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1. INTRODUCTION

The Web is both an excellent medium for sharing information, as well as an attrac-
tive platform for delivering products and services. This platform is, to some extent,
mediated by search engines in order to meet the needs of users seeking information.
Search engines are the “dragons” that keep a valuable treasure: information [Gori
and Witten 2005]. Given the vast amount of information available on the Web, it
is customary to answer queries with only a small set of results (typically 10 or 20
pages at most). Search engines must then rank Web pages, in order to create a
short list of high-quality results for users.

The Web contains numerous profit-seeking ventures that are attracted by the
prospect of reaching millions of users at a very low cost. A large fraction of the
visits to a Web site originate from search engines, and most of the users click on
the first few results in a search engine. Therefore, there is an economic incentive
for manipulating search engine’s listings by creating pages that score high inde-
pendently of their real merit. In practice such manipulation is widespread, and in
many cases, successful. For instance, the authors of [Eiron et al. 2004] report that
“among the top 20 URLs in our 100 million page PageRank calculation (. . . ) 11
were pornographic, and these high positions appear to have all been achieved using
the same form of link manipulation”.

The term “spam” has been commonly used in the Internet era to refer to unso-
licited (and possibly commercial) bulk messages. The most common form of elec-
tronic spam is e-mail spam, but in practice each new communication medium has
created a new opportunity for sending unsolicited messages. These days there are
many types of electronic spam, including spam by instant messaging (spim), spam
by internet telephony (spit), spam by mobile phone, by fax, etc. The Web is not
absent from this list, but as the request-response paradigm of the HTTP protocol
makes it impossible for spammers to actually “send” pages directly to the users,
spammers try to deceive search engines and thus break the trust that search engines
establish with their users.

1.1 What is Web spam?

All deceptive actions which try to increase the ranking of a page in search engines
are generally referred to as Web spam or spamdexing (a portmanteau, or com-
bination, of “spam” and “index”). A spam page or host is a page or host that is
either used for spamming or receives a substantial amount of its score from other
spam pages.

An alternative way of defining Web spam could be any attempt to get “an un-
justifiably favorable relevance or importance score for some web page, considering
the page’s true value” [Gyöngyi and Garcia-Molina 2005]. A spam page is a page
which is used for spamming or receives a substantial amount of its score from other
spam pages. Another definition of spam, given in [Perkins 2001] is “any attempt
to deceive a search engine’s relevancy algorithm” or simply “anything that would
not be done if search engines did not exist”.

Seeing as there are many steps which content providers can take to improve the
ranking of their Web sites, and given that is an important subjective element in the
evaluation of the relevance of Web pages, to offer an exact definition of Web spam
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would be misleading. Indeed, there is a large gray area between “ethical” Search

Engine Optimization (SEO) services and “unethical” spam. SEO services range
from ensuring that Web pages are indexable by Web crawlers, to the creation of
thousands or millions of fake pages aimed at deceiving search engine ranking algo-
rithms. Our main criteria for deciding in borderline cases is the perceived effort
spent by Web authors on providing good content, against the effort spent on trying
to score highly in search engines.

The relationship between a Web site administrator trying to rank high in a search
engine and the search engine administrator is an adversarial relationship in a zero-
sum game. Each time a web site makes an unmerited gain in ranking, the accuracy
of the search engine is reduced. However, more than one form of Web spam exists
which involves search engines. For example, we do not take advertising spam into
consideration, an issue which also affects search engines through fraudulent clicking
on advertising.

1.2 Link-based Web spam (topological spam)

There are many techniques for Web spam [Gyöngyi and Garcia-Molina 2005], and
they can be broadly classified in two groups: content (or keyword) spam, and link
spam.

Content spam refers to changes in the content of the pages, for instance by
inserting a large number of keywords [Davison 2000a; Drost and Scheffer 2005].
In [Ntoulas et al. 2006], it is shown that 82-86% of spam pages of this type can
be detected by an automatic classifier. The features used for the classification
include, amongst others: the number of words in the text of the page, the number
of hyperlinks, the number of words in the title of the pages, the compressibility
(redundancy) of the content, etc.

Link spam includes changes to the link structure of the sites, by creating link

farms [Zhang et al. 2004; Baeza-Yates et al. 2005]. A link farm is a densely
connected set of pages, created explicitly with the purpose of deceiving a link-
based ranking algorithm. Zhang et. al. [Zhang et al. 2004] define this form of
collusion as the “manipulation of the link structure by a group of users with the
intent of improving the rating of one or more users in the group”. The pages in
Figure 1 are part of link farms.

The targets of our spam-detection algorithms are the pages that receive most of
their link-based ranking by participating in link farms. A page that participates
in a link farm may have a high in-degree, but little relationship with the rest of
the graph. In Figure 2, we show a schematic diagram depicting the links around a
spam page and a normal page. Link farms can receive links from non-spam sites
by buying advertising, or by buying expired domains used previously for legitimate
purposes.

A page that participates in a link farm, such as the one depicted in Figure 2, may
have a high in-degree, but little relationship with the rest of the graph. Heuristically,
we refer to spamming achieved by using link farms as topological spamming. In
particular, a topological spammer achieves its goal by means of a link farm that
has topological and spectral properties that statistically differ from those exhibited
by non spam pages. This definition embraces the cases considered in [Gibson et al.
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Fig. 1. Examples of Web spam pages belonging to link farms. While the page on the left has
content features that can help to identify it as a spam page, the page on the right looks more
similar to a “normal” page and thus can be more easily detected by its link attributes.

Fig. 2. Schematic depiction of the neighborhood of a page participating in a link farm (left) and
a normal page (right). A link farm is a densely connected sub-graph, with little relationship with
the rest of the Web, but not necessarily disconnected.

2005], and their method based on “shingles” can be also applied in detecting some
types of link farms (those that are dense graphs).

Link-based and content-based analysis offer two orthogonal approaches. We do
not believe that these approaches are alternatives, on the contrary, they must be
used together.

On one hand, in fact, link-based analysis does not capture all possible cases of
spamming, since some spam pages appear to have spectral and topological proper-
ties that are statistically close to those exhibited by non spam pages. In this case,
content-based analysis can prove extremely useful.

On the other hand, content-based analysis seems less resilient to changes in spam-
mers strategies, in much the same way that content-based techniques for detecting
email spamming are. For instance, a spammer could copy an entire Web site (cre-
ating a set of pages that may be able to pass all tests for content spam detection)
and change a few out-links in every page to point to the target page. This may
be a relatively inexpensive task to perform in an automatic way, whereas creating,
maintaining, reorganizing a link farm, possibly spanning more than one domain, is
economically more expensive.

Last updated: March 22, 2007.
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It is important to note that there are some types of Web spam which are not com-
pletely link-based, and it is very likely that there are some hybrid structures which
combine both link farms (for achieving a high link-based score) and content-based
spam, having a few links, to avoid detection. In our opinion, the approach whereby
content features, link-based features and user interaction (e.g.: data collected via a
toolbar or by observing clicks in search engine results) are mixed, should work bet-
ter in practice than a pure link-based method. In this paper, we focus on detecting
link farms, since they seem to be an important ingredient of current spam activity.

A Web search engine operator must consider that “any evaluation strategy which
counts replicable features of Web pages is prone to manipulation” [Page et al.
1998]. Fortunately, from the search engine’s perspective, “victory does not require
perfection, just a rate of detection that alters the economic balance for a would-be
spammer” [Ntoulas et al. 2006].

1.3 Our contributions

Fetterly et al. hypothesized that studying the distribution of statistics about pages
could be a good way of detecting spam pages, as “in a number of these distributions,
outlier values are associated with web spam” [Fetterly et al. 2004]. The approach
of this paper is to use link-based statistics and apply them to create classifiers
suitable for Web spam detection. We include both algorithmic and experimental
contributions.

On the algorithmic side, we adapt two link-based algorithms which tackle the
issue of web spam detection. We introduce a damping function for rank propa-
gation [Baeza-Yates et al. 2006] that provides a metric that helps in separating
spam from non-spam pages. Then, we propose an approximate counting technique
that can be easily “embedded” within a rank computation. This sheds new light
upon, and simplifies the method proposed in [Palmer et al. 2002], suggesting that
the base rank propagation algorithm provides a general framework for computing
several relevant metrics. These algorithms were described in preliminary form in
[Becchetti et al. 2006b], here we provide bounds on their running time and error
rate.

On the experimental side, we describe an automatic classifier that only uses link-
based attributes, without looking at Web page content, still achieving a precision
that is comparable to that of the best spam classifiers that use content analysis. This
is an important point, since in many cases spam pages exhibit contents that look
“normal”. Experimental results over a collection tagged by only one person (one of
the authors of this paper) were presented in [Becchetti et al. 2006a], here we present
experimental results over a larger collection tagged by over 20 volunteers [Castillo
et al. 2006].

2. ALGORITHMIC FRAMEWORK

In general, we want to explore the neighborhood of a page and see if the link struc-
ture around it appears to be artificially generated with the purpose of increasing
its rank. We also want to verify if this link structure is the result of a bounded
amount of work, restricted to a particular zone of the Web graph, under the control
of a single agent. This imposes two algorithmic challenges: the first one is how
to simultaneously compute statistics about the neighborhood of every page in

Last updated: March 22, 2007.



Link-Based Web Spam Detection · 7

a huge Web graph, and the second is what to do with this information once it is
computed, and how to use it to detect Web spam and demote spam pages.

We view our set of Web pages as a Web graph, that is, a graph G = (V, E)
in which the set V corresponds to Web pages in a subset of the Web, and every
link (x, y) ∈ E corresponds to a hyperlink from page x to page y in the collection.
For concreteness, the total number of nodes N = |V | in the full Web indexable by
search engines is in the order of 1010 [Gulli and Signorini 2005], and the typical
number of links per Web page is between 20 and 30.

2.1 Supporters

Link analysis algorithms assume that every link represents an endorsement, in the
sense that if there is a link from page x to page y, then the author of page x is
recommending page y. Following [Benczúr et al. 2005], we call x a supporter of
page y at distance d, if the shortest path from x to y formed by links in E has
length d. The set of supporters of a page are all the other pages that contribute
towards its link-based ranking.

In Figure 3 we plot the distribution of distinct supporters for a random sample of
nodes in two subsets of the Web obtained from the Laboratory of Web Algorithmics.
(All the Web graphs we use in this paper are available from the Dipartimento di
Scienze dell’Informazione, Università degli studi di Milano at http://law.dsi.

unimi.it/).
As suggested by Figure 2, a particular characteristic of a link farm is that the

spam pages might have a large number of distinct supporters at short distances,
but this number should be lower than expected at higher distances.

We can see that the number of new distinct supporters increases up to a certain
distance, and then decreases, as the graph is finite in size and we approach its
effective diameter.

We expect that the distribution of supporters obtained for a highly-ranked page
is different from the distribution obtained for a lowly-ranked page. In order to put
this theory into practice, we calculated the PageRank of the pages in the eu.int

(European Union) sub-domain. We chose this domain because it is a large, entirely
spam-free, subset of the Web. We grouped the pages into 10 buckets according to
their position in the list ordered by PageRank. Figure 4 plots the distribution of
supporters for a sample of pages in three of these buckets having high, medium and
low ranking respectively.

As expected, highly-ranked pages have a large number of supporters after a few
levels, while lowly-ranked pages do not. Note that if two pages belong to the same
strongly-connected component of the Web, then eventually their total number of
supporters will converge after a certain distance. In that case the areas below the
curves will be equal.

As shown in Figure 2, we expect that pages participating in a link-farm present
anomalies in their distribution of supporters. A major issue is that, to compute
this distribution for all the nodes in a large Web graph is computationally very
expensive. A straightforward approach is to repeat a reverse breadth-first search
from each node of the graph, and marking nodes as they are visited [Lipton and
Naughton 1989]; the problem is that this would require Ω(N2) memory for the
marks if done in parallel or Ω(N2) time to repeat a BFS from each one of the N
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Fig. 3. Distribution of the fraction of new supporters found at varying distances (normalized),
obtained by backward breadth-first visits from a sample of nodes, in four large Web graphs [Baeza-
Yates et al. 2006].
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nodes if done sequentially. A possible solution could be to compute the supporters
only for a subset of “suspicious” nodes; the problem with this approach is that
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we do not know a priori which nodes are spammers. An efficient solution will be
presented in Section 4.

2.2 Semi-streaming graph algorithms

Given the large/huge size of typical data sets used in Web Information Retrieval,
complexity issues are very important. This imposes severe restrictions on the com-
putational and/or space complexity of viable algorithmic solutions. A first approach
to modeling these restrictions could be the streaming model of computation [Hen-
zinger et al. 1999]. However, the restrictions of the classical stream model are too
severe and are hardly compatible with the problems we are interested in.

In light of the above remarks, we decided to restrict to algorithmic solutions
whose space and time complexity is compatible with the semi-streaming model
of computation [Feigenbaum et al. 2004; Demetrescu et al. 2006]. This implies a
semi-external memory constraint [Vitter 2001] and thus reflects many significant
constraints arising in practice. In this model, the graph is stored on disk as an
adjacency list and no random access is possible, i.e., we only allow sequential access.
Every computation involves a limited number of sequential scans of data stored in
secondary memory [Haveliwala 1999].

Our algorithms also use an amount of main memory in the order of the number
of nodes, whereas an amount of memory in the order of the number of edges may
not be feasible. We assume that we have O(N log N) bits of main (random access)
memory, i.e., in general there is enough memory to store some limited amount of
data about each vertex, but not to store the links of the graph in main memory.
We impose a further constraint, i.e., the algorithm should perform a small number
of passes over the stream data, at most O(log N).

We assume no previous knowledge about the graph, so we do not know a priori
if a particular node is suspicious of being a spam or not. For this reason, there are
some semi-streamed algorithms on a Web graph that we cannot use for Web spam
detection in our framework. If we have to compute a metric which assigns a value
to every vertex, e.g. a score, we obviously cannot afford to run this algorithm again
for every node in the graph, due to the large size of the data set.

As an example, suppose we want to measure the centrality of nodes. If we use
the streamed version of the standard breadth-first search (BFS) algorithm, we are
not complying to this requirement, since the outcome would be a BFS tree for a
specific node, which is not enough for computing the centrality of all the nodes in
the graph. Conversely, an algorithm such as PageRank computes a score for all
nodes in the graph at the same time.

The general sketch of the type of semi-streamed graph algorithms we are inter-
ested, is shown in Figure 5.

According to Figure 5, we initialize a vector S that will contain some metric
and possibly also auxiliary information. The size of S, |S| is O(N). Then we scan
the graph sequentially updating S according to observations on the graph. Then
we post-process S and start over. This algorithmic sketch essentially captures all
feasible algorithms on a large graph.

Last updated: March 22, 2007.
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Require: graph G = (V, E), score vector S
1: INITIALIZE(S)
2: while not CONVERGED do

3: for src : 1 . . . |V | do

4: for all links from src to dest do

5: COMPUTE(S, src, dest)
6: end for

7: end for

8: POST PROCESS(S)
9: end while

10: return S

Fig. 5. Generic link-analysis algorithm using a stream model. The score vector S represents any
metric, and it must use O(N log N) bits. The number of iterations should be O(log N) in the
worst case.

3. TRUNCATED PAGERANK

In this section we describe a link-based ranking method that produces a metric
suitable for Web link spam detection.

Let AN×N be the citation matrix of graph G = (V, E), that is, axy = 1 ⇐⇒
(x, y) ∈ E. Let P be the row-normalized version of the citation matrix, such that
all rows sum up to one, and rows of zeros are replaced by rows of 1/N to avoid the
effect of rank “sinks”.

A functional ranking [Baeza-Yates et al. 2006] is a link-based ranking algorithm
to compute a scoring vector W of the form:

W =

∞
∑

t=0

damping(t)

N
Pt .

where damping(t) is a decreasing function on t, the lengths of the paths. In par-
ticular, PageRank [Page et al. 1998] is the most widely known functional ranking,
in which the damping function is exponentially decreasing, namely, damping(t) =
(1− α)αt where α is a damping factor between 0 and 1, typically 0.85.

A page participating in a link farm can gain a high PageRank score because it
has many in-links, that is, supporters that are topologically “close” to the target
node. Intuitively, a possible way of demoting those pages could be to consider a
damping function that ignores the direct contribution of the first levels of

links, such as:

damping(t) =

{

0 t ≤ T

Cαt t > T

Where C is a normalization constant and α is the damping factor used for
PageRank. The normalization constant is such that

∑

∞

t=0 damping(t) = 1, so
C = (1− α)/(αT+1).

This function penalizes pages that obtain a large share of their PageRank from the
first few levels of links; we call the corresponding functional ranking the Truncated
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Require: N: number of nodes, 0 < α < 1: damping factor, T≥ −1: distance for truncation
1: for i : 1 . . . N do {Initialization}
2: R[i] ← (1 − α)/((αT+1)N)
3: if T≥ 0 then

4: Score[i] ← 0
5: else {Calculate normal PageRank}
6: Score[i] ← R[i]
7: end if

8: end for

9: distance = 1
10: while not converged do

11: Aux ← 0

12: for src : 1 . . . N do {Follow links in the graph}
13: for all link from src to dest do

14: Aux[dest] ← Aux[dest] + R[src]/outdegree(src)
15: end for

16: end for

17: for i : 1 . . . N do {Apply damping factor α}
18: R[i] ← Aux[i] ×α
19: if distance > T then {Add to ranking value}
20: Score[i] ← Score[i] + R[i]
21: end if

22: end for

23: distance = distance +1
24: end while

25: return Score

Fig. 6. TruncatedPageRank Algorithm.

PageRank of a page. This is similar to PageRank, except that supporters that
are too “close” to a target node do not contribute to its ranking.

For calculating the Truncated PageRank, we use the following auxiliary construc-
tion:

R(0) =
C

N
R(t) = αR(t−1)P ,

and we compute the truncated PageRank by using:

W =
∞
∑

t=T+1

R(t) .

The algorithm is presented in Figure 6 and follows the general algorithmic sketch of
Figure 5. For the calculation, it is important to keep the score and the accumulator
R(t) separated in the calculation, since we discard the first levels, or we may end
up with only zeros in the output. Note that, when T = −1, we compute the normal
PageRank. In fact, writing W in closed form we have W = C

N (I−α P)−1(α P)T+1

which shows an additional damping factor when T > −1.
We compared the values obtained with PageRank with those of TruncatedPageR-

ank in the UK-2002 dataset, for values of T from 1 to 4. Figure 7 shows the result.
As expected, both measures are closely correlated, and the correlation decreases as
more levels are truncated.
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Fig. 7. Comparing PageRank and Truncated PageRank with T = 1 and T = 4. Each dot
represents a home page in the uk-2002 graph. The correlation is high and decreases as more levels
are truncated.

We do not argue that Truncated PageRank should be used as a substitute for
PageRank, but we show in section 5 that the ratio between Truncated PageRank
and PageRank is extremely valuable for detecting link spam.

In practice, for calculating the Truncated PageRank it is easier to save “snap-
shots” with the partial PageRank values obtained at an intermediate point of the
computation, and then use those values to indirectly calculate the Truncated Page-
Rank. Thus, computing Truncated PageRank has no extra cost (in terms of pro-
cessing) for a search engine if the search engine already computes the PageRank
vector for the Web graph.

4. ESTIMATION OF SUPPORTERS

In this section, we describe a method for the estimation of the number of supporters
of each node in the graph. Our method computes an estimation of the number of
supporters for all vertices in parallel at the same time and can be viewed as a
generalization of the ANF algorithm [Palmer et al. 2002].

Since exactly computing the number of supporters is infeasible on a large Web
graph, we use probabilistic counting [Cohen 1997; Flajolet and Martin 1985; Durand
and Flajolet 2003]. As to this point, we propose a refinement of the classical prob-
abilistic counting algorithm proposed in [Flajolet and Martin 1985] and adopted
in [Palmer et al. 2002]. Our probabilistic counting algorithm turns out to be more
accurate than [Palmer et al. 2002] when the distance under consideration is small,
as is the case in the application we consider. As an algorithmic engineering contri-
bution, our probabilistic counting algorithm is implemented as a generalization of
the streaming algorithm used for PageRank computation [Page et al. 1998; Haveli-
wala 1999]. As a theoretical contribution, the probabilistic analysis of our base
algorithm turns out to be considerably more simple than the one given in [Flajolet
and Martin 1985] for the original one.
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4.1 General algorithm

We start by assigning a random vector of k bits to each page. We then perform an
iterative computation: on each iteration of the algorithm, if page y has a link to
page x, then the bit vector of page x is updated as x ← x OR y. In Figure 8, two
iterations are shown. On each iteration, a bit set to 1 in any page can only move
by one link in distance.

Fig. 8. Schematic depiction of the bit propagation algorithm with two iterations.

After d iterations, the bit vector associated to any page x provides information
about the number of supporters of x at distance ≤ d. Intuitively, if a page x has a
larger number of distinct supporters than another page y, we expect the bit vector
associated to x to contain in the average more 1s than the bit vector associated to
y.

The algorithm, presented in Figure 9, can be efficiently implemented by using
bit operations if k matches the word size of a particular machine architecture (e.g.:
32 or 64 bits).

The structure is the same as the algorithm in Figure 6, allowing the estimation of
the number of supporters for all vertices in the graph to be computed concurrently
with the execution of Truncated PageRank and PageRank.

The basic algorithm requires O(kN) bits of memory, can operate over a streamed
version of the link graph stored as an adjacency list, and requires to read the link
graph d times. Its adaptive version, shown in Subsection 4.3, requires the same
amount of memory and reads the graph O(d log Nmax(d)) times on average, where
Nmax(d) is the maximum number of supporters at distance at most d. In general,
Nmax(d) is normally much smaller than N , for the values of d that are useful for
our particular application.

Notation. Let vi be the bit vector associated to any page, i = 1, . . . , N . Let
x denote a specific page and let S(x, d) denote the set of supporters of this page
within some given distance d. Let N(x, d) = |S(x, d)| and Nmax(d) = maxx N(x, d).
For concreteness, and according to Figure 3, we are considering typical values of d
in the interval 1 ≤ d ≤ 20. For the sake of simplicity, in the sequel we write S(x)
and N(x) for S(x, d) and N(x, d) whenever we are considering a specific value of d.
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Require: N : number of nodes, d: distance, k: bits
1: for node : 1 . . . N do {Every node}
2: for bit : 1 . . . k do {Every bit}
3: INIT(node,bit)
4: end for

5: end for

6: for distance : 1 . . . d do {Iteration step}
7: Aux ← 0k

8: for src : 1 . . . N do {Follow links in the graph}
9: for all links from src to dest do

10: Aux[dest] ← Aux[dest] OR V[src,·]
11: end for

12: end for

13: for node : 1 . . . N do

14: V[node,·] ← Aux[node]
15: end for

16: end for

17: for node: 1 . . . N do {Estimate supporters}
18: Supporters[node] ← ESTIMATE( V[node,·] )
19: end for

20: return Supporters

Fig. 9. Bit-Propagation Algorithm for estimating the number of distinct supporters at distance
≤ d of all the nodes in the graph simultaneously.

4.2 Base estimation technique

A simple estimator can be obtained as follows:
INIT(node,bit): In the initialization step, the j-th bit of vi is set to 1 with

probability ǫ, independently for every i = 1, . . . , N and j = 1, . . . , k (ǫ is a parameter
of the algorithm whose choice is explained below).

Since ǫ is fixed, we can reduce the number of calls to the random number gen-
erator by generating a random number according to a geometric distribution with
parameter 1 − ǫ and then skipping a corresponding number of positions before
setting a 1. This is especially useful when ǫ is small.
ESTIMATE(V[node,·]) Consider a page x, its bit vector vx and let Xi(x) be its

i-th component, i = 1, . . . , k. By the properties of the OR operator and by the
independence of the Xi(x)’s we have,

P[Xi(x) = 1] = 1− (1 − ǫ)N(x),

Then, if Bǫ(x) =
∑k

i=1 Xi(x), the following lemma obviously holds:

Lemma 1. For every x, if every bit of x’s label is set to 1 independently with
probability ǫ:

E[Bǫ(x)] = k − k(1− ǫ)N(x).

If we knew E[Bǫ(x)] we could compute N(x) exactly. In practice, for every run
of the algorithm and for every x we simply have an estimation Bǫ(x) of it. Our
base estimator is:

N(x) = log(1−ǫ)

(

1−
Bǫ(x)

k

)

.
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Fig. 10. Comparison of the estimation of the average number of distinct supporters, against the
observed value, in a sample of nodes of the eu-int graph.

In Figure 10 we show the result of applying the basic algorithm with ǫ = 1/N to
the 860,000-nodes eu.int graph using 32 and 64 bits, compared to the observed
distribution in a sample of nodes. It turns out that with these values of k, the
approximation at least captures the distribution of the average number of neighbors.
However, this is not good enough for our purposes, as we are interested in specific
nodes. This motivates our next algorithm.

4.3 An adaptive estimator

The main problem with the basic technique is that, given some number k of bits to
use, not all values of ǫ are likely to provide useful information. In particular, N(x)
can vary by orders of magnitudes as x varies. This means that for some values of ǫ,
the computed value of Bǫ(x) might be k (or 0, depending on N(x)) with relatively
high probability. In order to circumvent this problem, we observe that, if we knew
N(x) and chose ǫ = 1/N(x) we would get:

E[Bǫ(x)] ≃

(

1−
1

e

)

k,

where the approximation is very good for all values of N(x, d) of practical interest.
Also, as a function of ǫ, E[Bǫ(x)] is monotone increasing in the interval (0, 1]. This
means that, if we consider a decreasing sequence of values of ǫ and the corresponding
realizations of Bǫ(x), we can reasonably expect to observe more than (1 − 1/e)k
bits set to 1 when ǫ > 1/N(x), with a transition to a value smaller than (1− 1/e)k
when ǫ becomes sufficiently smaller than 1/N(x).

In practice, we apply the basic algorithm O(log(N)) times as explained in Fig-
ure 11. The basic idea is as follows: starting with a value ǫmin (for instance,
ǫmax = 1/2) we proceed by halving ǫ at each iteration, up to some value ǫmin (for
instance, ǫmin = 1/N). Given x, ǫ will at some point take up some value ǫ(x) such
that ǫ(x) ≤ 1/N(x) ≤ 2ǫ(x). Ideally, when ǫ decreases from 2ǫ(x) to ǫ(x), the
value observed for Bǫ(x) should transit from a value larger to a value smaller than
(1 − 1/e)k. This does not hold deterministically of course, but we can prove that
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it holds with a sufficiently high probability, if k is large enough and N(x) exceeds
some suitable constant.

Require: ǫmin, ǫmax limits
1: ǫ← ǫmax

2: while ǫ > ǫmin and not all nodes have estimations do

3: Run the Bit-Propagation algorithm with ǫ
4: for x such that Bǫ(x) < (1 − 1/e) k for the first time do

5: Estimate N(x)← 1/ǫ
6: end for

7: ǫ← ǫ/2

8: end while

9: return N(x)

Fig. 11. Adaptive Bit-Propagation algorithm for estimating the number of distinct support-
ers of all nodes in the graph. The algorithm calls the normal Bit-Propagation algorithm a number
of times with varying values of ǫ.

The following lemma follows immediately:

Lemma 2. Algorithm Adaptive Bit-Propagation iterates a number of times
that is at most log2(ǫmax/ǫmin) ≤ log2 N .

The following theorem shows that the probability of N(x) deviating from N(x)
by more than a constant decades exponentially with k. The proof requires some
calculus, but the rough idea is rather simple: considering any page x, the probability
that Bǫ(x) becomes smaller than (1 − 1/e)k for any value ǫ > c/N(x), c > 1 a
suitable constant, decades exponentially with k. Conversely, the probability that
the observed value of Bǫ(x) never becomes smaller than (1−1/e)k before ǫ reaches a
value smaller than 1/bN(x), b > 1 being a suitable constant, is again exponentially
decreasing in k. For the sake of readibility, the proof of the theorem has been moved
to the appendix.

Theorem 1.

P

[

(N(x) > 3N(x))
⋃

(

N(x) <
N(x)

3

)]

≤ log2 N(x)e−0.027k + e−0.012k,

for every page x such that N(x) ≥ 101.

In the sequel, we denote by F<(x) the first value of ǫ such that Bǫ(x) < (1−1/e)k,
i.e. Bǫ(x) ≥ (1 − 1/e)k for ǫ = 2F<(x), 4F<(x), . . . , ǫmax. The following theorem
bounds the expected number of times the algorithm reads the graph:

Theorem 2. If 0.0392 k ≥ lnN + ln log2 N , the Adaptive Bit-Propagation algo-
rithm reads the graph O(d log Nmax(d)) times in the average in order to compute
the number of supporters within distance d.

1For N(x) < 10 the bound is still exponentially decreasing in k, but the constants in the exponent
are lower and we cannot guarantee high accuracy for typical values of k.
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Proof. It is enough to prove that the while cycle of the Adaptive Bit-

Propagation algorithm is iterated O(log Nmax(d)) times in the average when es-
timating the number of supporters withing distance d. Let I(d) be the number of
iterations and note that I(d) ≤ log2 N deterministically by Lemma 2. We start by
proving that, for every page x, F<(x) ≥ ǫ(x)/4 with high probability. To this aim,
observe that

E
[

Bǫ(x)/4(x)
]

= k − k

(

1−
ǫ(x)

4

)N(x)

≤ k − k

(

1−
1

4N(x)

)N(x)

≤ 0.25 k

<
1

2

(

1−
1

e

)

k,

where the third inequality follows recalling Fact 1 and computing the expression
for N(x) = 1. As a consequence:

P

[

Bǫ(x)/4(x) >

(

1−
1

e

)

k

]

≤ P
[

Bǫ(x)/4(x) ≥ 2E
[

Bǫ(x)/4(x)
]]

≤ e−
E[Bǫ(x)/4(x)]

3

≤ e−0.0392 k,

where the second inequality follows by the Chernoff bound with δ = 1, while the
third follows since

E
[

Bǫ(x)/4(x)
]

= k − k

(

1−
ǫ(x)

4

)N(x)

≥ k − k

(

1−
1

8N(x)

)N(x)

> 0.0392 k.

Here, the second inequality follows since ǫ(x) ≥ 1/2N(x) by definition while, us-
ing Fact 1, (1 − 1/8N(x))N(x) is upper bounded by letting N(x) → ∞. As a
consequence,

P[∃x : F<(x) < ǫ(x)/4] ≤ P





N
⋃

j=1

F<(j) < ǫ(x)/4



 ≤ Ne−0.0392 k <
1

log2 N

whenever 0.0392 k ≥ lnN + ln log2 N . Hence we have:

E[I(d)] ≤ log2 NP[∃x : F<(x) < ǫ(x)/4] + max
x

log2

(

4ǫmax

ǫ(x)

)

≤ 4 + log2(Nmax(d)).

Discussion. Other solutions can be used to compute the number of supporters.
One is adopting streaming techniques to compute frequency moments. After the
seminal paper by Flajolet and Martin [Flajolet and Martin 1985] extensions and
refinements have been proposed, in particular the systematic effort of [Alon et al.
1999]. Differently from these contributions, we do not need to store or compute the
values of hash functions or generate node labels following complicated distributions,
e.g. exponential ones, as in [Flajolet and Martin 1985]. This also implies that
the amount of information kept per node is extremely small and only elementary
operations (i.e. bit-wise ORs) need to be performed. The initialization step of
every phase requires to generate random labels for the nodes. Here, the built-in
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Fig. 12. Fraction of nodes with good estimations after a certain number of iterations. For instance,
when measuring at distance d = 4, 15 iterations suffice to have good estimators for 99% of the
pages (UK-2002 sample).

random number generator is perfectly suited to the purpose, as also experimental
results suggest. Furthermore, since every bit is set to 1 with the same probability
ǫ, independently of other bit positions and vertices, when ǫ is small this process, as
discussed earlier in this section, can be implemented efficiently using a geometric
distribution. Other potentially interesting approaches, such as Bloom filters [Broder
and Mitzenmacher 2003], are not suited to our purposes, since they require an
excessive amount of memory.

The analysis of our algorithms turns out to be much more simple than the ones
presented in [Flajolet and Martin 1985] and we hope it provides a more intuitive
explanation of why probabilistic counting works. The reason is that the probabilis-
tic analysis in [Flajolet and Martin 1985] requires the average position of the least
significant bit that is not set to 1 to be computed in a suitably generated random
bit string. Computing this value is not straightforward. Conversely, in our case,
every Bǫ(x) is the sum of binary independent random variables, so that we can
easily compute its expectation and provide tight bounds to the probability that it
deviates from the expectation for more than a given factor.

4.4 Experimental results of the bit propagation algorithms

For the purpose of our experiments, we proceed backwards, starting with ǫmax = 1/2
and then dividing ǫ by two at each iteration. This is faster than starting with a
smaller value and then multiplying by two, mainly because in our case we are
dealing with small distances and thus with neighborhoods in the order of hundreds
or thousands of nodes. We freeze the estimation for a node when Bǫ(x) < (1−1/e)k,
and stop the iterations when 1% or less nodes have Bǫ(x) ≥ (1− 1/e)k.

Figure 12 shows that the number of iterations of the Adaptive Bit-Propagation
algorithm required for estimating the neighbors at distance 4 or less is about 15,
and for all distances up to 8 the number of iterations required is less than 25. The
results in this figure are obtained in the UK-2002 collection with 18.5 million nodes
(see Section 5).
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Fig. 13. Comparison of the average relative error of the different strategies (UK-2002 sample).

Besides the estimator described in the previous section, we considered the fol-
lowing one: whenever Bǫ(x) < (1 − 1/e)k for the first time, we estimate N(x)
twice using the estimator from section 4.2 with Bǫ(x) and B2ǫ(x), and then average
the resulting estimations. We call this the combined estimator that uses both the
information from ǫ as well as the number of bits set. In practice the error of the
combined estimator is lower.

We compared the precision obtained by this method with the precision given by
the ANF algorithm [Palmer et al. 2002]. In ANF, the size of the bitmask depends
on the size of the graph, while the number of iterations (k in their notation) is
used to achieve the desired precision. Our approach is orthogonal: the number of
iterations depends on the graph size, while the size of the bitmask is used to achieve
the desired precision. In order to compare the two algorithms fairly, we considered
the product between the bitmask size and the number of iterations as a parameter
describing the overall number of bits per node used (this is in particular the case if
iterations are performed in parallel).

We fixed in ANF the size of the bitmask to 24, since 224 = 16M is the closest
power of 2 for the 18.5 million nodes of UK-2002 (using more would be wasting
bits). Next we ran ANF for 24 iterations (equivalent to 576 bits × iterations) and
for 48 iterations (equivalent to 1152 bits × iterations). The former value is slightly
more than the requirements of our algorithm at distance 1, while the latter is the
same requirement as our algorithm at distance 5 (one plus the maximum distance
we use for spam detection in the experiments shown in section 5).

The comparison is shown in Figure 13. It turns out that the basic estimator
performs well over the entire distance range, but both ANF and the combined es-
timator technique perform better. In particular, our combined estimator performs
better than ANF for distances up to 5 (the ones we are interested in for the appli-
cation we consider), in the sense that it has better average relative error and/or it
has the same performance but it uses a smaller overall amount of bits. For larger
distances the probabilistic counting technique used in ANF proves to be more ef-
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ficient, since it has the same performance but it uses a smaller overall amount of
bits.

It is also important to point out that, in practice, the memory allocation is in
words of either 32 or 64 bits. This means that, even if we choose a bitmask of 24
bits for the ANF probabilistic counting routine, as was the case in our experiments,
32 bits are actually allocated to each node, 8 of which will not be used by the
algorithm. With our approach instead, these bits can be used to increase precision.
These considerations of efficiency are particularly important with the large data
sets we are considering.

5. EXPERIMENTAL FRAMEWORK

In this section we consider several link-based metrics, whose computation uses
algorithms which are feasible for large-scale Web collections, and which we have
found useful for the purpose of Web spam classification. These are not all possible
statistics that can be computed, for a survey of Web metrics, see [Costa et al. 2005].

One of the key issues in spam detection is to provide direct techniques that allow
search engines to decide if a page can be trusted or not. We use these metrics to
build a set of classifiers, that we use to test the fitness of each metric to the purpose
of automatic spam classification.

5.1 Data sets

We use two large subsets of pages from the .uk domain, downloaded in 2002 and
2006 by the Dipartimento di Scienze dell’Informazione, Università degli studi di
Milano. These collections are publicly available at http://law.dsi.unimi.it/,
and were obtained using by a breadth-first visit using the UbiCrawler [Boldi et al.
2004].

Table I summarizes the properties of these collections:

Table I. Characteristics of the base collections used in our experiments.
Collection Pages Links Links/page Hosts Pages/host

UK-2002 18.5 M 298 M 16.1 98,542 187.9
UK-2006 77.9 M 3,022 M 38.8 11,403 6828.3

The UK-2006 collection is much deeper than the UK-2002 collection, but it in-
cludes less hosts, as it was given a smaller set of seeds to start with. The fact that
the UK-2006 collection also has much more links per page agrees with empirical
observations that the Web is becoming denser in general [Leskovec et al. 2005].

5.2 Data labelling

Due to the large size of this collection, we decided to classify entire hosts instead
of individual pages. This increases coverage of the sample, but it also introduces
errors, as there are some hosts that consist of a mixture of spam pages and legitimate
contents.

—UK-2002: The manual classification was done by one of the authors of this paper
and took roughly three days of work. Whenever a link farm was found inside a
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host, the entire host was marked as spam. Initially we sampled at random but,
as the ratio of spam pages to normal pages was small and we wanted to have
many spam examples, we actively searched for spam pages in our collection, so
this sample is not uniformly random. We classified a group of the hosts with the
higher PageRank in their home page, with the higher overall PageRank and with
the larger number of pages. Other hosts were added by classifying all the hosts
with the larger hostname length, as several spammers tend to create long names
such as “www.buy-a-used-car-today.example” (but not all sites with long host
names were spam). For the same reason, we searched for typical spamming terms
in the host names, and we classified all the hosts with domain names including
keywords such as mp3, mortgage, sex, casino, buy, free, cheap, etc. (not all
of them had link farms) and typical non-spam domain such as .ac.uk, .gov.uk
and others.
For the purposes of the classifiers, we take only the “normal” and “spam” labels
into consideration. This diverts from the use of this collection in [Becchetti et al.
2006a; 2006b] in which we considered an extra label, “suspicious” as “normal”,
but is done for consistency with the experiments in the other collection. In any
case, “suspicious” labels were used in only 3% of the cases.

—UK-2006: The manual classification was done by a group of over 20 volunteers
who received a set of standard guidelines, as described in [Castillo et al. 2006].
These guidelines cover most of the types of Web spam mentioned in the literature,
not purely link-based spam. The sampling was done uniformly at random over
all the hosts in the collection, assigning two judges to each host in most cases. A
third judgement was used to break ties in the case of contradictory evaluations
(i.e.: one normal and one spam label). The collection also includes automatic
marks based in several domains such as .ac.uk, .gov.uk, .police.uk, etc.
For the purposes of the classifier, we did a majority vote among normal and spam
judgments (ignoring borderline evaluations). We kept all hosts that matched our
domain-based patterns or in which there were at least 2 human judges.

Table II summarizes the number of labels on each collection.

Table II. Characteristics of the labels used on each collection.
Classified Normal Spam

Collection Hosts (%) (%)

UK-2002 5,182 4,342 (84%) 840 (16%)
UK-2006 5,622 4,948 (78%) 674 (12%)

5.3 Classification caveats

There are many Web sites whose design is optimized for search engines, but which
also provide useful content. There is no clear line to divide a spam site from a
heavily optimized Web site, designed by a person who knows something about how
search engines work.

In the case of UK-2002, we examined the current contents of the pages and not
the contents of them in 2002 (as those were not available). This can negatively
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affect the results in the UK-2002 collection and introduce extra noise. Also, in the
UK-2002 the classification was based solely on link-based spam, not other forms of
spam.

In the case of UK-2006, the evaluation was done less than 2 months after the
crawling, and the judges had access to the home page of the page at crawling time,
pulled automatically from the crawler’s cache. The evaluation guidelines covered
most types of spam including both keyword-based and link-based spam.

5.4 Automatic classification

We automatically extracted a series of features from the data, including the Page-
Rank, TruncatedPageRank at distance d = 1, 2, 3 and 4, and the estimates of
supporters at the same distances, using the adaptive technique described in section
4. These link-based metrics are defined for pages, so we assigned them to hosts by
measuring them at both the home page of the host (the URL corresponding to
the root directory) and the page with the maximum PageRank of the host. In
our samples, the home page of the host is the page with the highest PageRank in
38% of the cases (UK-2002) and 57% of the cases (UK-2006). In the case of hosts
marked as spam, the proportions are 77% and 58% respectively.

The labelled hosts, grouped into the two manually-assigned class labels: “spam”
and “normal” constitute the training set for the learning process. We experimented
with the Weka [Witten and Frank 1999] implementation of C4.5 decision trees.
Describing this classifiers here in detail in not possible due to space limitations, for
a description see [Witten and Frank 1999].

The evaluation of the learning schemes was performed by a ten-fold cross-validation
of the training data. The data is first divided into 10 approximately equal parti-
tions, then each part is held out in turn and the learning scheme is trained on the
remaining 9 folds. The overall error estimate is the average of the 10 error esti-
mates. The error metrics we are using are the precision and recall measures from
information retrieval [Baeza-Yates and Ribeiro-Neto 1999], considering the spam
detection task:

Precision =
# of spam hosts classified as spam

# of hosts classified as spam

Recall =
# of spam hosts classified as spam

# of spam hosts
.

For combining precision (P ) and recall (R), we used the F-Measure, which corre-
sponds to the harmonic mean of these two numbers,

F =
2PR

P + R

We also measured the two types of errors in spam classification:

False positive rate =
# of normal hosts classified as spam

# of normal hosts

False negative rate =
# of spam hosts classified as normal

# of spam hosts
.
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The false negative rate is one minus the recall of the spam detection task, and the
false positive rate is one minus the recall of the normal host detection task.

For each set of features we built a classifier, we did not use pruning and let weka
generate as many rules as possible as long as there are at least 2 hosts per leaf (this
is the M parameter in the weka.classifiers.trees.J48 implementation).

We also used bagging [Breiman 1996], a technique that creates many classifiers
(in our case, 10), and then uses majority voting for deciding the class to which an
element belongs. The classifiers that use bagging perform in general better than
the individual classifiers they are composed of.

6. EXPERIMENTAL RESULTS

This section presents the experimental results obtained by creating automatic clas-
sifiers with different sets of attributes. At the end of this section we present the
performance of a classifier that uses the entire set of link-based features.

6.1 Degree-based measures

The distribution of in-degree and out-degree can be obtained very easily by reading
the Web graph only once. In Figure 14 we depict the histogram of this metric over
the normal pages and the spam pages. The histogram is shown with bars for the
normal pages and with lines for the spam pages. Both histograms are normalized
independently, and the y-axis represents frequencies.
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Fig. 14. Histogram of the log(indegree) of home pages.

In the case of spam hosts in the UK-2002 collection, there is a large group of about
40% of them that have an in-degree in a very narrow interval. In the UK-2006 the
in-degree seems to be higher on average for spam pages, but there is no dramatic
“peak” as in UK-2002.
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Another degree-based metric is the edge-reciprocity. This measures how many
of the links in the directed Web graph are reciprocal. The edge-reciprocity can be
computed easily by simultaneously scanning the graph and its transposed version,
and measuring the overlap between the out-neighbors of a page and its in-neighbors.
Figure 15 depicts the edge reciprocity in both collections. This metric appears to
be take extreme values (0 and 1) with high frequency; this is because the degree of
the pages follows a power-law, and there are many pages with degree 1..
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Fig. 15. Histogram of the edge-reciprocity of home pages.

The degree of the nodes induces a natural “hierarchy” that can be used to define
different classes of nodes. A network in which most nodes are connected to other
nodes in the same class (for instance, most of the connections of highly-linked are
to other highly-linked nodes) is called “assortative” and a network in which the
contrary occurs is called “disassortative”. This distinction is important from the
point of view of epidemics [Gupta et al. 1989].

We measured for every host in our sample the ratio between its degree and the
average degree of its neighbors (considering both in- and out-links). In Figure 16 we
can see that in both collections there is a mixing of assortative and disassortative
behavior. The home pages of the spam hosts tend to be linked to/by pages with
relatively lower in-degree. This is clearer in the UK-2002 sample where there is a
peak at 10, meaning that for that group, their degree is 10 times larger than the
degree of their direct neighbors.

We used the following attributes in the home page and the page with maximum
PageRank, plus a binary variable indicating if they are the same page (8×2+1 = 17
features in total):

(1) Log of the indegree
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Fig. 16. Histogram of the degree/degree ratio of home pages.

(2) Log of the outdegree

(3) Reciprocity

(4) Log of the assortativity coefficient

(5) Log of the average in-degree of out-neighbors

(6) Log of the average out-degree of in-neighbors

(7) Log of the sum of the in-degree of out-neighbors

(8) Log of the sum of the out-degree of in-neighbors

On Table III we report on the performance of a C4.5 decision tree with bagging,
using only degree-based features. The performance is acceptable in the UK-2002
dataset but very poor in the UK-2006 dataset. This means that in the UK-2002
dataset there are many spam hosts that have anomalous local connectivity, while
these hosts are fewer in the UK-2006 data.

Table III. Performance using only degree-based attributes
Dataset True positives False positives F-Measure

UK-2002 0.732 0.015 0.808
UK-2006 0.323 0.024 0.432

6.2 PageRank

We calculated the PageRank scores for the pages in the collection using α = 0.85
and the formula at the beginning of Section 3. We plot the distribution of the
PageRank values of the home pages in Figure 17. We can see a large fraction of
pages sharing the same PageRank. This is more or less expected, as there is also a
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large fraction of pages sharing the same in-degree (although these are not equivalent
metrics).
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Fig. 17. Histogram of the PageRank values.

Following an idea by Benczúr et al. [Benczúr et al. 2005], we studied the Page-
Rank distribution of the pages that contribute to the PageRank of a given page.
In [Benczúr et al. 2005], this distribution is studied over a sample of the pages that
point recursively to the target page, with a strong preference for shorter paths.

We calculate the standard deviation of the PageRank values of the in-neighbors
of pages. The result is shown in Figure 18, and it seems that for a large group of
spammers in our datasets, it is more frequent to have less dispersion in the values
of the PageRank of the in-neighbors than in the case of non-spam hosts.

We used the degree-based attributes from the previous section, plus the following
measured in the home page and the page with maximum PageRank, plus the Page-
Rank of the home page divided by the PageRank of the page with the maximum
PageRank. This makes a total of 28 features (17 + 5× 2 + 1 = 28):

(1) Log of PageRank

(2) Log of (in-degree divided by PageRank)

(3) Log of (out-degree divided by PageRank)

(4) Standard deviation of PageRank of in-neighbors

(5) Log of (standard deviation of PageRank of in-neighbors divided by PageRank)

The performance of an automatic classifier using degree- and PageRank-based
attributes is reported in Table IV. In both collections the performance improves
by adding these features.
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Fig. 18. Histogram of the standard deviation of the PageRank of neighbors.

Table IV. Performance using only degree-based and Pagerank-based attributes
Previous F-Measure

Dataset True positives False positives F-Measure from Table III

UK-2002 0.768 0.014 0.835 0.808

UK-2006 0.359 0.025 0.466 0.432

6.3 TrustRank

In [Gyöngyi et al. 2004] the TrustRank algorithm for trust propagation is described:
it starts with a seed of hand-picked trusted nodes and then propagates their scores
by simulating a random walk with restart to the trusted nodes. The intuition behind
TrustRank is that a page with high PageRank, but lacking a relationship with any
of the trusted pages, is suspicious.

The spam mass of a page is defined as the amount of PageRank received by that
page from spammers. This quantity cannot be calculated in practice, but it can
be estimated by measuring the estimated non-spam mass, which is the amount
of score that a page receives from trusted pages. For the purpose of this paper we
refer to this quantity simply as the TrustRank score of a page.

For calculating this score, a biased random walk is carried out on the Web graph.
With probability α we follow an out-link from a page, and with probability 1− α
we go back to one of the trusted nodes picked at random. For the trusted nodes we
used data from the Open Directory Project (available at http://rdf.dmoz.org/),
selecting all the listed hosts belonging to the .uk domain. This includes over 150,000
different hosts, from which we removed the hosts that we know were spam (21 hosts
in UK-2002 and 29 hosts in UK-2006).
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For the UK-2002 sample 32,866 ODP hosts were included in our collection, this
is 33% of the known hosts in our collection. We used the same proportion (33% of
known hosts) for UK-2006, sampling 3,800 ODP hosts in this case.

As shown in Figure 19, the score obtained by the home page of hosts in the
normal class and hosts in the spam class is very different. Also, the ratio between
the TrustRank score and the PageRank (the estimated relative non-spam mass,
shown in Figure 20) is also very effective for separating spam from normal pages.
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Fig. 19. Histogram of TrustRank scores (absolute).

We build a classifier using the attributes from the previous section, plus the
following attributes measured in the home page and the page with the maximum
PageRank, plus the TrustRank of the home page divided by the TrustRank of the
page with the maximum PageRank (28 + 3× 2 + 1 = 35 attributes):

(1) Log of TrustRank (log of absolute non-spam mass)

(2) Log of (TrustRank divided by PageRank) (log of relative non-spam mass)

(3) Log of (TrustRank divided by in-degree)

The performance of an automatic classifier using metrics based on degree, Page-
Rank, and TrustRank, is shown in Table V. The performance improvement is
noticeable in the UK-2006 collection.

Table V. Performance using attributes based on degree, PageRank and TrustRank
Previous F-Measure

Dataset True positives False positives F-Measure from Table IV

UK-2002 0.786 0.014 0.846 0.835
UK-2006 0.539 0.037 0.595 0.466
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Fig. 20. Histogram of TrustRank scores (relative to PageRank).

6.4 Truncated PageRank

In [Becchetti et al. 2006b] we described Truncated PageRank, a link-based ranking
function that reduces the importance of neighbors that are considered to be topo-
logically “close” to the target node. In [Zhang et al. 2004] it is shown that spam
pages should be very sensitive to changes in the damping factor of the PageRank
calculation; in our case with Truncated PageRank we modify not only the damping
factor but the whole damping function.

Intuitively, a way of demoting spam pages is to consider a damping function that
removes the direct contribution of the first levels of links, such as:

damping(t) =

{

0 t ≤ T

Cαt t > T

Where C is a normalization constant and α is the damping factor used for Page-
Rank. This function penalizes pages that obtain a large share of their PageRank
from the first few levels of links; we call the corresponding functional ranking the
Truncated PageRank of a page. The calculation of Truncated PageRank is
described in detail in [Becchetti et al. 2006b]. There is a very fast method for
calculating Truncated PageRank. Given a PageRank computation, we can store
“snapshots” of the PageRank values at different iterations and then take the differ-
ence and normalize those values at the end of the PageRank computation. Essen-
tially, this means that the Truncated PageRank can be calculated for free during
the PageRank iterations.
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Note that as the number of indirect neighbors also depends on the number of
direct neighbors, reducing the contribution of the first level of links by this method
does not mean that we are calculating something completely different from Page-
Rank. In fact, for most pages, both measures are closely correlated, as shown in
[Becchetti et al. 2006b].
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Fig. 21. Histogram of maximum change in TruncatedPageRank up to four levels.

In practice, we observe that for the spam hosts in the UK-2002 collection, the
Truncated PageRank is smaller than the PageRank. If we observe the ratio of
Truncated PageRank at distance i versus Truncated PageRank at distance i − 1,
as shown in Figure 21, we can see a difference between the spam and non-spam
classes, but this difference is not present in the UK-2006 collection.

We built a classifier using the degree- and PageRank- based attributes, plus the
following in the home page and the page with the maximum PageRank:

(1) Log of Truncated PageRank at distance 1, 2, 3, and 4 (4 features)

(2) Log of: Truncated PageRank at distance T , divided by Truncated PageRank
at distance T − 1, for T = 2, 3, 4 (3 features)

(3) Log of: Truncated PageRank at distance T , divided by PageRank, for T =
1, 2, 3, 4 (4 features)

(4) Log of the minimum, average, and maximum change of: Truncated PageRank
T divided by Truncated PageRank T − 1, for T = 1, 2, 3, 4, considering that
Truncated PageRank at distance 0 is equal to PageRank (3 features)

Additionally we used the Truncated PageRank at distance T at the home page,
divided by Truncated PageRank at distance T in the page with maximum Page-
Rank, for T = 1, 2, 3, 4. The total number of features of this classifier is 28 + (4 +
3 + 4 + 3)× 2 + 4 = 60.
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Table VI. Performance using attributes based on degree, PageRank and Truncated PageRank
Previous F-Measure

Dataset True positives False positives F-Measure from Table IV

UK-2002 0.783 0.015 0.843 0.835
UK-2006 0.355 0.020 0.473 0.466

The performance obtained with this classifier is shown in Table VI. Its improve-
ment over the classifier based in degree- and PageRank-based metrics, is lower than
the one obtained by using TrustRank.

6.5 Estimation of supporters

In this section we use the technique for estimating supporters presented in Section 4.
This algorithm can be very easily expanded upon to consider the number of different
hosts contributing to the ranking of a given host. To do so, in the initialization
the bit masks of all the pages in the same host are made equal.

We found that the estimation of supporters hosts is very valuable for separating
spam from non-spam, in particular when the rate of change of the number of sup-
porters is studied. Figure 22 shows the minimum, and Figure 23 the maximum of
this quantity for the counting of different hosts.
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Fig. 22. Histogram of minimum change of site neighbors.

We built a classifier using the degree- and PageRank-based attributes, plus the
following attributes in the home page and the page with the maximum PageRank:

(1) Log of the number of supporters (different hosts) at distance d = 1, 2, 3, 4 (4
features)
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Fig. 23. Histogram of maximum change of site neighbors.

(2) Log of: the number of supporters (different hosts) at distance d = 1, 2, 3, 4
divided by PageRank (4 features)

(3) Log of: the number of supporters (different hosts) at distance d = 2, 3, 4 divided
by number of supporters (different hosts) at distance d− 1 (3 features)

(4) Log of the minimum, maximum, and average of: the number of supporters (dif-
ferent hosts) at distance d = 2, 3, 4, divided by number of supporters (different
hosts) at distance d− 1 (3 features)

(5) Log of: the number of supporters (different hosts) at distance exactly d = 2, 3, 4
(that is, the number of supporters at distance d minus the number of supporters
at distance d− 1), divided by PageRank (3 features)

(6) Log of the number of supporters at distance d = 2, 3, 4; note that supporters
at distance 1 is in-degree (3 features)

(7) Log of: the number of supporters at distance d = 2, 3, 4 divided by PageRank
(3 features)

(8) Log of: the number of supporters at distance d = 2, 3, 4 divided by number of
supporters at distance d− 1 (3 features)

(9) Log of the minimum, maximum, and average of: the number of supporters
at distance d = 2, 3, 4, divided by number of supporters at distance d − 1 (3
features)

(10) Log of: the number of supporters at distance exactly d = 2, 3, 4, divided by
PageRank (3 features)

Additionally we included the ratio of the number of supporters (different hosts) in
the home page and the page with the maximum PageRank, at distance d = 1, 2, 3, 4,

Last updated: March 22, 2007.



Link-Based Web Spam Detection · 33

and the same ratio for the number of supporters at distance d = 2, 3, 4. The total
is 28 + 32× 2 + 4 + 3 = 99 features.

The performance of the classifier that uses these attributes is shown in Table VII.

Table VII. Performance using attributes based on degree, PageRank and Estimation of Supporters
Previous F-Measure

Dataset True positives False positives F-Measure from Table IV

UK-2002 0.802 0.009 0.867 0.835
Only pages 0.796 0.013 0.854
Only hosts 0.779 0.010 0.850

UK-2006 0.466 0.032 0.548 0.466
Only pages 0.401 0.029 0.496
Only hosts 0.467 0.029 0.556

In the table, we have also included the performance of the classifier by reducing
the number of attributes to count only different hosts, or only different pages. In the
UK-2002 collection, it is better to count supporters directly, while in the UK-2006
collection, it is better to use host-based counts instead.

6.6 Combined classifier

By combining all of the attributes we have discussed so far (163 attributes in total),
we obtained a better performance than we did for each of the individual classifiers.
Table VIII presents the results of the combined classifier along with the results
obtained with the previous classifiers.

Table VIII. Summary of the performance of the different classifiers studied on this paper
UK-2002 UK-2006

True False True False
Section Metrics positives positives positives positives

6.1 Degree (D) 0.732 0.015 0.323 0.024
6.2 D + PageRank (P) 0.768 0.014 0.359 0.025

6.3 D + P + TrustRank 0.786 0.014 0.539 0.037
3 D + P + Trunc. PageRank 0.783 0.015 0.355 0.020
6.5 D + P + Est. Supporters 0.802 0.009 0.466 0.032

6.6 All attributes 0.805 0.009 0.585 0.037

The classifier described on Section 6.2, that uses only degree-based and PageRank-
based attributes, can be considered as a baseline. In this case, the best improve-
ments in the UK-2002 collection are obtained using the estimation of supporters,
followed by TrustRank, followed by Truncated PageRank; in the UK-2006 col-
lection, the best is TrustRank, followed by estimation of supporters, followed by
Truncated PageRank.

Last updated: March 22, 2007.



34 · Luca Becchetti et al.

7. RELATED WORK

Characterizing and detecting spam: In [Fetterly et al. 2004] it is shown that
most outliers in the histograms of certain properties of Web pages (such as in-degree
and out-degree) are groups of spam pages. In [Gomes et al. 2005] a comparison of
link-based statistical properties of spam and legitimate e-mail messages is presented.

The method of “shingles” for detecting dense sub-graphs [Gibson et al. 2005]
can be applied for link farm detection, as members of a link farm might share a
substantial fraction of their out-links (however, the algorithm will perform worse if
the link farm is randomized).

In [Zhang et al. 2004] it is shown that spam pages should be very sensitive
to changes in the damping factor of the PageRank calculation; with the case of
Truncated PageRank we not only modify the damping factor, but also the whole
damping function.

Nepotistic links, that is, links that are present for reasons different than merit,
can be detected and removed from Web graphs before applying link-based ranking
techniques. This is the approach proposed in [Davison 2000a] and extended in
[da Costa-Carvalho et al. 2006]. Another idea is to use “bursts” of linking activity
as a suspicious signal [Shen et al. 2006].

In [Benczúr et al. 2005] a different approach for detecting link spam is proposed.
They start from a suspicious page, follow links backwards to find pages which
are strong contributors of PageRank for the target node, and then measure if the
distribution of their PageRank is a power-law or they are mostly pages in a narrow
PageRank interval. Note that this can only be done for some pages at the same
time, while all the algorithms we apply can be executed for all nodes in the graph
at the same time.

Also, content-based analysis [Ntoulas et al. 2006; Drost and Scheffer 2005; Davi-
son 2000a] has been used for detecting spam pages, by studying relevant features
such as page size or distribution of keywords, over a manually tagged set of pages.
The performance of content-based classification is comparable to our approach.

A content-based classifier described in [Ntoulas et al. 2006], without bagging
nor boosting, reported 82% of recall, with 2.5% of false positives (84.4% and 1.3%
with bagging, 86.2% and 1.3% with boosting). Unfortunately, their classifier is not
publicly available for evaluation on the same collection as ours. Also, note that link-
based and content-based approaches to spam detection are orthogonal and suitable
for detection of different kinds of spam activity. It is likely that Web spam classifiers
will be kept as business secrets by most researchers related to search engines, and
this implies that for evaluation it will be necessary to have a common reference
collection for the task of Web spam detection in general.

Outside the topic of Web spam, links have be used for classification tasks. For
instance, [Lu and Getoor 2003] uses the categories of the objects linked from a
target page to infer the category of such page.

Propagating trust and “spamicity”: It is important to notice that we do not
need to detect all spam pages, as the “spamicity” can be propagated. A technique
shown in [Wu and Davison 2005] is based on finding a page which is part of a link
farm and then marking all pages that have links towards it, possibly recursively
following back-links up to a certain threshold (this is also called “BadRank”).
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In [Benczúr et al. 2005], “spamicity” is propagated by running a personalized
PageRank in which the personalization vector demotes pages that are found to be
spam.

Probabilistic counting: Morris’ algorithm [Morris 1978] was the first random-
ized algorithm for counting up to a large number with a few bits. A more sophis-
ticated technique for probabilistic counting is presented in [Flajolet and Martin
1985]; this technique is applied to the particular case of counting the number of
in-neighbors or “supporters” of a page in [Palmer et al. 2002]. The use of proba-
bilistic counting is important in this case, as the cost of calculating the exact values
is prohibitive [Lipton and Naughton 1989].

8. CONCLUSIONS AND FUTURE WORK

On document classification tasks, the most direct approach is to build automatic
classification systems based on the contents and/or formatting of the documents.
With regard to the particular task of Web spam classification, we can take a different
approach and build automatic classification systems based on their link structure.
This is what makes the approach to Web spam we have described in this paper
unique. Also, we have been careful to restrict ourselves to attributes that can be
obtained from a Web graph using streaming algorithms, so they can be applied to
Web graphs of any size.

The performance of our detection algorithms is higher in the UK-2002 collec-
tion than in the UK-2006 collection. The latter was labeled with a broader def-
inition of spam that includes also content-based spam in addition to link-based
spam. However, we are not suggesting to use only link-based attributes. The link-
analysis methods are orthogonal to content-based analysis, and the performance of
a classifier using content- and link-based features is substantially better than the
performance of a classifier using only one set of features [Castillo et al. 2006].

As a general criticism of our work, our host-based approach has some draw-
backs that should be addressed in future work. For instance, hosts can have mixed
spam/legitimate content, and it is important to study how frequently this occurs,
as well as testing how link-based attributes can help in the classification task at a
page level. Also, a better definition of Web site instead of host would be useful; for
instance, considering multi-site hosts such as geocities.com as separated entities.

Finally, the use of regularization methods that exploit the topology of the graph
and the locality hypothesis [Davison 2000b] is promising, as it has been shown
that those methods are useful for general Web classification tasks [Zhang et al.
2006; Angelova and Weikum 2006; Qi and Davison 2006] and that can be used to
improve the accuracy of Web spam detection systems [Castillo et al. 2006].
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Gyöngyi, Z. and Garcia-Molina, H. 2005. Web spam taxonomy. In First International Work-
shop on Adversarial Information Retrieval on the Web.
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A. PROOF OF THEOREM 1

In the proof of the theorem we will repeatedly use the following facts:

Fact 1. For every β > 0, the function

f(s) =

(

1−
1

βs

)s

is monotonically increasing in the interval [1/β,∞).

Proof. The function (and its derivative) is 0 in s = 1/β. Also, the function and
its derivative are positive in (1/β,∞).

Fact 2. For every n ≥ 1:
(

1−
1

n + 1

)n+1

<
1

e
<

(

1−
1

n + 1

)n

Proof. This is an easy consequence of the well known fact that
(

1 +
1

n

)n

< e <

(

1 +
1

n

)n+1

.

In the sequel, we denote by F<(x) the first value of ǫ such that Bǫ(x) < (1−1/e)k,
i.e. Bǫ(x) ≥ (1 − 1/e)k for ǫ = 2F<(x), 4F<(x), . . . , ǫmax.

Theorem 1

P

[

(N(x) > 3N(x))
⋃

(

N(x) <
N(x)

3

)]

≤ log2 N(x)e−0.027k + e−0.012k,

for every page x such that N(x) ≥ 102.

Proof. We first consider P
[

N(x) < (1/3)N(x))
]

. Note that N(x) = 1/F<(x)

by definition of F<(x). Also, N(x) < (1/3)N(x) implies F<(x) > 3/N(x) ≥ 3ǫ(x)

2For N(x) < 10 the bound is still exponentially decreasing in k, but the constants in the exponent
are lower and we cannot guarantee high accuracy for typical values of k.
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and this is equivalent to F<(x) ≥ 4ǫ(x), by definition of ǫ(x) and by the algorithm.
Hence,

P
[

N(x) < (1/3)N(x)
]

≤ P[F<(x) ≥ 4ǫ(x)] =

imax
∑

i=2

P
[

F<(x) = 2iǫ(x)
]

,

where imax = log2(ǫmax/ǫ(x)) ≤ log2 N(x), since ǫ(x) ≥ 2/N(x) by definition. We
continue with:

imax
∑

i=2

P
[

F<(x) = 2iǫ(x)
]

=

imax
∑

i=2

P

[

B2iǫ(x)(x) <

(

1−
1

e

)

k

imax
⋂

l=i+1

B2lǫ(x)(x) ≥

(

1−
1

e

)

k

]

≤

imax
∑

i=2

P

[

B2iǫ(x)(x) <

(

1−
1

e

)

k

]

.

Furthermore we have:

E
[

Bǫ(x)2i(x)
]

= k − k(1− ǫ(x)2i)N(x) >

(

1−

(

1

e

)2i−1)

k >

(

1−
1

e

)

k,

where the first equality follows from Lemma 1, while the second inequality follows
recalling that ǫ(x) ≥ 1/2N(x) and the applying Fact 2 with some straightforward
manipulations. As a consequence, if we set

δi =
E
[

Bǫ(x)2i(x)
]

−
(

1− 1
e

)

k

E
[

Bǫ(x)2i(x)
] =

1
e − (1− ǫ(x)2i)N(x)

1− (1− ǫ(x)2i)N(x)
,

we have 0 < δi < 1 and the event (Bǫ(x)2i(x) < (1 − 1/e)k) implies (Bǫ(x)2i(x) <

(1− δi)E
[

Bǫ(x)2i(x)
]

), where Bǫ(x)2i(x) is the sum of independent, binary random
variables. Hence, we can apply Chernoff’s bound [Mitzenmacher and Upfal 2005]
to obtain:

P
[

Bǫ(x)2i(x) < (1− 1/e)k
]

≤ e−
δ2
i E

»

B
ǫ(x)2i (x)

–

2 = e
−

( 1
e
−(1−ǫ(x)2i )N(x))2

1−(1−ǫ(x)2i )N(x)
k

≤ e−

 

1
e
−( 1

e )
2i−1

!2

2 k ≤ e−
( 1

e
−

1
e2 )

2

2 k.

The third inequality follows recalling that ǫ(x) ≤ 1/2N(x) and applying Fact 2,
while the fourth follows since i ≥ 2. As a consequence:

P
[

N(x) < (1/3)N(x)
]

≤

imax
∑

i=2

P
[

F<(x) = 2iǫ(x)
]

≤

imax
∑

i=2

e−
( 1

e
−

1
e2 )

2 k

≃

imax
∑

i=2

e−0.027k = (log2 N)e−0.027k.

We now turn to P
[

N(x) > 3N(x)
]

. First note that (N(x) > 3N(x)) is equivalent

to (F<(x) < 1/3N(x)), by the way N(x) is chosen and by the definition of F<(x).
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In the analysis, we have to distinguish the cases ǫ(x) < 2/3N(x) and ǫ(x) ≥
2/3N(x). In the former case we write:

P
[

N(x) > 3N(x)
]

= P

[

F<(x) <
1

3N(x)

]

≤ P

[

F<(x) <
2ǫ(x)

3

]

= P[F<(x) ≤ ǫ(x)/2] = P

[

imax
⋂

i=0

Bǫ(x)2i(x) >

(

1−
1

e

)

k

]

≤ P

[

Bǫ(x)(x) >

(

1−
1

e

)

k

]

,

where the first equality follows from the definitions of N(x) and F<(x), the second
inequality follows since 1/N(x) ≤ 2ǫ(x) by definition of ǫ(x), while the third equality
is a consequence of the fact that, by the algorithm, the largest possible value for
F<(x) that is smaller than 2ǫ(x)/3 is ǫ(x)/2. Now, we have

E
[

Bǫ(x)(x)
]

= k − k(1− ǫ(x))N(x) ≤ k − k

(

1−
2

3N(x)

)N(x)

≤ k − k

(

1−
1

N(x) + 1

)N(x)

<

(

1−
1

e

)

k,

where the first equality follows from Lemma 1, the second inequality follows since
ǫ(x) < 2/3N(x), while the fourth follows from Fact 2. Now set

δ =

(

1− 1
e

)

k −E
[

Bǫ(x)(x)
]

E
[

Bǫ(x)(x)
] =

(1− ǫ(x))N(x) − 1
e

1− (1 − ǫ(x))N(x)
,

where obviously δ < 1. We can write:

P
[

N(x) > 3N(x)
]

≤ P

[

Bǫ(x)(x) >

(

1−
1

e

)

k

]

≤ P
[

Bǫ(x)(x) > (1 + δ)E
[

Bǫ(x)(x)
]]

≤ e−
δ2

3 Bǫ(x)(x)

= e
−

((1−ǫ(x))N(x)
−

1
e )

2

3(1−(1−ǫ(x))N(x) )
k
,

where the third inequality follows from the application of Chernoff bound. On the
other hand, recalling that ǫ(x) < 2/3N(x) we get:

(

(1− ǫ(x))N(x) − 1
e

)2

3(1− (1− ǫ(x))N(x))
k ≥

(

(1− 2
3N(x) )

N(x) − 1
e

)2

3(1− (1 − 2
3N(x))

N(x))
k ≥ 0.012 k,

whenever N(x) ≥ 10. In deriving the second inequality, we use use Fact 1 with
β = 3/2 to conclude that (1−2/3N(x))N(x) achieves its minimum when N(x) = 10.
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We now consider the case ǫ(x) ≥ 2/3N(x). Proceeding the same way as before
we get:

P
[

N(x) > 3N(x)
]

= P[F<(x) ≤ ǫ(x)/4] = P

[

imax
⋂

i=−1

Bǫ(x)2i(x) >

(

1−
1

e

)

k

]

≤ P

[

Bǫ(x)/2(x) >

(

1−
1

e

)

k

]

.

where imax has been defined previously. Here, the first equality follows since
(N(x) > 3N(x)) is equivalent to (F<(x) < 1/3N(x)) and the latter implies (F<(x) <
ǫ(x)/2) since we are assuming ǫ(x) ≥ 2/3N(x). Proceeding as in the previous case,
it is easy to prove that E

[

Bǫ(x)/2(x)
]

< (1− 1/e)k. We can then define:

δ =

(

1− 1
e

)

k −E
[

Bǫ(x)/2(x)
]

E
[

Bǫ(x)/2(x)
] =

(1− ǫ(x)/2)N(x) − 1
e

1− (1 − ǫ(x)/2)N(x)
,

where obviously δ < 1. Finally,

P

[

Bǫ(x)/2(x) >

(

1−
1

e

)

k

]

≤ P
[

Bǫ(x)/2(x) > (1 + δ)E
[

Bǫ(x)/2(x)
]]

≤ e−
δ2

3 Bǫ(x)/2(x) ≤ e−0.043k,

where the third inequality follows by considering the expression of δ2E
[

Bǫ(x)/2(x)
]

,

recalling that ǫ(x) ≤ 1/N(x) by definition and applying Fact 1 to (1−1/2N(x))N(x)

with the assumption that N(x) ≥ 10. We therefore conclude:

P

[

N(x) > 3N(x)
⋃

(

N(x) >
N(x)

3

)]

≤ log2 N(x)e−0.027k + e−0.012k.
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