independently. We ob-
tained 6,552 evaluations. The distribution of the labels assigned by the judges is shown
in Table 2. The most common label was “normal”, followed by “spam”, followed by
“borderline”.

For the ground truth, we used only hosts for which the assessors agreed, plus the
hosts in the collection marked as non-spam because they belong to special domains
such as police.uk or .gov.uk.
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Label Frequency Percentage
Normal 4,046 61.75%

Borderline 709 10.82%
Spam 1,447 22.08%

Can not classify 350 5.34%

Table 2. Distribution of the number of pages reviewed by each judge.

5 Truncated PageRank

In [4] we described Truncated PageRank, a link-based ranking function that decreases
the importance of neighbors that are topologically “close” to the target node. In [22] it
is shown that spam pages should be very sensitive to changes in the damping factor of
the PageRank calculation; in our case with Truncated PageRank we modify not only
the damping factor but the whole damping function.

Intuitively, a way of demoting spam pages is to consider a damping function that
removes the direct contribution of the first levels of links, such as:

damping(t) =

{
0 t ≤ T
Cα t t > T

Where C is a normalization constant and α is the damping factor used for Page-
Rank. This function penalizes pages that obtain a large share of their PageRank from
the first few levels of links; we call the corresponding functional ranking the Trun-
cated PageRank of a page. The calculation of Truncated PageRank is described in
detail in [4]. There is a very fast method for calculating Truncated PageRank. Given a
PageRank computation, we can store “snapshots” of the PageRank values at different
iterations and then take the difference and normalize those values at the end of the
PageRank computation. Essentially, this means that the Truncated PageRank can be
calculated for free during the PageRank iterations.

Note that as the number of indirect neighbors also depends on the number of direct
neighbors, reducing the contribution of the first level of links by this method does not
mean that we are calculating something completely different from PageRank. In fact,
for most pages, both measures are strongly correlated, as shown in [4].

In practice, we observe that for the spam hosts in our collection, the Truncated
PageRank is smaller than the PageRank, as shown in Figure 5 (left). There is a sharp
peak for the spam pages in low values, meaning that many spam pages loose a large part
of their PageRank when Truncated PageRank is used. We also found that studying the
ratio of Truncated PageRank at distance i versus Truncated PageRank at distance i−1
also helps in identifying Web spam, as shown in Figure 5 (right). A classifier using
Truncated PageRank, as well as PageRank and degree-based attributes (60 features
in total) can identify 76.9% to 78.0% of the spam hosts with 1.6% to 2.5% of false
positives.
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6 Estimation of supporters

Following [5], we call x a supporter of page y at distance d, if the shortest path from x
to y formed by links in E has length d. The set of supporters of a page are all the other
pages that contribute to its link-based ranking.

A natural way of fighting link spam is to count the supporters. The naive approach
is to repeat a reverse breadth-first search from each node of the graph, up to a certain
depth, and mark nodes as they are visited [17]. Unfortunately, this is infeasible unless
a subset of “suspicious” node is known a priori. A method for estimating the number
of supporters of each node in the graph is described in [4] which improves [19].

The general algorithm (described in detail in [4]) involves the propagation of a bit
mask. We start by assigning a random vector of bits to each page. We then perform an
iterative computation: on each iteration of the algorithm, if page y has a link to page x,
then the bit vector of page x is updated as x← x OR y. After d iterations, the bit vector
associated to any page x provides information about the number of supporters of x at
distance≤ d. Intuitively, if a page has a larger number of supporters than another, more
1s will appear in the final configuration of its bit vector.

The algorithm is described in detail in [4]. In order to have a good estimation, d
passes have to be repeated O(logN) times with different initial values, because the
range of the possible values for the number of supporters is very large. We have ob-
served that counting supporters from distances d from 1 to 4 give good results in prac-
tice. We measured how the number of supporters change at different distances, by
measuring, for instance, the ratio between the number of supporters at distance 4 and
the number of supporters at distance 3. The histogram for the minimum and maximum
change is shown in Figure 6 (left).

This algorithm can be extended very easily to consider the number of different
hosts contributing to the ranking of a given host. To do so, in the initialization the bit
masks of all the pages in the same host have to be made equal. In Figure 6 (right),
we plot the number of supporters at distance 4 considering different hosts contributing
towards the ranking of the home pages of the marked hosts. We observed anomalies in
this distribution for the case of the spam pages, and these anomalies are more evident
by counting different hosts than by counting different pages.
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Detection False
Metrics rate positives
Degree (D) 73-74% 2-3%
D + PageRank (P) 74-77% 2-3%
D + P + TrustRank 77% 2-3%
D + P + Trunc. PageRank 77-78% 2%
D + P + Est. Supporters 78-79% 1-2%
All attributes 80-81% 1-3%

Table 3. Summary of the performance of the different metrics, the ranges in the error rate correspond to a simple
classifier with a few rules, and to a more complex (but more precise) classifier.

Considering distance 4, the estimation of supporters based on pages (62 attributes)
yields a classifier with 78.9% to 77.9% of detection rate and 1.4% to 2.5% of false
positives. If we base the estimation on hosts (67 attributes, slightly more because in-
degree is not the number of neighbors at distance one in this case) allows us to build
a classifier for detecting 76.5% to 77.4% of the spam with an error rate from 1.3% to
2.4%.

The detection rate is two to three percentage points lower if distance 2 is consid-
ered, with roughly the same false positives ratio.

7 Link-based Classifier

We test different automatic classifiers, trained used different combinations of features.
We used as the base classifier the implementation of C4.5 (decision trees) given in
Weka [21]. We consider several link-based groups of metrics, roughly divided in:
– Degree-based measures;
– PageRank;
– TrustRank;
– Truncated PageRank;
– Estimation of Supporters.
Table 3 presents an evaluation of all these classifiers in term of

Detection rate =
# of spam sites classified as spam

# of spam sites
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False positives =
# of normal sites classified as spam

# of normal sites
.

For a complete list of the features used see the Appendix of [3].

8 Combined Classifier

We used as the base classifier the implementation of C4.5 (decision trees) given in
Weka [21]. Using both link and content features, the resulting tree used 45 unique
features, of which 18 are content features.

In WEBSPAM-UK2006, the non-spam examples outnumber the spam examples to
such an extent that the classifier accuracy improves by misclassifying a disproportion-
ate number of spam examples. At the same time, intuitively, the penalty for misclassi-
fying spam as normal is not equal to the penalty for misclassifying normal examples
as spam. To minimize the misclassification error, and compensate for the imbalance in
class representation in the data, we used a cost-sensitive decision tree. We imposed a
cost of zero for correctly classifying the instances, and set the cost of misclassifying
a spam host as normal to be R times more costly than misclassifying a normal host
as spam. Table 4 shows the results for different values of R. The value of R becomes
a parameter that can be tuned to balance the true positive rate and the false positive
rate. In our case, we wish to maximize the F-measure. Incidentally note that R = 1 is
equivalent to having no cost matrix, and is the baseline classifier.

Table 4. Cost-sensitive decision tree

Cost ratio (R) 1 10 20 30 50
True positive rate 64.0% 68.0% 75.6% 80.1% 87.0%
False positive rate 5.6% 6.8% 8.5% 10.7% 15.4%

F-Measure 0.632 0.633 0.646 0.642 0.594

We then try to improve the results of the baseline classifier using bagging. Bagging
is a technique that creates an ensemble of classifiers by sampling with replacement
from the training set to create N classifiers whose training sets contain the same number
of examples as the original training set, but may contain duplicates. The labels of the
test set are determined by a majority vote of the classifier ensemble. In general, any
classifier can be used as a base classifier, and in our case we used the cost-sensitive
decision trees described above. Bagging improved our results by reducing the false-
positive rate, as shown in Table 5. The decision tree created by bagging was roughly
the same size as the tree created without bagging, and used 49 unique features, of
which 21 were content features.

Table 5. Bagging with a cost-sensitive decision tree

Cost ratio (R) 1 10 20 30 50
True positive rate 65.8% 66.7% 71.1% 78.7% 84.1%
False positive rate 2.8% 3.4% 4.5% 5.7% 8.6%

F-Measure 0.712 0.703 0.704 0.723 0.692
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The results of classification reported in Tables 4 and 5 use both link and content
features. Table 6 shows the contribution of each type of feature to the classification.
The content features serve to reduce the false-positive rate, without diminishing the
true positive result, and thus improve the overall performance of the classifier. The
classifier that serves as the foundation for future experiments paper uses bagging with
a cost-sensitive decision tree, where R = 30.

Table 6. Comparing link and content features

Both Link-only Content-only
True positive rate 78.7% 79.4% 64.9%
False positive rate 5.7% 9.0% 3.7%

F-Measure 0.723 0.659 0.683

9 Topological dependencies of spam nodes

From our studies, we have an experimental evidence for the following two hypotheses:

Non-spam nodes tend to be linked by very few spam nodes, and usually link to
no spam nodes.

Spam nodes are mainly linked by spam nodes.

Examining the out-link and the in-link graphs separately, we count the number of spam
hosts contained in the adjacency list of each one of the hosts.

(a) Spam nodes in out-links (b) Spam nodes in in-links
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Fig. 7. Histogram of the fraction of spam hosts in the links of non-spam or spam hosts.

Let SOUT(x) be the fraction of spam hosts linked by host x out of all labeled hosts
linked by host x. Figure 7(a) shows the histogram of SOUT for spam and non-spam
hosts. We see that almost all non-spam hosts link mostly to non-spam hosts. The same
is not true for spam hosts, which tend to link both spam and non-spam hosts.

Similarly, let SIN(x) be the fraction of spam hosts that link to host x out of all
labeled hosts that link to x. Figure 7(b) shows the histograms of SIN for spam and non-
spam hosts. In this case there is a clear separation between spam and non-spam hosts.
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The general trend is that spam hosts are linked mostly by other spam hosts. More than
85% of the hosts have an SIN value of more than 0.7. On the other hand, the opposite
is true for non-spam hosts; more than 75% of the non-spam hosts have an SIN value of
less than 0.2.

These observation induce us to use aggregation of spam hosts to improve the accu-
racy of spam detection. In particular we use 3 different methods:
– Graph clustering algorithms;
– Propagation of the predicted labels;
– Stacked graphical learning.

For space reason, we do not enter in the details of these methods and we send the
reader to [7]. We want to stress that all these methods perform better than the basic
classifier of Section 7. In particular, with the stacked graphical learning [8], the im-
provement of the F-Measure from 0.723 to 0.763 is of about 5.5%, and this actually
translates to a large improvement in the accuracy of the classifier. The smoothing tech-
niques we use improve the detection rate from 78.7% to 88.4%, while the error rate
grows by less than one percentage point, from 5.7% to 6.3%.

10 Conclusion

Web spam detection is a challenging problem. We present a number of techniques able
to detect up to 88% of spam pages. The performance of Web spam detection algorithms
is still modest when compared with the error rate of modern e-mail spam detection sys-
tems. In our opinion, the current precision and recall of Web spam detection algorithms
can be improved using a combination of factors already used by search engine as, for
example, user interaction features (e.g. data collected via toolbar or by observing clicks
in search engine results). Our future works should investigate such a possible research
line.
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15. Zoltán Gyöngyi and Hector Garcia-Molina. Web spam taxonomy. In First International Workshop on Adver-

sarial Information Retrieval on the Web, 2005.
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