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ABSTRACT
In this paper we study the problem of local triangle count-
ing in large graphs. Namely, given a large graph G = (V, E)
we want to estimate as accurately as possible the number of
triangles incident to every node v ∈ V in the graph. The
problem of computing the global number of triangles in a
graph has been considered before, but to our knowledge this
is the first paper that addresses the problem of local tri-
angle counting with a focus on the efficiency issues arising
in massive graphs. The distribution of the local number
of triangles and the related local clustering coefficient can
be used in many interesting applications. For example, we
show that the measures we compute can help to detect the
presence of spamming activity in large-scale Web graphs, as
well as to provide useful features to assess content quality
in social networks.

For computing the local number of triangles we propose
two approximation algorithms, which are based on the idea
of min-wise independent permutations (Broder et al. 1998).
Our algorithms operate in a semi-streaming fashion, using
O(|V |) space in main memory and performing O(log |V |)
sequential scans over the edges of the graph. The first al-
gorithm we describe in this paper also uses O(|E|) space in
external memory during computation, while the second al-
gorithm uses only main memory. We present the theoretical
analysis as well as experimental results in massive graphs
demonstrating the practical efficiency of our approach.
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1. INTRODUCTION
Graphs are a ubiquitous data representation that is used

to model complex relations in a wide variety of applica-
tions, including biochemistry, neurobiology, ecology, social
sciences, and information systems. Defining new measures
of interest on graph data and designing novel algorithms that
compute or approximate such measures on large graphs is
an important task for analysing graph structures that reveal
their underlying properties.

In this paper we study the problem of counting the local
number of triangles in large graphs. In particular, we con-
sider undirected graphs G = (V, E), in which V is the set
of nodes and E is the set of edges. For a node u we define
S(u) to be the set of neighbors of u, that is, S(u) = {v ∈ V :
euv ∈ E}, and let the degree of u be du = |S(u))|. We are
then interested in computing, for every node u, the number
of triangles incident to u, defined as:

T (u) =
1

2
|{evw ∈ E : euv ∈ E, euw ∈ E}|.

The problem of counting triangles also translates into com-
puting the local clustering coefficient (also known as tran-
sitivity coefficient). For a node u, the local clustering co-

efficient is defined as 2T (u)
du(du−1)

, that is, the ratio between

the number of triangles and the largest possible number of
triangles in which the node could participate.

Note that the problem of estimating the overall (global)
number of triangles in a graph has been studied already, see
e.g. [2, 10]; here we deal with the problem of estimating the
(local) number of triangles of all the individual nodes in the
graph simultaneously.



We motivate our problem definition by showing how the
local triangle computation can be used in a number of in-
teresting applications. Our first application involves spam
detection: we show that the distribution of the local clus-
tering coefficient can be an effective feature for automatic
Web-spam detection. In particular, we study the distribu-
tion of the local clustering coefficient and the number of tri-
angles in large samples of the Web. Results show that these
metrics, in particular the former, exhibit statistical differ-
ences between normal and spam pages and are thus suitable
features for the automatic detection of spam activity in the
Web.

Next we apply our techniques to the characterization of
content quality in a social network, in our case the Yahoo!
Answers community. Following a suggestion from the study
of social networks in reference [32], that the type and qual-
ity of content provided by the agents is related to the de-
gree of clustering of their local neighborhoods, we perform
a statistical analysis of answers provided by users, studying
the correlation between the quality of answers and the local
clustering of users in the social network.

In addition to the ones we consider, the efficient compu-
tation of the local number of triangles and local clustering
coefficient can have a larger number of other potential ap-
plications, ranging from the analysis of social or biological
networks [29] to the uncovering of thematic relationships in
the Web [16].

For computing the local number of triangles we propose
two approximation algorithms, which rely on well estab-
lished probabilistic techniques to estimate the size of the
intersection of two sets and the related Jaccard coefficient [6,
8, 9]. Our algorithms use an amount of main memory in the
order of the number of nodes O(|V |) and make O(log |V |)
sequential scans over the edges in the graph.

Our first algorithm is based on the approach proposed in
[7, 8, 9], which uses min-wise independent hash functions
to compute a random permutation of an ordered set. In
our case, this is the (labeled) set of nodes in the graph. In
practice, to increase efficiency, instead of hash functions we
simply use a random number generator to assign binary la-
bels to nodes. Doing this can in principle lead to collisions
(i.e., we might have subsets of nodes with the same label).
We provide a quantitative analysis of this approach, char-
acterizing the quality of the approximation in terms of the
Jaccard coefficient and the role of collisions. A similar anal-
ysis had been sketched in [6].

We then propose a second algorithm that maintains one
counter per node in main memory—as opposed to the first
algorithm, which requires one couter for each edge. In prac-
tice, our second algorithm allows to perform the computa-
tion in main memory, thus achieving a considerable speed
up. In particular, the processing time is almost halved, while
the accuracy is still comparable or sometimes even better
than the first algorithm. This is achieved by using a new,
simpler, linear function to approximate the Jaccard coeffi-
cient of two sets. As a theoretical contribution, we assess
the performance of this second algorithm in the framework
used to analyze the first one.

We support our findings and analysis by experimental re-
sults. In particular, we use our algorithms to estimate the
distributions of the number of triangles and of the clustering
coefficient in medium and large samples of the Web graph.
To the best of our knowledge, this is the first time efficient

(semi-streaming) approximation algorithms for counting tri-
angles are described.

The rest of the paper is organized as follows. In the next
section we review the related work and in Section 3 we intro-
duce the model of computation and the notation that we will
be using throughout the paper. Section 4 describes how to
approximate the intersection of two sets using pairwise inde-
pendent permutations, as described in [8]. Section 5 presents
our first algorithm, and Section 6 the main-memory-only al-
gorithm. The last section presents our conclusions and out-
lines future work.

2. RELATED WORK
Computing the clustering and the distribution of triangles

are important to quantitatively assess the community struc-
ture of social networks [29] or the thematic structure of large,
hyperlinked document collections, such as the Web [16].

There has been work on the exact computation of the
number of triangles incident to each node in a graph [1, 3,
25]. The brute-force algorithm for computing the number

of triangles simply enumerates all
`

|V |
3

´

triples of nodes, and

thus it requires O(|V |3) time. A more efficient solution for
the local triangle counting problem is to reduce the problem
to matrix multiplication, yielding an algorithm with running
time O(|V |ω), where currently ω ≤ 2.376 [14]. If in addition
to counting one wants to list all triangles incident to each
node in the graph, variants of the “node iterator” and “edge-
iterator” algorithms can be used. A description and an ex-
perimental evaluation of those “iterator” algorithms can be
found in [30]; however, their running time is O(|V |d2

max) and
O(

P

v∈V d2
v), respectively. For the datasets we consider—

very large number of nodes and high-degree nodes due to
skewed degree distributions—such exact algorithms are not
scalable, thus in this paper we resort to approximation al-
gorithms.

In [13] the authors propose a streaming algorithm that
estimates the global number of triangles with high accuracy,
using an amount of memory that decreases as the number
of triangles increases. This result has been improved in [10].
We remark that, differently from [13, 10], in this paper we
are interested in estimating the local clustering coefficient
(and the number of triangles) for all vertices at the same
time.

Min-wise independent permutations have been proposed
by Broder et al. as a way to estimate the size of the intersec-
tion of two sets and the related Jaccard coefficient. Together
with the technique of shingles they provide a powerful tool
to detect near duplicates in large document collections and
the Web in particular [9, 6, 7]. Implementing min-wise in-
dependent permutations is infeasible in practice, since they
require exponential space [8]. In recent years, families of
linear hash functions have been proposed that implement
min-wise independent permutations approximately [24, 4].
As explained further in this paper, in order to save com-
putational time we do not use hash functions directly, but
rather a pseudo-random generator. This can bring to colli-
sions, but we show that their impact is negligible in practice.

The probabilistic estimation techniques we use have been
considered in the past to solve related problems. In [20], the
authors use the techniques of shingles and linear hashing to



discover subsets of Web pages that share significant subsets
of their outlinks, thus extending and making the discovery
of cyber-communities in the Web computationally more effi-
cient, in the spirit of [27]. Finally, in [19], the authors apply
similar techniques to produce indices of page similarity that
extend SimRank [26].

3. PRELIMINARIES

3.1 Semi-streaming graph algorithms
Given the very large size of the data sets used in Web

Information Retrieval, efficiency considerations are very im-
portant. For concreteness, the total number of nodes N =
|V | in the Web that is indexable by search engines is in the
order of 1010 [21], and the typical number of links per Web
page is between 20 and 30.

This fact imposes severe restrictions on the computational
complexity of feasible algorithmic solutions. A first ap-
proach to modeling these restrictions might be the streaming

model of computation [23], which however imposes limita-
tions that are too severe for the problem at hand. Instead,
we focus on building algorithmic solutions whose space and
time requirements are compatible with the semi-streaming

model of computation [17, 15]. This implies a semi-external
memory constraint [31] and thus reflects many significant
limitations arising in practice. In this model, the graph is
stored on disk as an adjacency list and no random access is
possible, i.e., we only allow sequential access. Every compu-
tation involves a limited number of sequential scans of the
data stored in secondary memory [22].

Our algorithms also use an amount of main memory in the
order of the number of nodes, whereas an amount of memory
in the order of the number of edges may not be feasible.
We assume that we have O(N log N) bits of main (random
access) memory, i.e., in general there is enough memory to
store some limited amount of data about each vertex, but
not to store the links of the graph in main memory. We
impose as a further constraint that the algorithm should
perform at most O(log N) passes over the data stored on
secondary storage.

For comparison, suppose we want to measure the num-
ber of triangles in a graph in a näıve way. This would im-
ply loading the lists of neighbors of each node in the graph
in main memory to be able to count the number of trian-
gles directly. This would need O(|E| log |V |) bits of main
memory which is impractical in general. As to this point,
note that in many data sets arising in practice, in particular
some of the ones we consider in the experiments, we have
|E| = Ω(|V | log |V |).

3.2 Counting triangles
Considered an undirected graph (possibly a symmetrized

version of a Web graph) and a vertex u, denote by S(u)
the set of u’s immediate neighbors. Now notice that, for
every edge uv ∈ E, the number of triangles to which both
u and v belong is |S(u) ∩ S(v)|. So, the overall number of
triangles u ∈ V is participating in is

P

v∈S(u) |S(u) ∩ S(v)|.
As a result, the basic building block of our approach is an
algorithm to estimate the size of the intersection of two sets.

In the next section, we revisit the general technique [8, 9,
6, 7] to estimate the Jaccard coefficient and thus the size of
the intersection of two sets A and B, defined over the same

Table 1: Datasets used in the experiments.
Collection Domain Year Nodes Edges

WEBBASE-2001 various 2001 118M 1737M
IT-2004 .it 2004 41M 2069M
EU-2005 .eu.int 2005 862K 33M
UK-2006-05 .uk 2006 77M 5294M
Answers social net 2007 6M 277M

universe which we assume, without loss of generality, to be
[n] = {0, . . . , n− 1} and where n = 2k for some suitable k.

3.3 Datasets
We ran most of our experiments on three medium-sized

crawls gathered by the Laboratory of Web Algorithmics,
University of Milan (http://law.dsi.unimi.it/); the graphs
were symmetrized and loops were not considered in the com-
putations. We used the WebGraph framework [5] to manip-
ulate the graphs in compressed form. The particular col-
lections we used are listed in Table 1. Note that, at least
for some of the collections we consider, |E| is expected to
grow as Ω(|V | log |V |). Furthermore, consistently with the
empirical observations in [28], the average number of edges
per node increases over the years. The dataset UK-2006-

05 is the crawl that was labeled by a team of volunteers for
creating a Web-spam collection [11] so we have labels of non-
spam/spam for a large set of hosts in that collection. The
distribution of the number of triangles in the smaller graph
EU-2005 is shown in Figure 1 and follows a power law.

In addition to the graphs from web crawls, we also used a
subgraph from Yahoo! Answers (http://answers.yahoo.com/),
a question-answering portal. In the graph, each node rep-
resents a user, and a link between two users indicates that
one of the users has answered a question asked by the other
user. In the system, users can choose among the answers
received which one is the best answer, and in the graph, we
have identified the users who provide a high proportion of
“best answers” to the questions they answer.
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Figure 1: Distribution of the number of triangles in
the EU-2005 graph.

4. ESTIMATING SET INTERSECTION
Without loss of generality, we consider subsets of the uni-

verse [n] = {0, . . . , n − 1}. We measure the overlap of two

sets using the Jaccard coefficient: J(A, B) = |A∩B|
|A∪B|

.



A very simple and elegant technique to estimate the Jac-
card coefficient has been proposed in several equivalent forms
by Broder et al. [6, 7, 8, 9]. Assume we are able to choose a
permutation π(·) mapping [n] onto itself uniformly at ran-
dom. For every X ⊆ [n], denote by π(X) the set of the im-
ages of elements in X when π(·) is applied and let min(π(X))
denote their minimum. Then it can be shown [7] that (i) for
every a ∈ A ⊆ [n], Pr[a = arg min(π(A))] = 1/|A|; (ii) for
every A, B ⊆ [n]: Pr[min(π(A)) = min(π(B))] = J(A, B).
This property immediately yields a technique to estimate
J(A, B) . The algorithm consists in performing m passes
over the data. At each pass, one permutation π(·) among
the n! possible ones is picked uniformly at random and then
min(A) is computed and compared with min(B). Whenever
they match, a counter is updated. Let Cm be the counter’s
value after m passes. Our estimation of J(A, B) is Cm/m.

Unfortunately, generating permutations uniformly at ran-
dom requires exponential space [8]. In practice, suitable
families of linear hash functions are used (e.g. see [24, 4]).

In this paper, in order to increase the speed of computa-
tion, we use a slight modification of this approach, simply
assigning random labels to the graph’s vertices. As long
as labels are sufficiently random and collisions not too fre-
quent, we are able to approximate the Jaccard coefficient
satisfactorily. In practice, we used the Mersenne Twister,
a pseudo-random number generator, which is a fast gener-
ation algorithm for obtaining high-quality pseudo-random
numbers.

Figure 2 describes the algorithm’s pseudo-code, which is
exactly the standard one given for example in [7], except
for the use of random labels. As to the notation used in
the pseudo-code, l(j) is a k-bit integer label for every item
j ∈ [n] while, for A ⊆ [n], L(A) = minj∈A l(j).

Require: sets A, B ⊆ [n], integer m, k bits
1: for i : 1 . . . m do
2: For every j ∈ [n], set l(j) to a value drawn uniformly

at random between 0 and 2k − 1
3: COMPUTE L(A) AND L(B)
4: if (L(A) == L(B)) then

5: count ← count + 1

6: return estimate ← (count/(count + m))(|A|+|B|)

Figure 2: Basic algorithm for the estimation of the
intersection of two sets.

Define the following variables: Wi = 1 if and only if,
in the i-th iteration, L(A) = L(B) and W =

Pm

i=1 Wi.

Set X = |A ∩ B|. Our estimator of X is X = W/(W +
m)(|A| + |B|). In fact, the labeling step might assign the
same label to multiple vertices. This means that, in each
iteration of the algorithm above, the probability that L(A)
= L(B) is not exactly equal to J(A, B), as would be the
case if we used min-wise independent permutations [8]. For
the sake of completeness, we show that, as long as labels
are reasonably random, the trivial labeling scheme we use
allows us to estimate J(A, B) with good accuracy, collisions
having a negligible impact. This is stated in the next result,
whose proof follows the lines of those given in [9, 6, 7] and
will be given in the full version of the paper. We present this
result here for the sake of completeness, since it considers
the role of collisions (an aspect only sketched in [6]).

Theorem 1. For every ε > 0 and for every number m of

iterations:

Pr
ˆ

|X −X| > εX
˜

≤ 2e−
ε2

3
mJ(A,B) +

m|A ∪ B|

2k − 1
.

In practice, this result states that our estimation of |A∩B|
differs from the true value by more than a constant fac-
tor with a probability that exponentially decays with m
and J(A, B), while the worst case impact of collisions is
summarized in the second term, which is o(1) as long as
k = Ω(log n+log m), m typically being in the order of a few
tenths.

In the next section, we describe how to apply the same
techniques for estimating the number of triangles.

5. ESTIMATING TRIANGLE COUNT
In this section we describe an approximating algorithm

for counting the number of triangles for each node in the
graph. The idea is to compute an approximation T (u) of
the number of triangles T (u) for all vertices in the graph.

5.1 Algorithm
The algorithm for computing the number of triangles is

written in pseudo-code in Figure 3 and explained in the next
paragraphs. The notation used in the pseudo-code is as
follows: G = (V, E) is an undirected graph, S(u) is the set
of neighbors of vertex u, hp(u) denotes the random k-bit
label for node u.

Require: graph G = (V, E), number of iterations m, num-
ber of bits k

1: Z ← 0
2: for p : 1 . . . m do {This reads the graph 2m times}
3: for u : 1 . . . |V | do {Initialize node labels and min}
4: hp(u)← k random bits
5: min(u)← +∞

6: for src : 1 . . . |V | do {Compute minima}
7: for all links from src to dest do
8: min(src)← min(min(src), hp(dest))

9: for src : 1 . . . |V | do {Compare minima}
10: for all links from src to dest do
11: if min(src) == min(dest) then
12: Zsrc,dest ← Zsrc,dest + 1

13: for src : 1 . . . |V | do {Compute number of triangles}

14: T (src)← 0
15: for all links from src to dest do
16: T (src)← T (src)+

Zsrc,dest

Zsrc,dest+m
(|S(src)|+ |S(dest)|)

17: T (src)← T (src)/2

18: return T (·)

Figure 3: Algorithm for estimating the number of
triangles of each node. The counters Z·,· are kept on
external memory and updated sequentially.

The algorithm performs m passes. At the beginning of
each pass p, a new random vector hp(·) is created. Each
pass consists of two reads of the graph. In the first read of
the graph, at each node we store the minimum label among
those of the neighbors of that node. In the second read of



the graph, we check, for each edge, if the two minima at the
endpoints of the edge are equal; in such a case, one counter
Z·,· for each edge is increased.

After the m passes, an estimation of the number of trian-
gles of each node is computed as:

T (u) =
1

2

X

v∈Su

Zuv

Zuv + m
(|S(u)| + |S(v)|) .

The algorithm is feasible because the counters Zuv, which
make most of the memory usage, are accessed sequentially
and can be kept on secondary memory. The time complex-
ity of the algorithm is O(m|E|). The main memory usage
is O(k|V |) bits, basically for storing the node labels and the
minima; a natural choice for k is log(|V |). The secondary
memory usage is O(|E| log m) bits of temporary space which
is less than the space required to store the graph in uncom-
pressed form. The space required in secondary memory is
read and written sequentially once for each pass.

The quality of the approximation only depends on local
properties of the graph, and does not vary as the graph grows
in size. In particular, every term in the sum above has an
accuracy that is described by Theorem 1, where A = S(u)
and B = S(v). So, as stated in the previous section, the
approximation improves with the number of passes, and it
depends on the Jaccard coefficient so that for nodes with
higher Jaccard coefficient the error is smaller.
Remark. The value of m depends on the desired per-node
accuracy. As Theorem 1 shows, a value of m in the order
of a few tenths suffices to satisfactorily estimate the size
of the intersection of any two neighbourhoods that overlap
significantly.

5.2 Experimental results
We first computed the exact number of triangles for a large

sample of nodes in main memory. To do this, we proceeded
by blocks, keeping in main memory the neighbors of a set
of vertices, counting triangles, and then moving to the next
block of nodes. We did this for a sample of 4M nodes in
each graph (except in the small one EU-2005 in which we
were able to sample all the 800K nodes).

We use two similarity measures: Pearson’s correlation co-
efficient (r) and Spearman’s rank correlation coefficient (ρ)
between the approximation and the real value. We also mea-
sured the average relative error:

1

|V |

X

u

|T (u)− T (u)|

T (u)
.

As a baseline approximation, we assume a constant clus-
tering coefficient C in the graph, known in advance, and esti-

mate the number of triangles of a node u as C |S(u)|(|S(u)−1|)
2

.
For two of the metrics we use for measuring the quality of
the approximation below, the value of C is not relevant:
Pearson’s correlation coefficient assumes a linear relation-
ship and Spearman’s rank correlation coefficient is not af-
fected by multiplicative factors.

Next we computed the distribution using our algorithm.
For a fixed number of bits k, the accuracy of the approxi-
mation increases with the number of passes. In Figure 4 we
show the error of these approximations in one of the Web
graphs; the result for the other Web graphs in Table 1 are
equivalent.

Already at 20 passes, involving only 40 sequential reads
of the graph, the approximation has r ≥ 0.90 and ρ ≥ 0.90.

Looking at Spearman’s rank correlation, which is ≥ 0.85
with 50 iterations for our algorithm, we can see that the
baseline algorithm provides a better approximation of the
ordering of the nodes by number of triangles in IT-2004, EU-
2005 and UK-2006-05. This fact indicates that the overall
ordering is dominated by the degree of the nodes involved.
However, the correlation coefficient of the baseline approx-
imation is very low (below 0.5, and below 0.1 in UK and
WebBase) while the correlation coefficient of the proposed
algorithms is above 0.9.
Remark. For the sake of brevity, we only mention here that
our algorithms show that the distribution of the number of
triangles follows a power law, as shown in Figure 1. The
same observation was also made in [16] for Web samples of
smaller size.

6. ESTIMATING TRIANGLE COUNT IN
MAIN MEMORY

This section describes a modification of previous algo-
rithm that does not make use of external memory for the
computation.

Observe that, in the final step of the algorithm presented
in Section 5, we computed an estimation of the number of
triangles of a node as:

T (u) =
1

2

X

v∈Su

Zuv

Zuv + m
(|S(u)| + |S(v)|)

in which Zuv is the number of minima that were the same
between u and v during the m passes, so 0 ≤ Zuv ≤ m.

To avoid the use of external memory, instead of keeping
one counter for each edge, we can use one counter for each
node, by approximating the number of triangles incident to
a vertex u as:

T (u) =
1

2

X

v∈Su

Zuv

3
2
m

(|S(u)|+ |S(v)|).

The algorithm that uses this approximation is given in
Figure 5 and it is explained in the next paragraphs. The
proof that it estimates the triangle count with good accuracy
is given in the next subsection.

This algorithm is similar in spirit to the one shown in
Figure 3, but removing Zuv from the denominator in the

expression of T (u) allows to maintain one counter per node
instead of one counter per edge. The algorithm does m
passes, each pass consisting of two reads of the graph. In the
first read of the graph, at each node we store the minimum
hash value of the neighbors of that node. In the second read
of the graph, we check, for each edge, if the two minima at
the endpoints of the edge (src, dest) are equal, and if so a
per-node counter Zsrc is increased by |S(src)|+ |S(dest)|.

After the m passes, an estimation of the number of trian-
gles of each node is computed as:

T (u) =
1

2

Zu

3
2
m

=
1

3m
Zu.

The time complexity of the algorithm is O(m|E|). The
main memory usage is O(k|V |) bits, basically for storing
the hash functions, minima, and the per-node counters. Sec-
ondary memory is accessed only to read the graph.
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Figure 4: Accuracy of the approximation of the number of triangles using the two algorithms described in
the paper (external memory and main memory). Left: Pearson’s correlation coefficient. Center: Spearman’s
rank correlation coefficient. Right: average relative error.

Require: graph G = (V, E), number of iterations m, num-
ber of bits k

1: Z ← 0
2: for p : 1 . . . m do {This reads the graph 2m times}
3: for u : 1 . . . |V | do {Initialize node labels and min}
4: hp(u)← k random bits
5: min(u)← +∞

6: for src : 1 . . . |V | do {Compute minima}
7: for all links from src to dest do
8: min(src)← min(min(src), hp(dest))

9: for src : 1 . . . |V | do {Compare minima}
10: for all links from src to dest do
11: if min(src) == min(dest) then
12: Zsrc ← Zsrc + |S(src)|+ |S(dest)|

13: for u : 1 . . . |V | do {Compute number of triangles}

14: T (src)← 1
3m

Zu

15: return T (·)

Figure 5: Algorithm for estimating the number of
triangles of each node in main memory.

6.1 Analysis
We can give a result similar to that of Theorem 1. Namely,

for u, v ∈ V , set X = |S(u) ∩ S(v)| and define W as in
Section 4. In particular, W =

Pm

i=1 Wi, with Wi = 1 if,
during the i-th iteration of the algorithm, the if at line 14 of
the algorithm of Figure 5 is true for nodes u and v. Finally,
define

X =
W

1.5m
(|S(u)| + |S(v)|).

We have

Theorem 2.
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Proof. For i = 1, . . . , m, let Ei = 1 if at the i-th it-
eration there is more than one element achieving the mini-
mum, 0 otherwise and let E =

Pm

i=1 Ei. Also, set W (i) =

(Wi |E = 0) and W =
Pm

i=1 W (i). We have:
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˜
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ˆ
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see that we have:
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where the last inequality follows from the definition of X̂.
Now:

Pr

»„

X̂ >
4

3
(1 + ε)X

«–

+ Pr

»„

X̂ <
2

3
(1− ε)X

«–

≤ Pr
h

|X̂ −E
h

X̂
i

| > εE
h

X̂
ii

,

where the inequality follows from the above given bounds

on E
h

X̂
i

in terms of X. Recalling that, by definition, X̂ =

W (|S(u)| + |S(v)|)/(1.5m) we immediately have:
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The rest of the proof now proceeds exactly as in Theo-
rem 1.

Remark. As to the choice of m, considerations analogous
to those at the end of Section 5 hold.

6.2 Experimental results
In practice, we observe that the second algorithm saves

40% to 60% of the running time. We ran the experiments for
the large graphs in a quad-processor Intel Xeon 3GHz with
16GB of RAM. The wall-clock times required for m = 50
iterations we observed were:



Algorithm 1 Algorithm 2
Graph Nodes Edges (ext. mem.) (main mem.)

WB-2001 118M 1.7G 10 hr 20 min 3 hr 40 min
IT-2004 41M 2.1G 8 hr 20 min 5 hr 30 min
UK-2006 77M 5.3G 20 hr 30 min 13 hr 10 min
The experimental results obtained show that, surprisingly,

in many cases the accuracy of the main-memory algorithm is
even better than the algorithm that uses secondary memory.
Figure 4 depicts the results for the case of IT-2004 (exper-
iments on the other datasets have been omitted for lack of
space, but have essentialy the same behavior).

In the implementation, the number of bits necessary to
store each counter depends on the number of iterations and
on the link density of the graph. For instance, for WB-
2001 we used a Java int (32-bits including the sign), but for
IT-2004 and UK-2006, a long (64 bits including sign) was
necessary to avoid overflow. We started to observe overflow
after 60 passes in IT-2004 and after 20 passes in UK-2006.
We point out that this is independent from the number of
nodes in the graph.

7. APPLICATIONS
An efficient algorithm for local triangle counting is not

only interesting as an algorithmic contribution. This section
describes two applications of the algorithm for helping in
information retrieval tasks in large graphs.

7.1 Detecting Web spam
Spam and non-spam pages exhibit different statistical prop-

erties, and this difference can be exploited for Web Spam
Detection [18]. In this section we test if the number of tri-
angles is a relevant feature for this task.

We used the WEBSPAM-UK2006 spam collection [11], a pub-
lic Web Spam dataset annotated at the level of hosts. First
we computed the number of triangles for each host in this
dataset and plotted the distribution for the non-spam and
spam hosts. This is shown in Figure 6. A two-tailed Kolmo-
gorov-Smirnov test indicates that both the number of trian-
gles and the clustering coefficient have distributions that are
substantially different in both classes: the larger differences
in the cumulative distribution function plot are D = 0.32
and D = 0.34 respectively.

We also compared the number of triangles and clustering
coefficient with a known set of link-based and content-based
features for the hosts in this collection [12]. We sorted all
the features by computing the χ-squared statistics of each
of them with respect to the class label. Using this ranking,
the approximated number of triangles was ranked as feature
number 60 out of 221, and the approximated clustering co-
efficient as feature number 14 out of 221; such remarkably
high positions make both features well worth being tested
as part of a spam detection system.

To complement these results, we estimated the number
of triangles at a page level, and considered the average and
maximum number of triangles in every host; in all cases we
had to use the memory-based approximation algorithm to
obtain the estimation, since an exact counting was in this
case out of question. The results are shown in Figure 7. Also
in this case, a two-tailed Kolmogorov-Smirnov proved that
the spam and non-spam distributions actually differ from
each other: for example, the test in the case of average gave
D = 0.09 with a p-value of 1.54 · 10−7.
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Figure 6: Separation of non-spam and spam hosts in
the histogram of triangles, measured using the exact
algorithm (top), the approximated algorithm with
50 passes (middle) and the approximated algorithm
in main memory with 50 passes (bottom).

7.2 Content quality in social networks
In [32] it is shown that the amount of triangles in the self-

centered social network of a user is a good indicator of the
role of that user in the community.

Here we perform an exploration trying to verify whether
the quality of content provided by a user in a social net-
work is correlated with the local structure of the user in
the network. For our dataset, we use a social network ex-
tracted from the Yahoo! Answers site. Yahoo! Answers is
a community-driven knowledge sharing system that allows
users to (i) ask questions on any subject and (ii) answer
questions of other users. One notable characteristic of the
system is that one answer for each question is selected as the
best answer, and one of the user attributes is the fraction of
the best answers given by that user.
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Figure 7: Separation of non-spam and spam hosts
in the histogram of triangles computed at page level
and maximized/averaged on each host.

We consider an undirected graph G = (V, E), where V is
a set of users in the system, and an edge (u, v) ∈ E denotes
that the user u has answered a question posted by user v, or
vice versa. For this graph we apply our counting algorithms
and we obtain an estimate of the number of triangles at each
node, as well as the local clustering coefficient. We focus on
a small subset of randomly chosen questions and answers
which have been labeled by human judges as “high quality”
or “normal”. These questions/answers have originated from
a subset of about 9,500 users. Let H ⊆ V be the subset of
users who have provided a question or answer of high quality
in our sample, corresponding to roughly 30% of the users in
this case, and let N = V \ H be the rest.

As a proof of concept, we first check if the fraction of best
answers for the users differs between the sets H and N . The
two distributions are shown in Figure 8, in which one sees
that users in the high quality set tend to have higher frac-
tions of best answers. The two-tailed Kolmogorov-Smirnov
difference of the two distributions is 0.26, and the null hy-
pothesis is rejected with corresponding p-value equal to 1.1 ·
10−123 .

Next we explore the correlation of local structure in the
user graph with respect to the labeling of users in the classes
H and N . In particular, we examine if the distribution
of the number of triangles and the distribution of the lo-
cal clustering coefficient differ between the sets H and N .
The distributions in the case of the numbers of triangles
are different. The Kolmogorov-Smirnov test rejects the null
hypothesis with difference value equal to 0.12 and p-value
equal to 2.9 · 10−29.
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Figure 8: Separation of users who have provided
questions/answers of high quality with users who
have provided questions/answers of normal quality
in terms of fraction of best answers.

The distributions for the local clustering coefficient are
shown in Figure 9. The separation in this case is better than
with the number of triangles. In this case the Kolmogorov-
Smirnov difference is 0.17 and the p-value for rejecting the
null hypothesis is 7.9 · 10−54. In general, the users in the
set of high quality questions/answers have larger number of
triangles and smaller local clustering coefficient.
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Figure 9: Separation of users who have provided
questions/answers of high quality with users who
have provided questions/answers of normal quality
in terms of local clustering coefficient.

Notice that the partitioning of users into the sets H and N
might not be very accurate since for each user there is usu-
ally only one question or answer that is evaluated. Thus,
to obtain additional validation of our results we perform a
second experiment, in which we partition the users into two
sets: Hba is the set of user who have fraction of best an-
swers more than 30%, and Nba is the set of the rest of the
users. Then, as in the previous experiment, we examine if
the distribution of the number of triangles and the distribu-
tion of the local clustering coefficient differ between the sets
Hba and Nba. For the number of triangles, the Kolmogorov-
Smirnov test rejects the null hypothesis with difference value
equal to 0.11 and p-value equal to 4.5 ·10−1 . The separation
is again more clear for the case of local clustering coefficient.
The Kolmogorov-Smirnov difference is 0.27 and the p-value
for rejecting the null hypothesis is 1.8 · 10−59. We remark



that using only the degree of each user in the graph is not
sufficient to distinguish between the two distributions.

8. CONCLUSIONS
We have presented efficient semi-streaming algorithms for

counting the local number of triangles in a large graph. To
the best of our knowledge, these are the first such algorithms
described in the literature. We believe that there are many
applications for such algorithms to Web-scale problems, and
we have demonstrated two such applications.

For future work, exploring variants of the first algorithm
that relax the semi-streaming constraint but still use a small
amount of memory is promising. Given that the distribution
of the number of triangles is very skewed, the counters Zuv

could be compressed. For instance, if the counters follow a
power-law, a suitable coding could be used to store them.
Note that each counter will use a variable number of bits
depending on the value being stored. This may cause a
drop in performance if done in external memory, but could
be a good choice if done in main memory.

Data and code. The data graphs we used in this paper
can be freely downloaded from http://webgraph.dsi.unimi.it/;
the graph from Yahoo! Answers cannot be released publicly
for privacy reasons. The Java code used for computing all
the estimations, implementing the algorithms we have de-
scribed, is freely available under a GPL license at
http://law.dsi.unimi.it/satellite-software/.
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