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A B S T R A C T

Human fact-checkers currently represent a key component of any semi-automatic misinformation detection
pipeline. While current state-of-the-art systems are mostly based on geometric deep-learning models, these
architectures still need human-labeled data to be trained and updated — due to shifting topic distributions
and adversarial attacks. Most research on automatic misinformation detection, however, neither considers time
budget constraints on the number of pieces of news that can be manually fact-checked, nor tries to reduce
the burden of fact-checking on – mostly pro bono – annotators and journalists. The first contribution of this
work is a thorough analysis of active learning (AL) strategies applied to Graph Neural Networks (GNN) for
misinformation detection. Then, based on this analysis, we propose Deep Error Sampling (DES) — a new deep
active learning architecture that, when coupled with uncertainty sampling, performs equally or better than the
most common AL strategies and the only existing active learning procedure specifically targeting fake news
detection. Overall, our experimental results on two benchmark datasets show that all AL strategies outperform
random sampling, allowing – on average – to achieve a 2% increase in AUC for the same percentage of
third-party fact-checked news and to save up to 25% of labeling effort for a desired level of classification
performance. As for DES, while it does not always clearly outperform other strategies, it still reduces variance
in the performance between rounds, resulting in a more reliable method. To the best of our knowledge, we are
the first to comprehensively study active learning in the context of misinformation detection and to show its
potential to reduce the burden of third-party fact-checking without compromising classification performance.
. Introduction

Since the 2016 United States presidential elections, both the general
ublic and the scientific community have become increasingly aware of
he threat posed to democracies by the spread of online misinformation.
esearch on misinformation detection has then experienced significant
omentum, with many websites and independent journalists starting to

act-check online news, and releasing new datasets on which automatic
etection systems can be trained. Almost at the same time, research on
raph neural networks (GNNs) started reaching remarkable results in
ode and graph classification [1–5]. GNNs are made up of several layers
f interconnected nodes, where each node represents a vertex in the
raph and each edge represents a connection between two vertices. The
odes in the GNN are able to communicate with one another through
hese edges, allowing the GNN to process and analyze the graph as a
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E-mail address: giorgio.barnabo@uniroma1.it (G. Barnabò).

whole, rather than just individual nodes. This makes GNNs well-suited
for tasks that require understanding the relationships and dependencies
between different elements in the graph.

GNNs have enabled scientists to better model news diffusion pat-
terns in social networks, thus moving away from simple text-based
fake news detection pipelines. In a nutshell, state-of-the-art GNN-based
misinformation detection methods try to classify graphs that represent
URL cascades in social networks. Despite the promising improvement
in the performance of GNN-based architectures for fake news detection,
in order to train these models, researchers still need high-quality third-
party fact-checked news articles that are difficult and expensive to
obtain. This problem is further amplified in large social networks and
on the web, where the volume of news produced and spread daily
makes extensive annotation virtually impossible. Indeed, manual data
vailable online 24 February 2023
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annotation consists of manually labeling and adding metadata to data,
typically for the purpose of training machine learning models, and
is a general pain point for most deep learning research due to its
high costs — both in terms of human labour and time. In our case,
while such scarcity of fake news data makes the problem of efficient
annotation particularly urgent, research on misinformation detection
under labeling constraints is still very scarce. In previous work, the
need to reduce the human effort required to manually label news as
fake or authentic has been largely ignored.

Active learning [6,7] is a machine learning approach in which a
model is able to interactively query the user (or some other information
source) to obtain the desired output, rather than being solely trained
on a fixed dataset. In active learning, the model initially starts with
a small amount of labeled data and makes predictions on the rest of
the data. The model then selects a subset of the data for which it is
least confident in its predictions, and asks the user to label this data.
The labeled data is then used to update the model, and the process is
repeated until the model reaches a satisfactory level of performance. In
this work, we then present the first in-depth analysis of active learning
(AL) strategies for fake news detection. We also propose Deep Error
Sampling (DES) — a new deep-learning method that, when used in
conjunction with uncertainty sampling, performs better, on average,
than the most common AL strategies, including the only proposed
active learning principle specifically targeting fake news detection.
All tested active learning strategies were applied to three state-of-
the-art GNN-based misinformation classifiers. As for the datasets, we
performed experiments on PolitiFact [8] and FbMultiLingMisinfo [9],
two high-quality and human-labeled collections of real and fake news.
While the former is smaller and only contains news written in English,
the latter is more recent, larger, and composed of URLs pointing to
news in several languages. Overall, compared to random sampling, the
best AL strategies allow to achieve a 2% increase in AUC for the same
percentage of third-party fact-checked news and to save up to 25% of
labeling effort for a desired level of classification performance.

To sum up, our original contributions are the following:

• Ann in-depth analysis of active learning (AL) strategies in the
contest of automatic misinformation detection;

• We showed that, in the context of misinformation detection,
active learning represents a viable and convenient strategy to
increase the AUC classification metric by up to 5% and to reduce
the cost of news labeling up to 25% for a given level of desired
performance;

• Deep Error Sampling (DES), a new deep active learning archi-
tecture that, when coupled with uncertainty sampling, performs
equally or better than the most common AL strategies and the
only proposed active learning procedure specifically targeting
fake news detection;

• In particularly, while other active learning strategies allow to
reach results similar to DES, overall Deep Error Sampling shows
lower variance between rounds and can be considered a more
robust method.

To the best of our knowledge, no previous deep active learning
method has leveraged prediction errors as the main discriminative
signal. As shown in the experimental section, its characteristics seem
to match well with both uncertainty and diversity sampling, paving the
way for new combinations of more robust active learning strategies.

2. Related work

In this section, we first review the current state-of-the-art misin-
formation detection models that leverage geometric deep learning, we
then go through the most common active learning strategies, with a
focus on deep active learning, and finally, we briefly present recent
finding on fake news benchmark datasets to justify our experimental
2

choices. s
2.1. Misinformation detection methods

Misinformation detection is not only challenging, but also neces-
sary. As shown in a seminal work by Vosoughi et al. [10], in social
networks fake news spreads faster and more extensively than high-
quality information. Over the past five years, GNN-based methods
have established themselves as the state-of-the-art approach in the
fight against fake news. Unlike their predecessors, which were mostly
content-based, these methods leverage the diffusion patterns of news
in social networks as the main signal. These patterns are not merely
features representing the spreading patterns of the news that are ap-
pended to content-based features to train traditional machine learning
classifiers. Instead, the task is now formulated as a node [11–16]
or a graph classification task [1,17,18], using methods such as Re-
current Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs) [19]. State-of-the-art methods use either node or graph embed-
dings obtained by training a geometric deep learning architecture on
an appropriate graph. The most commonly used architectures include
Graph Convolution Networks (GCN) [1,15,20], Bi-Directional Graph
Convolution Networks (BiGCN) [2], Graph Attention Networks [11,20–
22], and GraphSAGE [17,20]. Depending on the approach, these rep-
resentations can be further combined with text-based features and/or
with non-GNN-based embeddings that capture other aspects of fake
news [15].

Convenient APIs offered by Twitter, which can be used for research
purposes, have turned this platform into the de facto standard for
esting and validating misinformation detection methods [1,15,18].
ypically, in graph-based representations used for misinformation de-
ection, nodes correspond to either news articles [11,13,14,16,23,24]
r to users [1,12–17,23,25]. In other cases, content creators [11,13,
4,23–25] or article authors or sources are included as additional
odes [13,14], and less often, nodes represent topics [11,24] or com-
ents [12]. Regarding edges, news articles can be directly connected

o their authors [11,13,14,23,24], topic(s) [11,24], or to users who
ost/share them [13]. Users, in turn, can be linked through their social
raph, e.g., based on following or friendship relationships [1,13,14], re-
osting activity [16], replies [18], or (posted) content similarity [16].
oreover, users can be connected to their posts [12,23], to an article

hrough a stance score [13,14], or to nodes representing their posted
omments [12], which in turn are usually connected to their corre-
ponding post [12]. As for news-posting URL hostnames/domains, an
dge can be added every time two hostnames/domains link to each
ther [13,14].

Finally, going more in depth into some of the most remarkable con-
ributions, it is worth highlighting the following successful choices. Ren
t al. [11] propose a novel hierarchical attention mechanism to perform
ode representation learning in heterogeneous information networks
hat effectively tackles fake news detection. They also use an active
earning framework to enhance learning performance, especially when
acing the paucity of labeled data. Yu et al. [12] aggregate multi-type
nformation in a hierarchical manner and the information can reason
ver heterogeneous graph for the facticity of the news. Shu et al. [23]
ropose a tri-relationship embedding framework TriFN, which models
ublisher–news relations and user–news interactions simultaneously for
ake news classification. The system is made up of 5 components, all
ased on some form of matrix decomposition and factorization. Finally,
or each URL, Monti et al. [1] searched for all the related cascades and
nriched their Twitter-based characterization (users and tweet data) by
rawing edges among users according to Twitter’s social network.

.2. Active learning

Broadly speaking, AL refers to the iterative selection and labeling
f samples to train a supervised classification model with the goal of
educing the number of labeled data points required to reach a de-

ired performance. As extensively reviewed in Monarch [6] and Kumar
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and Gupta [7], the earliest and still most common AL strategies are
variations of uncertainty sampling and diversity sampling. Uncertainty
sampling prioritizes the items that the current model is most uncertain
about, at the risk of selecting multiple similar, redundant samples.
Diversity sampling counteracts this problem by exploiting the fact
that data points are usually clustered in feature space, and prioritizes
centroids and out-layers. In practice, a combination of uncertainty
and diversity sampling generally outperforms random sampling, and
can be adapted to work in an online setting [26] and/or with highly
unbalanced classes [27,28].

When complex deep learning architectures are deployed, however,
standard AL strategies could under-perform due to the known problem
of overconfidence of deep learning models. Indeed, the soft-max func-
tion is often used in the output layer of a neural network to convert
the network’s output into a probability distribution. It does this by
exponentiating the output of each unit in the output layer, normalizing
the resulting values, and then mapping the exponentiated outputs to a
probability distribution. It follows that, when the network has learned
to make very confident predictions (i.e., the output of a unit is much
larger than the output of the other units), the soft-max function will
map these outputs to a very high probability. This can happen, for
instance, when training data is very unbalanced or when the model is
used on out-of-domain samples. For this reason, new AL strategies are
specifically designed to work in the deep learning context [29]. This
branch of research is sometimes referred to as deep active learning.
Recently, some works have also specifically targeted active learning in
graphs and graph neural networks. Madhawa and Murata [30] have
studied the application of active learning on attributed graphs. They
show that algorithms designed for other data types do not perform
well on graphs. In Liu et al. [31], after showing that state-of-the-art
AL algorithms do not properly work on attributed graphs, a new latent
space clustering-based active learning method for node classification
(LSCALE) is proposed. Finally, in Madhawa and Murata [30], a novel
framework to address the challenge of active learning in large-scale
imbalanced graph data (node classification) is presented.

As for active learning in misinformation detection, the scientific
literature still lags behind — with very few contributions. Ren et al.
[11] use an active learning framework to enhance learning perfor-
mance of their novel hierarchical attention mechanism. Bhattacharjee
et al. [32], on the other end, propose a human–machine collaborative
learning system to evaluate the veracity of a news content, with a
limited amount of annotated data samples. In this work, we directly
compare our Deep Error Sampling (DES) strategy against the active
learning component of Ren et al. [11] — named here Deep Unseen
Sampling (DUS). As for [32], we decided not to include this method in
our analysis for two reasons: 1. the active learning component of the
pipeline is very similar to Ren et al. [11], and 2. the whole workflow
was optimized for a lexical-based fake news detector.

2.3. Fake news datasets

The robustness of misinformation detection research depends on
the quality of the data used to conduct experiments, but we find that
fake news benchmark datasets are often small and contain biases that
affect the results (few thousand not-randomly-sampled fact-checked
URLs). A relatively large dataset coming from the fact-checking website
gossipcop.com, and a smaller one sampled from politifact.com – both
released as part of FakeNewsNet [8] – constitute two of the most
commonly used benchmark datasets [33,34]. While GossipCop still
represents the largest fake news detection benchmark dataset, its real
discriminative power has been recently put into question [9]. Indeed,
GossipCop has proven to be exceptionally easy to classify and thus of
limited utility to assess the discriminatory power of misinformation
detection methods. For this reason, we decided not to include it in our
experiments. Other common sources of annotated URLs or posts include
3

BuzzFeed [35], Twitter [36] and Weibo [19,37].
These datasets for benchmarking fake news detection have reliable
labels, but tend to include news in a single language, and to be created
following unknown selection criteria — see, e.g., a recent in-depth
review of these datasets [38]. Moreover, they are usually quite easy
to classify. Larger datasets, such as NELA, can be created by sampling
news from notoriously reliable and unreliable sources using distant
supervision [39,40]. However, they are also noisy and biased since
news articles are labeled as true or false according to their source,
and are not individually fact-checked. Recently, a new multilingual
benchmark dataset for misinformation detection was published [9].
This dataset comes from the recently published Facebook Privacy-
Protected Full URLs Data Set [41], which comprises all 36 million URLs
publicly shared on Facebook at least 100 times between January 2017
and July 2019, and includes fact-checking labels for 7334 of these
URLs.

3. Problem statement

We consider a collection 𝑈 of unlabeled news items (news arti-
cles/URLs) that we want to categorize as real news or fake with the
highest possible accuracy. Since human labeling is both expensive and
time-consuming, we assume that we are allowed to annotate only 𝑏
news pieces. In other words, only the subset 𝐵 ⊂ 𝑈 , with |𝐵| =
𝑏, will be sent to annotators. The quantity 𝑏 represents a budget of
possible annotations. We can also define 𝑏 as a fraction of the size of
𝑈 . Furthermore, we assume that each annotation has a unit cost. Using
this labeled news, we train an automatic misinformation detection
system, which we will leverage, in turn, to annotate the remaining
unlabeled news 𝑈 ⧵ 𝐵. The budget 𝑏 cannot be too low because it
would not allow training a good classifier, but it cannot be too large
because, in most practical cases, it would be unfeasible to send each
news item for human review. Given the budget 𝑏, the question is: how
can we efficiently and effectively select the 𝐵 items to be fact-checked
by professional journalists? This is precisely the question that active
learning (AL) tries to answer in order to maximize the performance
of the final model. The first step of any AL procedure is creating and
annotating a validation set to guide the subsequent optimization steps.
Following the literature [6], a fraction 𝑝𝑡𝑒𝑠𝑡 of the initial dataset is
selected uniformly at random to be used as the test set, and another
percentage 𝑝𝑣𝑎𝑙 of the remaining data is selected uniformly at random
to form the validation set. Of course, the validation set must be human-
labeled as well, and the 𝑝𝑣𝑎𝑙(1− 𝑝𝑡𝑒𝑠𝑡)𝑈 samples will be subtracted from
our labeling budget 𝐵. The AL strategy we use consists of a series of
𝑀 iterations. At every iteration, new samples are identified, labeled,
and added to the training set. Specifically, at each iteration, first we
select 𝑘 new URLs to annotate and add to the training set. Then, we
train the classifier on all the URLs labeled so far. The validation set
is used to assess the model performance and perform early stopping
if its accuracy exceeds a pre-defined threshold. Iterations are executed
until the annotation budget is exhausted. Most AL strategies require a
somewhat reliable model to choose which samples to annotate — such
a model is used by AL to find instances that bring more discriminative
power to the current model. Since at the very beginning of the AL
procedure, the training set is empty, and thus a classification model
cannot be reliably obtained, for the first 𝑀𝑟𝑛𝑑 iterations, we randomly
select the 𝑘 URLs instead of relying on the chosen AL technique.

4. Active learning strategies

In this section, we first present standard and well-established AL
strategies that only use the input and output of a classifier to select
the next batch of samples to annotate. Then we introduce two deep-
learning-based AL methods where the AL strategy itself is a deep neural
network. As explained in more detail just below, Deep Unseen Sampling
(DUS) is based on a recently proposed active learning procedure for
misinformation detection (Ren et al. [11]), while Deep Error Sampling
(DES) represents a new active learning strategy that we personally
designed to overcome some limitations of current neural approaches

to active learning.
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Fig. 1. Pipeline for ‘‘shallow’’ Active Learning strategies. First the GNN model is trained on the training set of labeled URLs (𝑥𝑡𝑟𝑎𝑖𝑛𝐿 , 𝑦𝑡𝑟𝑎𝑖𝑛𝐿 ), using the validation set of labeled URLs
𝑥𝑣𝑎𝑙𝐿 , 𝑦𝑣𝑎𝑙𝐿 ) to stop the training. The model is then used to predict the label (�̂�𝑈 ) for the unlabeled set of URLs (𝑥𝑈 ). This set is finally passed to the Active Learning Strategy to
elect the set of samples to be removed from it and added to the training set. While in a real case scenario there would not be any test set, since in our experiments we have the
abels for all URLs, at every iteration we use 𝑥𝑡𝑒𝑠𝑡𝐿 , 𝑦𝑡𝑒𝑠𝑡𝐿 to measure the quality of the AL strategies — in a sort of ex-post analysis.
Fig. 2. Pipeline for Deep Active Learning strategies. First the GNN model is trained on the training set of labeled URLs (𝑥𝑡𝑟𝑎𝑖𝑛𝐿 , 𝑦𝑡𝑟𝑎𝑖𝑛𝐿 ), using the validation set of labeled URLs
𝑥𝑣𝑎𝑙𝐿 , 𝑦𝑣𝑎𝑙𝐿 ) to stop the training. The labeled test set (𝑥𝑡𝑒𝑠𝑡𝐿 , 𝑦𝑡𝑒𝑠𝑡𝐿 ) is then used to evaluate the model’s performance (omitted for graphical reasons). From the trained model, embeddings
re extracted for the training ℎ𝑡𝑟𝑎𝑖𝑛

𝐿 and test ℎ𝑡𝑒𝑠𝑡
𝐿 set. These embeddings are used, together with a label 𝑧𝐿 to train the Deep AL model. For our new AL technique called Deep Error

ampling, 𝑧𝐿 = 1 for misclassified samples, while 𝑧𝐿 = 0 for correctly classified samples. At last, this model predicts the labels �̂�𝑈 for the unlabeled set of URLs (𝑥𝑈 ), which are
sed to select the set of samples to be removed from it and added to the training set.
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.1. Classical active learning strategies

These Active Learning methods use the input and output of the
lassifier – or even the classifier itself – to decide which URLs to select.
he overall structure of these types of methods is shown in Fig. 1.

.1.1. Random sampling
Random sampling is the most intuitive baseline for the task at hand

nd represents the de-facto standard in the training of deep learning
rchitectures. At each step, 𝑘 samples are selected at random from
he pool of unlabeled samples. Given that samples are independently
icked, this method logically corresponds to selecting and labeling all
he 𝐵 URLs at once.

.1.2. Uncertainty sampling
In uncertainty sampling, we use the most recently trained model

o infer the labels of unlabeled samples. We assume that the last
ayer of a neural network-based classifier outputs soft-max scores for
very class, and we use them to measure how confident the model is
bout its predictions. According to this principle, we will sample the
for which the model is most uncertain about and we will fact-check

hem in order to subsequently add them to the next-iteration training
ataset. A known disadvantage of this methodology – when applied to
eep learning models – is that usually deep learning architectures are
verconfident of their predictions [29]. That is, they tend to predict
oft-max scores very close to 0% or 100%.

.1.3. Diversity sampling
Diversity sampling aims at avoiding the selection of very similar

amples. The idea is that the model will not receive much help if
t is trained with samples that are similar among each other. It is
ndeed much possible that – for a cluster of very similar samples – the
odel only needs a few of them to classify the whole cluster correctly.

t is then important that the 𝑘 samples represent different concepts,
o that the model can generalize as much as possible. In practice,
4

iversity sampling first clusters samples according to an algorithm like c
-Means and then selects only a few examples from each cluster —
or instance the centroid, a certain number of outliers and a certain
umber of random samples, such that the total is always equal to 𝑘. In
ur work, we used diversity sampling as an additional step for filtering
he samples selected with the other AL strategies. After identifying 3𝑘
amples with one of active learning method, we applied K-Means on
he sample features to form 𝑘 clusters and then we selected the most
ncertain URL according to the AL strategy metric. Each sample was
epresented through its activation scores of the second to last layer of
he classification model.

.2. Deep active learning strategies

Deep active learning refers to AL strategies that are specifically
esigned to work well with deep learning models. In this context, we
ill use deep active learning to group those pipelines where the AL

trategy is itself a deep neural network. The Pipeline for this type of
ethods is shown in Fig. 2. In order to train a deep neural network able

o identify worth-annotating URLs, we first need to define a suitable
raining set and a learning objective. Our idea is to use the second-
o-last layer activation scores ℎ𝐿 of the fake news classifier for both
he training and validation sets as input to this Deep Neural Network.
oncerning labels 𝑧𝐿, we experimented with two different DeepAL
odels. Deep Unseen Sampling (DUS) mimics what was done in the

nly paper on active learning for misinformation detection (Ren et al.
11]). While the original contribution embeds active learning as an ad-
itional feature of a more complex adversarial model for learning node
lasses on heterogeneous graphs — we decided to test the core idea
ehind their AL procedure, that is to use internal activation scores of
he misinformation classifier to predict whether a sample was already
abeled and part of the training set. Deep Error Sampling (DES), instead,
s our proposed DeepAL strategy, where we try to predict whether a
ample will be correctly classified, thus getting around the problem of
oft-max overconfidence. For both methods, the network used is a fully-

onnected deep neural network. The specific parameters can be found
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in our anonymized Github repository.1 Let us see the two techniques in
more details.

4.2.1. Deep unseen sampling
Ren et al. [11] start from the assumption that it is good for the

classifier to receive new samples other than those it has already seen.
They therefore set the labels for the already labeled samples as 0,
because the model has already seen them during training, and as 1
for the samples belonging to the validation set, because the model has
not in fact seen them during its training. Since the training set of the
classifier grows in time, at every iteration the number of samples taken
from the validation set is equal to the current size of the training set
of the misinformation classifier. Finally, each of the samples used to
train the DeepAL architecture are represented through the second-to-
last activation scores of the current misinformation detection model,
i.e. that trained with the URLs labeled so far. At this point, using these
labels as output and the embedding samples as input, we trained a feed-
forward neural network to predict whether a URL has been already seen
by the fake news classifier or not. In the end, the unlabeled data is given
as input to the trained DeepAL architecture and the 𝑘 samples with the
higher prediction, i.e. those which the model predicts are more likely
to be unseen by the classifier, are added to the training set.

4.2.2. Our method: Deep error sampling
This is the new method we propose in this paper. Always assuming

that we want to train a Deep model that can select the best samples
to send to fact-checking, and always constructing the network input
from the samples’ embeddings, we have chosen the labels differently
this time. Our conjecture here is that we might try to predict in
advance whether the classifier will mis-classify new samples. We pass
the samples that we already have labeled, either training or validation,
to the classifier and label 0 those that are classified correctly, and label
1 those that are classified incorrectly. On this set, we train our neural
network, and then get the prediction on the unlabeled data. The 𝑘
amples that the network thinks are most likely to have label 1, will
e the ones where our fact-checking classifier is most likely to get it
rong, and it is our belief that they will be most useful for further

raining.

.3. Mixed strategies

As in many other areas, often the best result is obtained by aggre-
ating different methodologies. Also here, as the various AL techniques
re capable of capturing different information about the samples, it may
e useful to combine their outputs. Specifically, we used a simple rank
ggregation technique to merge the top-𝑘 samples received as output
rom 2 AL techniques.

. Fake news detection classifiers

We experimented with three state-of-the-art GNN-based approaches
or misinformation detection that work on news diffusion graphs.

• GCN [3] A simple GCN that uses an efficient layer-wise prop-
agation rule based on a first-order approximation of spectral
convolutions on graphs. It can learn hidden layer representations
that encode both local graph structure and features of nodes.

• GAT [4] The use of multi-head graph attention makes this model
computationally highly efficient, thus allowing it to deal with
neighborhoods of various sizes without depending on knowing
the entire graph structure upfront.

1 https://anonymous.4open.science/r/Active-Learning-for-Misinformation-
etection-10CChttps://anonymous.4open.science/r/Active-Learning-for-
isinformation-Detection-10CC
5
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Table 1
Statistics about FbMultiLingMisinfo and PolitiFact.
Dataset FbMultiLingMisinfo Politifact

Fake news 4,034 157
True news 3,300 157
Total news 7,334 314
Twitter posts 3,219,383 22,340
Twitter users 1,240,592 14,873

• GraphSAGE [5] This model exploits inductive node embedding
by making use of node features in order to generalize to unseen
nodes.

Implementation-wise, we re-implemented in PyTorch Lightning the
code, written in PyTorch, distributed by Dou et al. [20].2 Concerning
the hyper-parameters, we used the values from the original papers
as they performed well on both our datasets, as shown in Barnabò
et al. [9]. The whole code of our project can be found on a GitHub
repository.3

6. Datasets

We tested our pipeline on FbMultiLingMisinfo and Politifact, two
publicly-available misinformation detection benchmarks. FbMultiLing-
Misinfo is a recently published multilingual collection of fact-checked
news, extracted from the Facebook Privacy-Protected Full URLs Data
Set [41], and including diffusion cascades on Twitter for each news
article [9].

This dataset includes any URL publicly shared on Facebook at least
100 times between January 2017 and July 2019.

It is particularly relevant because, to the best of our knowledge, 1. it
is the only multilingual dataset for misinformation detection; 2. it is the
second-largest benchmark dataset for misinformation detection fact-
checked at the level of individual news articles (URLs); 3. all included
URLs are highly impactful (shared at least 100 times on Facebook); 4.
it was shown to be more complex than PolitiFact and GossipCop, the
two most used benchmark datasets for misinformation detection [9].

We also experimented with PolitiFact, a widely used benchmark for
fake news detection collected from a fact-checking website that focuses
on political reporting [8]. Statistics about both datasets are shown in
Table 1.

The difference in the characteristics of the two datasets (one smaller
and in only in English, the other multilingual) makes it possible to
obtain information on the performance of the AL strategies proposed
by us in two different scenarios.

6.1. Modeling the diffusion cascades of URLs shared on Twitter

The models we experimented with take as input a graph repre-
senting each URL diffusion cascades. As in Dou et al. [20], given the
sequence of tweets and retweets mentioning a URL, we built a graph as
follows: a central node represents the news and there is an additional
node for each tweet. All direct tweets are connected to the central
node, while re-tweets are connected to the tweet they are re-tweeting.
Finally, similarly to Dou et al. [20], we obtained the node features by
encoding the user description with the paraphrase-multilingual-mpnet-
base-v2 model from the Hugging Face multilingual sentence embedding
model trained as in Reimers and Gurevych [42].

For the central node representing the URL, we used the news title
embedding. Our choice of a multilingual model is due to the multi-
lingual nature of the FbMultiLingMisinfo dataset. For the PolitiFact
dataset, we used the diffusion graphs shared in [20], but we replaced
the given node features with the multilingual sentence embeddings.

2 http://github.com/safe-graph/GNN-FakeNews
3 https://github.com/GiorgioBarnabo/Active-Learning-for-Misinformation-

etection

https://anonymous.4open.science/r/Active-Learning-for-Misinformation-Detection-10CChttps://anonymous.4open.science/r/Active-Learning-for-Misinformation-Detection-10CC
https://anonymous.4open.science/r/Active-Learning-for-Misinformation-Detection-10CChttps://anonymous.4open.science/r/Active-Learning-for-Misinformation-Detection-10CC
https://anonymous.4open.science/r/Active-Learning-for-Misinformation-Detection-10CChttps://anonymous.4open.science/r/Active-Learning-for-Misinformation-Detection-10CC
http://github.com/safe-graph/GNN-FakeNews
https://github.com/GiorgioBarnabo/Active-Learning-for-Misinformation-Detection
https://github.com/GiorgioBarnabo/Active-Learning-for-Misinformation-Detection
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Table 2
Results on FbMultiLingMisinfo. For each AL strategy, we show the AUC at key iterations. Under the number of iterations – in round brackets
– we placed the percentage of the dataset that has been selected and used as training. In addition to that, we must also factor in the 10%
validation set that is part of the final fact-checking budget used. With an asterisk we have marked our novel method. DUS = Deep Unseen
Sampling, DES = Deep Error Sampling. Results are averaged over 5 runs and reported with their standard deviations.
Results on the FbMultiLingMisinfo dataset

AL strategy Iterations

metric: AUC 20
(3%)

40
(5,5%)

60
(8%)

80
(11%)

100
(13%)

GAT

Random 0.71 ± 0.9 0.76 ± 0.10 0.82 ± 0.7 0.84 ± 0.04 0.85 ± 0.05
Uncertainty 0.73 ± 0.06 0.78 ± 0.08 0.82 ± 0.05 0.85 ± 0.06 0.87 ± 0.06
Uncertainty + Diversity 0.74 ± 0.03 0.80 ± 0.04 0.84 ± 0.06 0.85 ± 0.04 0.87 ± 0.03
DUS 0.72 ± 0.11 0.77 ± 0.09 0.81 ± 0.10 0.84 ± 0.08 0.85 ± 0.09
DUS + Diversity 0.71 ± 0.09 0.76 ± 0.09 0.80 ± 0.08 0.84 ± 0.09 0.85 ± 0.07
DES* 0.73 ± 0.05 0.78 ± 0.06 0.82 ± 0.06 0.85 ± 0.03 0.87 ± 0.02
DES* + Diversity 0.73 ± 0.04 0.80 ± 0.05 0.83 ± 0.04 0.85 ± 0.06 0.86 ± 0.04
DES* + Uncertainty 0.74 ± 0.02 0.80 ± 0.02 0.84 ± 0.03 0.86 ± 0.04 0.87 ± 0.02

GraphSAGE

Random 0.74 ± 0.08 0.82 ± 0.07 0.85 ± 0.10 0.86 ± 0.09 0.87 ± 0.07
Uncertainty 0.75 ± 0.11 0.84 ± 0.07 0.86 ± 0.08 0.88 ± 0.08 0.89 ± 0.09
Uncertainty + Diversity 0.78 ± 0.07 0.83 ± 0.07 0.87 ± 0.07 0.88 ± 0.05 0.89 ± 0.06
DUS 0.75 ± 0.08 0.81 ± 0.09 0.84 ± 0.09 0.86 ± 0.07 0.86 ± 0.06
DUS + Diversity 0.76 ± 0.08 0.81 ± 0.05 0.85 ± 0.05 0.87 ± 0.04 0.87 ± 0.07
DES* 0.77 ± 0.05 0.84 ± 0.07 0.86 ± 0.04 0.88 ± 0.03 0.89 ± 0.04
DES* + Diversity 0.76 ± 0.05 0.84 ± 0.05 0.87 ± 0.04 0.88 ± 0.05 0.89 ± 0.07
DES* + Uncertainty 0.77 ± 0.06 0.84 ± 0.05 0.87 ± 0.03 0.88 ± 0.04 0.89 ± 0.03

GCN

Random 0.74 ± 0.08 0.79 ± 0.06 0.82 ± 0.09 0.83 ± 0.10 0.85 ± 0.06
Uncertainty 0.76 ± 0.07 0.80 ± 0.10 0.83 ± 0.08 0.84 ± 0.09 0.85 ± 0.07
Uncertainty + Diversity 0.75 ± 0.09 0.81 ± 0.11 0.83 ± 0.09 0.84 ± 0.08 0.86 ± 0.09
DUS 0.77 ± 0.06 0.81 ± 0.05 0.82 ± 0.07 0.84 ± 0.08 0.85 ± 0.07
DUS + Diversity 0.76 ± 0.07 0.80 ± 0.06 0.82 ± 0.05 0.84 ± 0.07 0.85 ± 0.06
DES* 0.77 ± 0.07 0.81 ± 0.06 0.82 ± 0.05 0.85 ± 0.06 0.87 ± 0.04
DES* + Diversity 0.77 ± 0.04 0.81 ± 0.05 0.84 ± 0.03 0.86 ± 0.02 0.87 ± 0.02
DES* + Uncertainty 0.75 ± 0.05 0.80 ± 0.04 0.83 ± 0.04 0.85 ± 0.03 0.87 ± 0.01
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7. Experiments & results

7.1. Experimental setting

We tested all the different AL strategies on GraphSAGE, GAT and
GCN — three different state-of-the-art GNN-based misinformation clas-
sifiers [9]. We also tested all possible mixed strategies by combining
two sampling strategies as explained in Section 4.3. The sampling
strategies we show in the following results are only those that per-
formed best. The experiment setting was as follows. For both Politifact
and FbMultiLingMisinfo we set aside a random 10% of the URLs to use
as validation sets. Validation sets are needed to perform early stopping
and regularize the training throughout the active learning cycle. Since
we assume the validation sets to be labeled as well, they must be
subtracted to the total fact-checking budget. For FbMultiLingMisinfo,
we set the number of AL iterations to 100, and select 10 URLs per
iteration. For Politifact, given its reduced size, we opted for 20 it-
erations and 5 URLs per iteration. Regardless of the AL method, for
FbMultiLingMisinfo the first 𝑀𝑟𝑛𝑑 = 5 iterations always use random
ampling, while for Politifact 𝑀𝑟𝑛𝑑 = 2. All experiments were repeated

times and results were averaged. In addition, we applied a 3-step
oving average on all the sequences of results to make the trends

learer.

.2. Key findings

First and foremost, our analysis shows that active learning is a
ore efficient method for training GNN-based misinformation detec-

ion models. Indeed, as shown in Tables 4 and 5 — results from
xperiments on both FbMultiLingMisinfo and PolitiFact indicate that
ll tested active learning strategies, except for Deep Unseen Sampling,
utperform random sampling, allowing to reach a certain level of
6

m

lassification performance (AUC) with much less labeled data. For
bMultiLingMisinfo specifically, Deep Error Sampling + Uncertainty
ampling yields the best results on GAT and GraphSAGE, while for GCN
eep Error Sampling + Diversity Sampling works better. In all three
ases, for lower value of AUC, Uncertainty Sampling and Deep Error
ampling seem to outperform other methods. This is due to the fact
hat the active learning process is at the very beginning and the Deep
rror Sampling architecture needs more data to be trained. Overall,
he decrease in number of iterations required to reach a desired level
f AUC is significant, with up to 50% less annotated URLs. As for
olitiFact, results reported in Table 3 suggest similar trends, but it
s harder to draw definitive conclusions given the small size of this
enchmark dataset and the larger overlap among different active learn-
ng procedures. For both benchmark datasets, however, experiments
ighlight how active learning strategies could make the process of train-
ng GNN-based misinformation detection methods not only faster, but
lso lighter for annotators. Findings on FbMultiLingMisinfo are further
onfirmed when looking at Figs. 3–5 — which show F1 Macro trends
s the number of annotation rounds increases. For instance, the dotted
ine on Fig. 3 shows that Uncertainty Sampling + Diversity Sampling,
eep Error Sampling + Diversity Sampling, and Deep Error Sampling
Uncertainty Sampling reach an F1 Macro of 0.72 in just over 40 iter-

tions, while the same result takes almost 100 iterations with Random
ampling or Deep Unseen Sampling + Diversity Sampling. On average,
hen we use GAT to detect fake news in FbMultiLingMisinfo, choosing
ncertainty Sampling + Diversity Sampling, Deep Error Sampling +
iversity Sampling, or Deep Error Sampling + Uncertainty Sampling

educes the number of iterations needed to reach a desired level of F1
acro by 25 to 40. A similar pattern can be seen in Figs. 4 and 5,

lthough the average gap is narrower for GCN.
If we now change the point of observation and look at the perfor-

ance of different methods given the number of iterations, differences
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Table 3
Results on PolitiFact. For each AL strategy, we show the AUC at key iterations. Under the number of iterations – in round brackets – we placed
the percentage of the dataset that has been selected and used as training. In addition to that, we must also factor in the 10% validation set
that is part of the final fact-checking budget used. With an asterisk we have marked our novel method. DUS = Deep Unseen Sampling, DES =
Deep Error Sampling. Results are averaged over 5 runs and reported with their standard deviations.
Results on the Politifact dataset

AL strategy Iterations

metric: AUC 8
(12%)

11
(17%)

14
(22%)

17
(27%)

20
(31%)

GAT

Random 0.83 ± 0.12 0.85 ± 0.07 0.89 ± 0.09 0.88 ± 0.08 0.89 ± 0.07
Uncertainty 0.86 ± 0.09 0.86 ± 0.07 0.88 ± 0.09 0.91 ± 0.07 0.91 ± 0.08
Uncertainty + Diversity 0.87 ± 0.08 0.84 ± 0.10 0.90 ± 0.09 0.91 ± 0.07 0.91 ± 0.08
DUS 0.79 ± 0.11 0.86 ± 0.08 0.88 ± 0.010 0.89 ± 0.09 0.90 ± 0.09
DUS + Diversity 0.76 ± 0.10 0.86 ± 0.09 0.88 ± 0.11 0.91 ± 0.08 0.91 ± 0.07
DES* 0.83 ± 0.06 0.89 ± 0.05 0.90 ± 0.07 0.91 ± 0.03 0.92 ± 0.04
DES* + Diversity 0.86 ± 0.09 0.86 ± 0.06 0.90 ± 0.08 0.91 ± 0.5 0.91 ± 0.07
DES* + Uncertainty 0.84 ± 0.05 0.86 ± 0.04 0.88 ± 0.07 0.90 ± 0.05 0.91 ± 0.03

GraphSAGE

Random 0.85 ± 0.8 0.85 ± 0.10 0.90 ± 0.09 0.90 ± 0.09 0.90 ± 0.11
Uncertainty 0.84 ± 0.08 0.89 ± 0.11 0.89 ± 0.10 0.90 ± 0.11 0.91 ± 0.09
Uncertainty + Diversity 0.82 ± 0.09 0.88 ± 0.08 0.90 ± 0.07 0.91 ± 0.10 0.92 ± 0.08
DUS 0.80 ± 0.11 0.86 ± 0.09 0.88 ± 0.07 0.90 ± 0.09 0.90 ± 0.08
DUS + Diversity 0.78 ± 0.7 0.87 ± 0.10 0.88 ± 0.09 0.91 ± 0.08 0.91 ± 0.08
DES* 0.88 ± 0.4 0.89 ± 0.05 0.89 ± 0.06 0.91 ± 0.07 0.91 ± 0.06
DES* + Diversity 0.85 ± 0.08 0.89 ± 0.05 0.90 ± 0.04 0.92 ± 0.04 0.91 ± 0.07
DES* + Uncertainty 0.87 ± 0.06 0.89 ± 0.03 0.90 ± 0.05 0.91 ± 0.04 0.92 ± 0.04

GCN

Random 0.87 ± 0.09 0.90 ± 0.09 0.91 ± 0.10 0.89 ± 0.08 0.89 ± 0.09
Uncertainty 0.90 ± 0.08 0.86 ± 0.10 0.91 ± 0.7 0.93 ± 0.09 0.93 ± 0.08
Uncertainty + Diversity 0.85 ± 0.09 0.87 ± 0.07 0.91 ± 0.9 0.92 ± 0.07 0.92 ± 0.08
DUS 0.87 ± 0.10 0.90 ± 0.07 0.91 ± 0.11 0.93 ± 0.09 0.93 ± 0.08
DUS + Diversity 0.86 ± 0.07 0.90 ± 0.07 0.90 ± 0.08 0.93 ± 0.09 0.93 ± 0.10
DES* 0.87 ± 0.10 0.87 ± 0.09 0.92 ± 0.07 0.93 ± 0.07 0.93 ± 0.07
DES* + Diversity 0.88 ± 0.08 0.87 ± 0.05 0.89 ± 0.06 0.93 ± 0.05 0.94 ± 0.06
DES* + Uncertainty 0.88 ± 0.06 0.89 ± 0.05 0.91 ± 0.05 0.93 ± 0.04 0.92 ± 0.04
Table 4
Results on FbMultiLingMisinfo. For each AL strategy, we show how many iterations are needed to reach a desired level of expected/average
AUC.
FbMultiLingMisinfo. Numbers of iterations required to reach a desired level of AUC

AL strategy Expected average AUC

metric: #iterations (lower is better) 0.73 0.75 0.77 0.79 0.81 0.83 0.85 0.87 0.89

GAT

Random 33 37 46 51 57 69 100 – –
Uncertainty 20 27 36 44 54 66 80 100 –
Uncertainty + Diversity 17 25 34 38 44 57 78 96 –
DUS 24 35 40 53 59 76 94 – –
DUS + Diversity 30 37 44 57 65 77 97 – –
DES* 19 26 35 43 47 67 79 95 –
DES* + Diversity 18 26 32 37 44 58 79 – –
DES* + Uncertainty 18 22 30 36 43 54 72 90 –

GraphSAGE

Random 18 19 33 35 37 51 60 97 –
Uncertainty 17 20 30 33 37 39 53 69 93
Uncertainty + Diversity 9 14 18 35 38 40 52 59 90
DUS 16 20 36 38 40 57 68 – –
DUS + Diversity 14 18 35 38 39 54 59 80 –
DES* 13 15 20 29 34 37 50 64 92
DES* + Diversity 15 17 23 26 33 37 46 57 90
DES* + Uncertainty 11 15 18 24 32 36 44 54 88

GCN

Random 18 32 37 40 56 77 96 – –
Uncertainty 15 18 23 36 49 59 97 – –
Uncertainty + Diversity 16 20 26 32 38 58 92 – –
DUS 11 15 20 33 40 83 93 – –
DUS + Diversity 14 16 24 35 50 71 93 – –
DES* 13 16 18 34 37 62 80 96 –
DES* + Diversity 13 15 19 30 35 53 72 88 –
DES* + Uncertainty 14 20 27 37 47 59 79 91 –
7
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Table 5
Results on PolitiFact. For each AL strategy, we show how many iterations are needed to reach a desired
level of expected/average AUC.
PolitiFact. Numbers of iterations required to reach a desired level of AUC

AL strategy Expected average AUC

metric: #iterations (lower is better) 0.83 0.86 0.88 0.90 0.92 0.94

GAT

Random 8 13 17 – – –
Uncertainty 6 8 11 16 – –
Uncertainty + Diversity 4 7 10 11 – –
DUS 9 10 11 20 – –
DUS + Diversity 10 12 14 16 – –
DES* 8 9 10 11 20 –
DES* + Diversity 6 8 9 11 – –
DES* + Uncertainty 5 9 11 17 – –

GraphSAGE

Random 6 7 10 11 – –
Uncertainty 7 8 10 17 – –
Uncertainty + Diversity 8 9 10 13 20 –
DUS 9 10 12 17 – –
DUS + Diversity 9 11 13 16 – –
DES* 5 7 8 16 – –
DES* + Diversity 7 9 10 13 17 –
DES* + Uncertainty 4 7 9 11 20 –

GCN

Random 5 7 10 13 – –
Uncertainty 3 7 9 12 15 –
Uncertainty + Diversity 5 8 11 14 17 –
DUS 4 5 9 13 15 –
DUS + Diversity 6 8 10 11 14 –
DES* 5 7 9 13 14 –
DES* + Diversity 4 6 8 10 13 18
DES* + Uncertainty 4 5 8 12 14 –
Fig. 3. F1 Macro at each iteration for 5 AL strategies using GAT on FbMultiLingMisinfo. Deep Unseen + Diversity, Deep Error Uncertainty and Uncertainty + Diversity all perform
similarly and better than both Random and Deep Unseen + Diversity.
might seem less remarkable. Tables 2 and 3 still show that all tested AL
strategies except Deep Unseen Sampling outperform random sampling
— sometimes to a significant extent. On average, however, the AUC
is only 2% higher with little difference among Uncertainty Sampling
+ Diversity Sampling, Deep Error Sampling + Diversity Sampling, and
Deep Error Sampling + Uncertainty Sampling. While 2% might seem
low, it is worth mentioning that AUC is a demanding metric, and that –
in a large news ecosystem like the web or a social network – even small
increases might lead to substantial improvements in the information
quality inside the system. Let us now review the results more in depth,
and for the two datasets separately.
8

On FbMultiLingMisinfo, for GAT, Uncertainty + Diversity and Deep
Error Sampling + Uncertainty performed equally good or better than
any other sampling strategy, while for GraphSAGE also Deep Error
Sampling + Diversity reached top performance. In general, regardless of
the GNN used, random and Deep Unseen Sampling were always the two
methods delivering the worst results – as well exemplified in Figs. 3–
5. Finally, when using GCN, Deep Error Sampling + Diversity showed
the best performance overall for AUC; its performance in terms of F1
Macro are more clearly highlighted in Fig. 4 – with Deep Error Sam-
pling + Uncertainty and Uncertainty + Diversity as second and third
best performing methods respectively. On Politifact, results are more
nuanced. Especially when using GCN as the base fake news classifier, no
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Fig. 4. F1 Macro at each iteration for 5 AL strategies using GCN on FbMultiLingMisinfo. Deep Error + Diversity and Deep Error + Uncertainty outperform all the other methods.
Fig. 5. F1 Macro at each iteration for 5 AL strategies using GraphSAGE on FbMultiLingMisinfo. Deep Unseen + Diversity, Deep Error + Uncertainty and Uncertainty + Diversity
ll perform similarly and better than both Random and Deep Unseen + Diversity.
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L method clearly outperforms all the others. When using graphSAGE,
eep Error Sampling and Deep Error Sampling + Uncertainty start
merging as the top performing methods — in the first and second half
f the process respectively. Finally it is worth noting that, when using
AT and starting from the 11th iteration, the Deep Error Sampling
lways reaches the best performance in terms of AUC. The most likely
eason why no active learning strategy seems to prevail is that Politifact
s too small and homogeneous to really make AL necessary. Overall,
hile in many cases other active learning strategies perform as well as
ur proposed Deep Error Sampling, for both FbMultiLingMisinfo and
olitiFact DES produces more stable outcomes — as measure by the
ower variance in the results. In addition, when Deep Error Sampling
s coupled with either Diversity or Uncertainty Sampling — result
ariance between rounds seems to further decrease. Our method thus
dds to those already available with its own uniqueness and opens the
ay for new combinations of more robust active learning strategies.

To conclude, the most remarkable result of our enquiry on active
earning for misinformation detection is what we show in Figs. 3, 4
nd 5. The three best AL strategy require only between 45 and 65
9

terations to reach the same F1 Macro that random sampling reaches s
t iteration 100. More generally, given a certain F1 Macro score on Fb-
ultiLingMisinfo, the three plots also indicate the number of iterations

eeded to reach that level of performance with the three best and the
wo worst AL strategies for GAT, GCN and GraphSAGE respectively. In
he worst cases, random and Deep Unseen Sampling require up to 50%
ore iterations than Deep Error Sampling + Uncertainty, Deep Error

ampling + Diversity and Uncertainty + Diversity to reach the same F1
acro score — and the gap seems to increase as the performance of

he model increases. These promising results pave the way for a great
eduction in time and money spent for annotating online news — thus
aking the training of GNN-based fake news detectors more affordable.

. Conclusion & future work

In this work we presented an in-depth analysis of active learning
trategies in the contest of automatic misinformation detection, we
roposed a new deep active learning architecture that, when coupled
ith uncertainty sampling, performs equally or better than the most

ommon AL strategies and the only proposed active learning procedure

pecifically targeting fake news detection. A key finding is that, in the
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context GNN-based models for misinformation detection, compared to
random sampling AL allows – on average – to achieve a 2% increase in
AUC for the same percentage of third-party fact-checked news and to
save up to 25% of labeling effort for a desired level of classification per-
formance. While this direction seems promising, more ablation studies
are needed to find the optimal number of URLs that should be labeled
at every AL iteration. Experiments on much larger datasets would also
help gauging the feasibility of our proposed method in a real world
scenario. More in general, while hard to do, it would also make sense
to jointly optimize the hyper-parameters of both the misinformation
classifier and of the Deep AL architecture. Finally, the Deep AL model
itself could be made much more complex, possibly leading to much
greater improvements.

9. Ethical considerations

We acknowledge that automatic misinformation detection poses
well-documented risks, including the marginalization of minority dis-
course through disparate false positive rates. At the same time, it also
contributes to fighting misinformation campaigns that usually target
marginalized groups, such as immigrants. The ethical considerations in
this case affect all automated misinformation finding tools, and are not
specific to our work, which uses well-established practices. The main
subject of the work is in fact our Active Learning algorithm, the main
purpose of which is to improve the performance of Misinformation
Detection models. It is the use of the latter that can lead to ethical
concerns and not our algorithm.
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