¢ The European Commission’s science
and knowledge service

European ‘
Commission



Why machine learning may lead to
unfairness

Songul Tolan!, Marius Miron?!, Emilia Gomez!-?, Carlos Castillo?

lEuropean Commission’s Joint Research Centre
2Universitat Pompeu Fabra

European
Commission




Machine learning for decision making

SCVS DBSERVED
12052021

European
Commission




The criminal justice

Trade-off: predictive performance vs fairness
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Criminal recidivism
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Criminal recidivism prediction
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Criminal recidivism prediction
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Criminal recidivism prediction

Examples of static
features:

Age at crime

Sex

Nationality

Previous number of crimes

Sentence

Year of crime

0000 O0OC

Probation
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Fairness

A decision is fair if it does not
discriminate against people
based on their membership to
a protected group
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Fairness

Example of protected
features:

Age at crime

Sex

Nationality

Previous number of crimes

Sentence

Year of crime
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Probation
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Measuring unfairness
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Measuring unfairness

False negative

False positive
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False negative rate = Miss rate
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False positive rate = False alarm rate
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Group fairness - sex

sex-MaIe

sex—MaIe
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False negative rate disparity

FNR

female

FNR

disparity=

FNR

male

How likely it is for a member of
a group to be wrongfully
labeled as non-recidivist.




Headache?
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Too complicated?

The fairness in machine
learning literature comprises at
least 21 disparity metrics.
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Juvenile recidivism
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Risk assessment tools

Structured Assessment of Violence Risk in Youth (SAVRY)
e high degree of involvement from human experts

e open and interpretable (in comparison with COMPAS)

e 24 risk factors scored low, medium or high
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SAVRY

Examples of SAVRY
features:

Early violence

Self-harm history

Home violence

Poor school achievement
Stress and poor coping
Substance abuse

Criminal parent/caregiver
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Criminal recidivism prediction
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Static ML
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SAVRY ML
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Static + SAVRY ML
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Dataset

Juvenile offenders in Catalonial
e 855 people

e crimes between 2002 -2010, release in 2010
e age at crime between 12 and 17 years old

e status followed up on 2013 and 2015

1.  Open data: http:/cejfe.gencat.cat/en/recerca/opendataljjuvenil/reincidencia-justicia-menors/index.html
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Experimental setup

Training a set of ML methods

e |ogistic regression (logit), multi-layer perceptron (mlip),
support vector machines (Isvm), k-nearest neighbors (knn),
random forest (rf), naive bayes (nb)

e k-fold cross validation with k=10 (10% test, 10% validation,
80% training)

e we run 50 different experiments with different initial conditions

e we compute feature importance with LIME!

1.  LIME nttps://qgithub.com/marcotcr/lime e
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https://github.com/marcotcr/lime

Predictive performance - AUC ROC

Sensitivity vs. 1 - Specificity for jeffpine_1
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Results, predictive performance AUC

logit mlp knn Isvm rsvm nb rf
mean std.dev. mean std.dev. | mean std.dev. mean std.dev. mean std.dev. mean std.dev. mean std.dev.
CSAVRY ML .66 .0058 .66 .0058 .60 0121 .65 .0082 52 .0197 .65 0015 .65 0110
Static ML .70 .0055 .70 0068 .62 0122 .61 0119 56 .0149 .69 .0040 .66 0110

Static+#SAVRY ML} .71 .0064 .70 .0053 .64 0129 71 0074 .50 .0058 .69 0018 .69 0121

SAVRY Sum has 0.64 AUC
Expert has 0.66 AUC

European
Commission




Results: disparity, sex
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Results: disparity, sex
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Results: disparity, sex
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Results: disparity, sex
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Results: disparity, nationality
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Results: disparity, nationality
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Results: disparity, nationality
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Results: disparity, nationality
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Results: disparity, nationality
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Results: feature importance for logit

SAVRY ML @ Static @) Static+SAVRY @D

final expert evaluation 0.370*** (0.076) v crime in 07-08 -0.298** (0. llS)é/crime in years 07-08 -0.272** (0.133)
SAVRY sum 0.183 (0.910) v crime in year 09 -0.259** (0.121) v crime in year 09 -0.255% (0.132)
personality -1.362 (7.061)  age maincrime -0.109***  (0.021) gg v days to program start (norm)  -0.117***  (0.044)
treatment susceptibility -1.340 (6.336)  /days to program start (norm)  -0.105***  (0.040) ¥/ age maincrime -0.115***  (0.022)
total score (social) -0.141 (0.909) v crime in year 10 -0.275*** (0.098) final expert evaluation 0.291*** (0.091)
total score (protective) 0.191 (0.902) v days in program (norm) -0.087* (0.048) v crime in year 10 -0.256" (0.115)
previous violent offenses -0.601 (2.533) v prog: enforcement measure -0.248** (0. 103)6\/female -0.196*** (0.053)
total score (historic) 0.056 (0.045) v prior crimes frequency 0.059* (0.033) v enforcement measure -0.206" (0.122)
home violence -0.543 (1.816)  female -0.187*** (0. 046)6\/’\1“@111 -ebi 0.152%* (0.069)
past intervention failures -0.598 (2.530) v Maghrebi 0.158*** (0.058) éx/L’itlll American PiA3s™ (0.060)

v Latin American 0.105** (0.052)

v prog: mediation/reparation -0.178" (0.103)
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Results: feature importance for mip

SAVRY ML @ Static ML @@ Static+SAVRY ML @@

feature importance feature importance feature importance

Mean  StdDev Mean  StdDev Mean  StdDev
probation/internment 147.43 24385 v province of residence 219.21 28.44 6 v foreigner 199.80 11.37
total score (social) 117.93 9.71 v age maincrime 202.83 25.72 6 v sex 188.07 8.35
total score (personality) 117.63  9.83 v foreigner 178.38 19.06 v national group 117.40  23.09
total score (protective) 115.76  8.56 V'year of maincrime 168.96 13.86 6 v/ maincrime category 150.90 16.44
total score (historic) 116.59 10.25 v prior crimes 175.11 22.56 v prior crimes frequency 151.53 18.26
history non-violent offending 112.17  7.44 v national group 181.68  32.23 6 v/ maincrime program sentence 143.29 10.50
positive/resilience characteristics 111.62  7.32 Vv prior crimes frequency 156.15  20.98 6 V'year of maincrime 141.88 9
previous violence 113.22 8.93 v maincrime category 144.27 18.26 v/ maincrime violent 148.92 16.23
early violence 11142 717 v/ maincrime violent 137.20 14.95 é v province of execution 146.07 13.76
pro-social activities 109.82  5.57 v prior crimes 131.53 12.66 v prior crimes 146.97 14.71
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Results: difference in base rates (prevalence)

Base rate Not Recidivated Recidivated Difference
protected features
male 40.03% 0.839 0.931 0.093***
female 20.37% 0.161 0.069 =0.093¥**
Spanish 32.06% 0.667 0.523 ), L 4T HE
foreign 46.22% 0.333 0.477 0.143%*

Descriptive statistics of input features by recidivism status.
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Conclusions

e ML models have better predictive performance
e ML models tend to discriminate more
e static features outweigh SAVRY features as importance

e preliminary study: the cause may be in the data (base rates)
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Contributions

We propose a methodology and a ML framework?
e to easily train ML models on tabular data (csv files)

e to evaluate these models in terms of predictive
performance and fairness

e to connect to interpretability frameworks

e to reproduce with ease results and research

1.  Open framework: https:/gitlab.com/HUMAINT/humaint-fatmi
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https://gitlab.com/HUMAINT/humaint-fatml

[ hank you!

Any questions?

You can find me at @nkundiushuti & marius.miron@ec.europa.eu &
mariusmiron.com
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