Sparsification of Influence Networks

Michael Mathioudakis¹, Francesco Bonchi², Carlos Castillo², Aris Gionis², Antti Ukkonen²

¹University of Toronto, Canada

²Yahoo! Research Barcelona, Spain

Introduction

online social networks

facebook 750m users twitter 100m+ users

users perform actions
post messages, pictures, videos
connected with other users
interact, influence each other
actions propagate

Problem

which connections are most important for the propagation of actions?

sparsify network

eliminate large number of connections keep important connections

sparsification: a data reduction operation network visualization efficient graph analysis

What We Do

technical framework

sparsify network according to observed activity keep connections that best explain propagations

our approach

social network & observed propagations
learn independent cascade model (ICM)
select k connections
most likely to have produced propagations

Outline

- introduction
- setting
 - social network
 - propagation model
- sparsification
 - optimal algorithm
 - greedy algorithm: spine
- experiments

Social Network

users – nodes B follows A – arc A→B

Propagation of Actions

users perform actions actions propagate

independent cascade model propagation of an action unfolds in timesteps

Propagation of Actions

icm generates propagations sequence of activations

likelihood

Estimating Influence Probabilities

social network + set of propagations

Outline

- introduction
- setting
 - social network
 - propagation model
- sparsification
 - optimal algorithm
 - greedy algorithm: spine
- experiments

Sparsification

social network

p(A,B)

set of propagations

k arcs

most likely to explain all propagations

Sparsification

social network

p(A,B)

set of propagations

k arcs

most likely to explain all propagations

Sparsification

<u>not</u> the k arcs with largest probabilities

NP-hard and inapproximable difficult to find solution with non-zero likelihood

How to Solve?

brute-force approach
try all subsets of k arcs?

break down into smaller problems combine solutions

Optimal Algorithm

sparsify separately incoming arcs of individual nodes optimize corresponding likelihood

dynamic programming optimal solution however...

Spine

sparsification of influence networks
greedy algorithm
efficient, good results

two phases

 $\begin{array}{c} \text{phase 1} \\ \text{try to obtain a non-zero-likelihood solution} \\ k_0 < k \ \text{arcs} \end{array}$

phase 2 build on top of phase 1

Spine – Phase 1

phase 1

obtain a non-zero-likelihood solution select greedily arcs that participate in most propagations until all propagations are explained

Spine – Phase 2

add one arc at a time, the one that offers largest increase in likelihood

approximation guarantee for phase 2

Outline

- introduction
- setting
 - social network
 - propagation model
- sparsification
 - optimal algorithm
 - greedy algorithm: spine
- experiments

datasets

meme.yahoo.com

actions: postings (photos), nodes: users, arcs: who follows whom data from 2010

memetracker.org

actions: mentions of a phrase, nodes: blogs & news sources, arcs: who links to whom data from 2009

sampled datasets of different sizes

Dataset	Actions	Arcs	Arcs, prob > 0
YMeme-L	26k	1.25M	430k
YMeme-M	13k	1.15M	380k
YMeme-S	5k	466k	73k
MTrack-L	9k	200k	7.8k
MTrack-M	120	110k	1.4k
MTrack-S	780	78k	768

YMeme meme.yahoo.com MTrack memetracker.org

algorithms

optimal
(very inefficient)

spine
(a few seconds to 3.5hrs)
by arc probability
random

Model Selection using BIC

$$BIC(k) = -2logL + klogN$$

Application

spine as a preprocessing step

influence maximization
select k nodes to maximize spread of action
[Kempe, Kleinberg, Tardos, 03]
NP-hard, greedy approximation

perform on sparsified network instead large benefit in efficiency, little loss in quality

Application

Public Code and Data

http://www.cs.toronto.edu/~mathiou/spine/

The End

Questions?