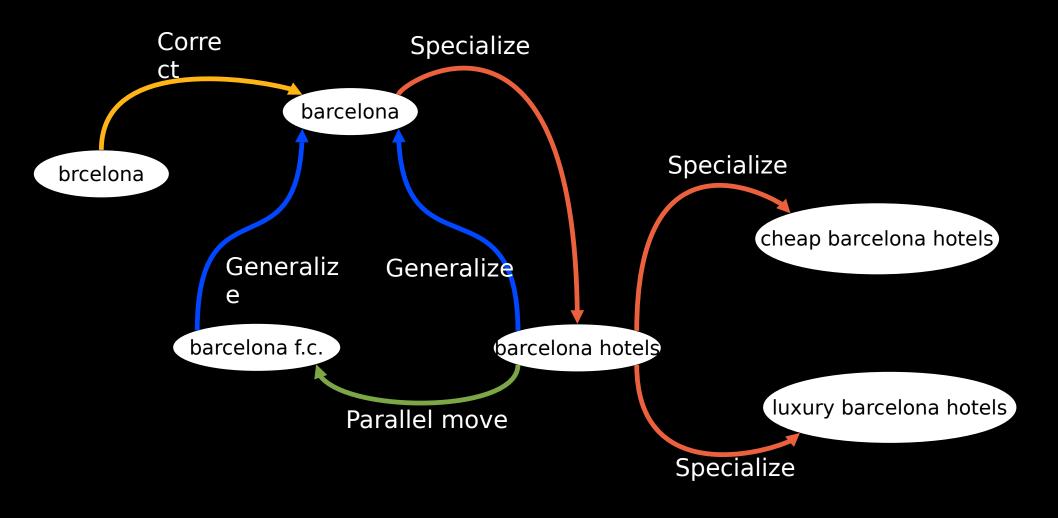
Query reformulation model and patterns

Paolo Boldi Francesco Bonchi Carlos Castillo Sebastiano Vigna Università degli studi di Milano, Italy

Yahoo! Research Barcelona, Spain


Query reformulation model and patterns: from "dango" to "japanese cakes"

Paolo Boldi[™]
Francesco Bonchi^{*}
Carlos Castillo^{*}
Sebastiano Vigna[™]

Muniversità degli studi di Milano, Italy

YYahoo! Research Barcelona, Spain

Rieh, S. Y. and Xie, H: "Analysis of multiple query reformulations on the web". IPM 32 (3) 2006.

Reformulation types

```
Error correction
```

startford cinema → stratford cinema

Generalization ("zoom out")

barcelona hotels → barcelona

Specialization ("zoom in")

barcelona soccer → barcelona camp nou

Reformulation types

```
Rephrasing
```

wikipedia english → english wikipedia robbs celebrities → robbs celebs

Parallel move

barcelona → rome

Why model reformulation types?

Improved session segmentation

Improved recommendations

Improved session understanding in general

Research agenda

Automatically classify query reformulation types

Study **patterns** of query reformulation CCSSGS...SPSCSS... session DNA

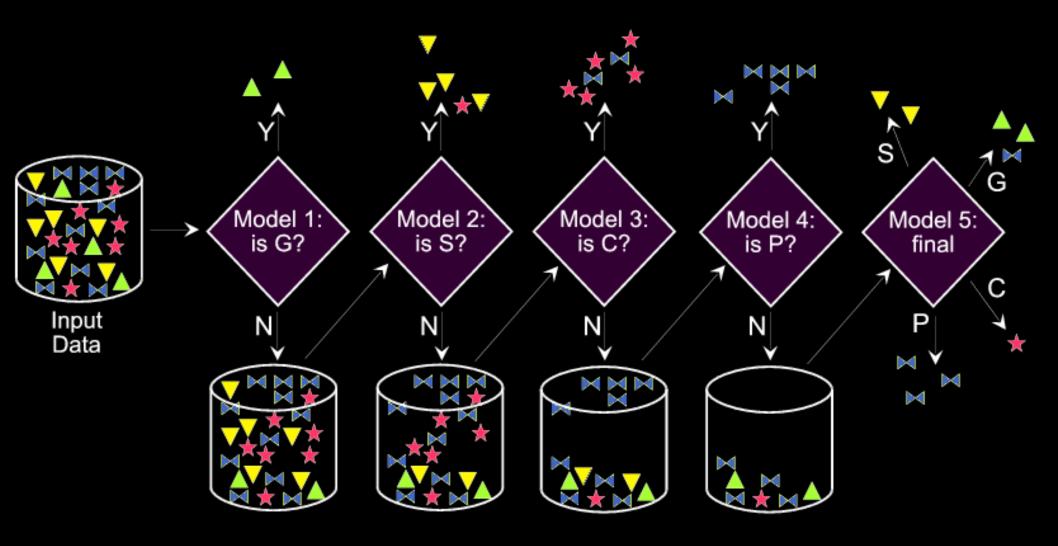
Annotate the query-flow graph

Research agenda

Automatically classify query reformulation types

Study **patterns** of query reformulation CCSSGS...SPSCSS... session DNA

Annotate the query-flow graph


Model for classification

Labeled examples 1,357 examples, 2/3 training 1/3 testing

Features
Same as chains + edit distance + delta lengths
+ ...

Learning method Find easy cases first, solve hard cases later

Rule 1 of model 1: is_G ?	Rule 1 of model 2: is_S ?
if $terms.cosine > 0.47$	if $ngrams.cosine > 0.42$
and $deltaLenRel \leq -0.37$	and $terms.deltaLen > 1$
then $is_G? = Y$	then $is_S? = Y$

Rule 1 of model 3: is_C ?	Rule 1 of model 4: is_P ?
	if $avgRelPosition > 0.65$
if $avgSessPosition \leq 1.91$	and $terms.jaccard \leq 0.25$
and $levenshtein \leq 3$	and $deltaLen \leq 5$
then $is_C? = Y$	and $terms.deltaLen > 0$
	then $is_P? = Y$

Example classifier output

q	q'	QRT
dango	japanese cakes	G
cars for sale south hams	auto trader	G
Find samebody in Germany	Find my friend in berlin	S
Nutrition	Vegetarian Society	S
ikea	corner vanity units	S
sport	PSV Eindhoven v Tottenham	S

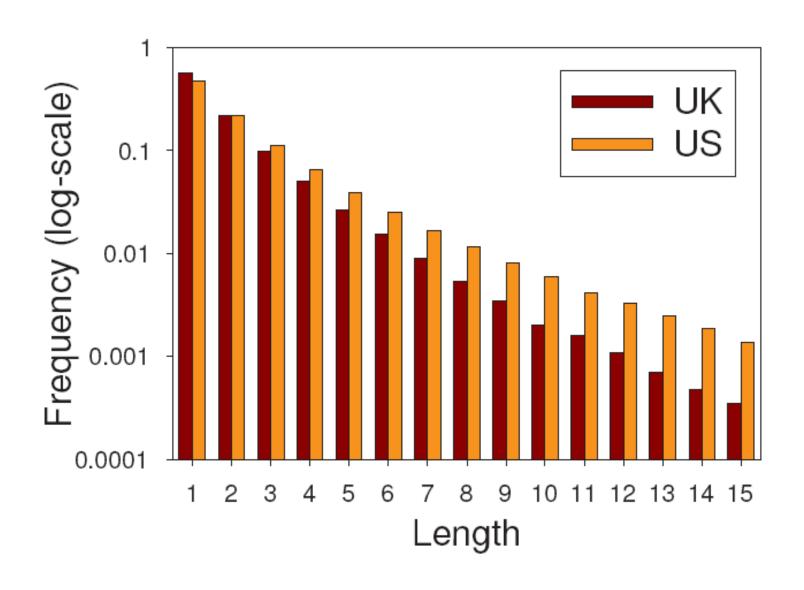
92% accuracy in the 4-classes problem

Research agenda

Automatically classify query reformulation types

Study **patterns** of query reformulation C C S S G S ... S P S C S S ... session DNA

Annotate the query-flow graph


Datasets

Yahoo! UK search engine
3.4M chains containing 6.6M queries

Yahoo! US search engine 4.0M chains containing 10.5M queries

Distribution of chain length

Distribution of reformulation types

	$\mathbf{U}\mathbf{K}$	\mathbf{US}	
G	4.4%	9.5%	
S	37.5%	30.1%	
С	10.4%	5.0%	
Р	47.7%	55.5%	
	n = 6M	n = 10M	

Conditional probability wrt prior P(x|previous=y) / P(x)

UK dataset

US dataset

	Previous			Previous				
	G	S	С	Р	G	S	С	P
G	0.8	1.7	0.3	0.4	0.6	2.0	0.6	0.6
				0.7				
С	0.3	0.4	1.2	0.6	0.5	0.5	4.0	0.7
P	0.5	0.9	0.6	0.8	0.6	0.8	0.7	1.0

Generalizations appear after specializations Corrections follow more corrections

Salient patterns

Frequency

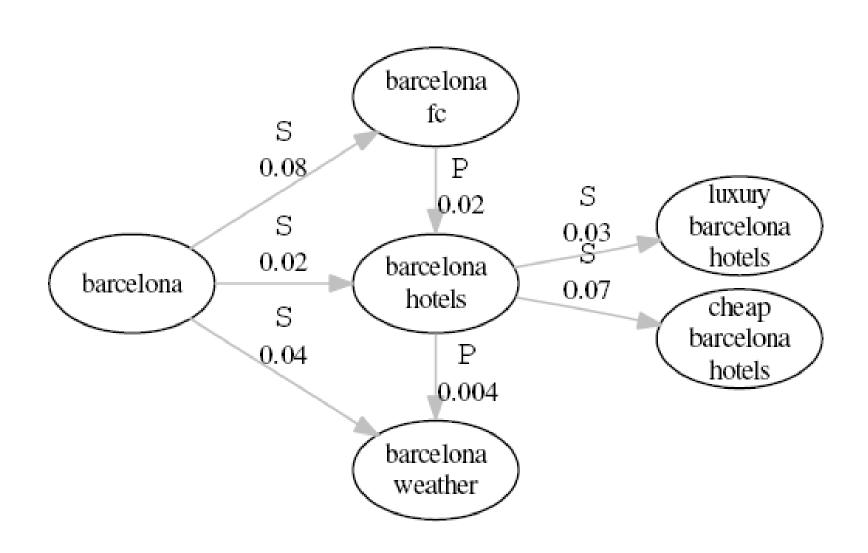
Pattern	UK	$\mathbf{U}\mathbf{S}$	$\mathbf{UK} \geq 5$	$\mathbf{US} \ge 5$
XC	12.7%	5.6%	7.8%	4.5%
\mathtt{SG}	2.8%	7.6%	16.4%	30.6%
GS	2.5%	6.1%	17.7%	30.3%
CX	11.3%	4.6%	6.1%	3.1%
XS	38.2%	35.5%	44.5%	34.5%
CC	1.4%	1.3%	5.1%	4.8%
SGS	0.9%	2.5%	8.6%	14.6%
CCC	0.3%	0.2%	1.5%	1.4%
GSG	0.2%	1.0%	2.5%	7.1%
SSG	0.7%	1.8%	7.6%	10.9%
XSG	1.7%	4.0%	4.1%	6.9%
SGX	1.3%	3.1%	2.2%	4.8%

Specialization/Generalization pairs Corrections beginning or ending a chain

Topical patterns

	$reference \rightarrow reference$				
G	$government \rightarrow government$				
	$reference \rightarrow government$				
	$reference \rightarrow reference$				
	$reference \rightarrow reference$				
S	$government \rightarrow government$				
	$reference \rightarrow reference$				
	$government \rightarrow government$				
	reference \rightarrow computers and internet				
C	news and media→news and media				
	$reference \rightarrow health$				
	science→social science				
	$arts \rightarrow reference$				
P	$reference \rightarrow government$				
	$reference \rightarrow education$				
	social science→government				
	computers and internet \rightarrow recreation				
Х	$entertainment \rightarrow education$				
	$recreation \rightarrow health$				
	soc. and culture \rightarrow computers and internet				

Research agenda


Automatically classify query reformulation types

Study **patterns** of query reformulation C C S S G S ... S P S C S S ... session DNA

Annotate the query-flow graph

Example annotated sub-graph

Interesting properties

Let G, S, P, C represent the corresponding slice of the query-flow graph

Correlated pairs:

G and S^T, S and G^T (tend to be anti-symmetric)

C and C^T, P and P^T (tend to be symmetric)

Entropy measures

Transition-type entropy
Maximum 2 bits (4 transition types)

Next-query entropy
Maximum log₂(|Queries|-1)

Note: US data was large, dropped count=1

Average entropy (freq > 100)

	UK data	US data
Reformulation-type entropy	1.1	1.0
Next-query entropy:		
Generalization (G)	1.0	1.3
Specialization (S)	5.4	2.6
Correction (C)	1.1	1.3
Parallel move (P)	6.5	4.0

Specializatio: $2^{5.4} = 42 \ 2^{2.6} = 6$ Parallel move $2^{6.5} = 91 \ 2^{4.0} = 16$

Conclusions

High accuracy in 4-classes: 92%

Specializations and Generalizations alternate

Corrections are common at the beginning and at the end of a chain

Large entropy in specializations/parallel moves

Follow-up work: query recommendation

