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Introduction
online social networks
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facebook 750m users
twitter 100m+ users " )
o3l flickr

users perform actions s S
post messages, pictures, videos read Indeedq!

connected with other users

interact, influence each other
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actions propagate




Problem

which connections are most important
for the propagation of actions?

sparsify network
eliminate large number of connections
keep important connections

sparsification: a data reduction operation
network visualization
efficient graph analysis




What We Do

technical framework
sparsify network according to observed activity
keep connections that best explain propagations

our approach
social network & observed propagations
learn independent cascade model (ICM)
select k connections
most likely to have produced propagations



Outline

* introduction
* setting
— social network
— propagation model
® sparsification
— optimal algorithm
— greedy algorithm: spine

* experiments



Social Network

users — nodes
B follows A —arc A—>B




Propagation of Actions

users perform actions
actions propagate

independent cascade model
propagation of an action unfolds in timesteps

| liked this _ N great
movie influence probability :

p(A,B)




Propagation of Actions

icm generates propagations
sequence of activations

likelihood

® active

action a
O not active

t+1



Estimating Influence Probabilities

social network max likelihood
+
set of — p(A,B)
propagations EM — [Saito et.al.]

® active

action a
O not active

t+1
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Sparsification

social network

p(A,B) )

k arcs

set of
propagations

most likely to
explain all
propagations
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social network

p(A,B)

set of
propagations

Sparsification

—>

p(A,B)

k arcs

most likely to
explain all
propagations
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Sparsification

not the k arcs with largest probabilities

NP-hard and inapproximable
difficult to find solution with non-zero likelihood
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How to Solve?

brute-force approach
try all subsets of k arcs?
no

break down into smaller problems
combine solutions
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Optimal Algorithm

sparsify separately incoming arcs of individual nodes
optimize corresponding likelihood
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dynamic programming
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optimal solution
however...
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Spine

sparsification of influence networks
greedy algorithm
efficient, good results

two phases
phase 1

try to obtain a non-zero-likelihood solution
ko < k arcs

phase 2
build on top of phase 1
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Spine — Phase 1

phase 1
obtain a non-zero-likelihood solution
select greedily arcs that participate in most propagations
until all propagations are explained

B
social network C A action a
B
C A t t+1
D B

C A action B
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Spine — Phase 2

add one arc at a time, the one that offers
largest increase in likelihood

4
submodular

logl

H# arcs

k k

0

approximation guarantee
for phase 2
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Experiments

datasets

meme.yahoo.com
actions: postings (photos), nodes: users, arcs: who follows whom
data from 2010

memetracker.org

actions: mentions of a phrase, nodes: blogs & news sources,
arcs: who links to whom

data from 2009
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Experiments

sampled datasets of different sizes

YMeme-L 1.25M 430k
YMeme-M 13k 1.15M 380k
YMeme-S 5k 466k 73k

MTrack-L 9k 200k 7.8k
MTrack-M 120 110k 1.4k
MTrack-S 780 78k 768

YMeme meme.yahoo.com
MTrack memetracker.org



Experiments

algorithms

optimal
(very inefficient)

spine
(a few seconds to 3.5hrs)
by arc probability
random
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BIC

Model Selection using BIC

BIC(k) = -2loglL + klogN
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Application

spine as a preprocessing step

influence maximization
select k nodes to maximize spread of action
[Kempe, Kleinberg, Tardos, 03]
NP-hard, greedy approximation

perform on sparsified network instead
large benefit in efficiency, little loss in quality
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Time (sec)
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Public Code and Data

http://www.cs.toronto.edu/~mathiou/spine/
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The End

Questions?
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