The European Commission's science and knowledge service

:

-

Joint Research Centre

die .

Why machine learning may lead to unfairness

Songül Tolan¹, **Marius Miron¹**, Emilia Gomez^{1,2}, Carlos Castillo²

¹European Commission's Joint Research Centre ²Universitat Pompeu Fabra

Machine learning for decision making

The criminal justice case

Trade-off: predictive performance vs fairness

Criminal recidivism

Prisoner

Human expert Decision / Sentence

Prisoner

Human expert Decision / Sentence Outcome

Prisoner

Human expert Decision / Sentence Outcome

Examples of static features:

Fairness

A decision is fair if it does not discriminate against people based on their membership to a protected group

Example of protected features:

Measuring unfairness

Measuring unfairness

False negative

False positive

False negative rate = Miss rate

False positive rate = False alarm rate

European Commission

Group fairness - sex

False negative rate disparity

How likely it is for a member of a group to be wrongfully labeled as non-recidivist.

Headache?

Too complicated?

The fairness in machine learning literature comprises at least 21 disparity metrics.

Juvenile recidivism

Risk assessment tools

Structured Assessment of Violence Risk in Youth (SAVRY)

- high degree of involvement from human experts
- open and interpretable (in comparison with COMPAS)
- 24 risk factors scored low, medium or high

SAVRY

Examples of SAVRY features:

Early violence

- Self-harm history
- Home violence
- **Poor school achievement**
- Stress and poor coping

Substance abuse

Criminal parent/caregiver

Static ML

SAVRY ML

Static + SAVRY ML

Juvenile offenders in Catalonia¹

- 855 people
- crimes between 2002 -2010, release in 2010
- age at crime between 12 and 17 years old
- status followed up on 2013 and 2015

1. Open data: <u>http://cejfe.gencat.cat/en/recerca/opendata/jjuvenil/reincidencia-justicia-menors/index.html</u>

Experimental setup

Training a set of ML methods

- logistic regression (logit), multi-layer perceptron (mlp), support vector machines (lsvm), k-nearest neighbors (knn), random forest (rf), naive bayes (nb)
- k-fold cross validation with k=10 (10% test, 10% validation, 80% training)
- we run 50 different experiments with different initial conditions
- we compute feature importance with LIME¹

Predictive performance - AUC ROC

Results, predictive performance AUC

		logit		mlp		knn		lsvm		rsvm		nb		rf	
		mean	std.dev.	mean	std.dev.	mean	std.dev.	mean	std.dev.	mean	std.dev.	mean	std.dev.	mean	std.dev.
SAVRY	ML	.66	.0058	.66	.0058	.60	.0121	.65	.0082	.52	.0197	.65	.0015	.65	.0110
Static M	L	.70	.0055	.70	.0068	.62	.0122	.61	.0119	.56	.0149	.69	.0040	.66	.0110
Static+S	AVRY ML	.71	.0064	.70	.0053	.64	.0129	.71	.0074	.50	.0058	.69	.0018	.69	.0121

SAVRY Sum has 0.64 AUC Expert has 0.66 AUC

Results: feature importance for logit

SAVRY M			Static		Static+SAVR	Static+SAVRY		
final expert evaluation	0.370***	(0.076)	√ crime in 07-08	-0.298**	(0.118) / crime in years 07-08	-0.272**	(0.133)	
SAVRY sum	0.183	(0.910)	√ crime in year 09	-0.259**	$(0.121) \bigoplus \sqrt{\text{crime in year 09}}$	-0.255*	(0.132)	
personality	-1.362	(7.061)	√ age maincrime	-0.109***	(0.021) $\checkmark \sqrt{\text{days to program start (norm)}}$	-0.117***	(0.044)	
treatment susceptibility	-1.340	(6.336)	√ days to program start (norm)	-0.105***	(0.040) \checkmark age maincrime	-0.115***	(0.022)	
total score (social)	-0.141	(0.909)	√ crime in year 10	-0.275***	(0.098) final expert evaluation	0.291***	(0.091)	
total score (protective)	0.191	(0.902)	√ days in program (norm)	-0.087*	$(0.048) \longrightarrow \sqrt{\text{crime in year 10}}$	-0.256**	(0.115)	
previous violent offenses	-0.601	(2.533)	√ prog: enforcement measure	-0.248**	(0.103) \checkmark female	-0.196***	(0.053)	
total score (historic)	0.056	(0.045)	\checkmark prior crimes frequency	0.059*	(0.033) ✓ enforcement measure	-0.206*	(0.122)	
home violence	-0.543	(1.816)	√female	-0.187***	(0.046) ₩√Maghrebi	0.152**	(0.069)	
past intervention failures	-0.598	(2.530)	√Maghrebi	0.158***	(0.058) 🛑 🗸 Latin American	0.135**	(0.060)	
			✓ Latin American	0.105**	(0.052)			
			√ prog: mediation/reparation	-0.178*	(0.103)			

Results: feature importance for mlp

SAVRY ML	Static M	L		Static+SAVRY ML				
feature	importance		feature	importance		feature	importance	
	Mean	StdDev	-	Mean	StdDev	-	Mean	StdDev
probation/internment	147.43	24.85	\checkmark province of residence	219.21	28.44	√foreigner	199.80	11.37
total score (social)	117.93	9.71	√age maincrime	202.83	25.72	√sex	188.07	8.35
total score (personality)	117.63	9.83	√foreigner	178.38	19.06	✓ national group	117.40	23.09
total score (protective)	115.76	8.56	\checkmark year of maincrime	168.96	13.86	✓ maincrime category	150.90	16.44
total score (historic)	116.59	10.25	√ prior crimes	175.11	22.56	\checkmark prior crimes frequency	151.53	18.26
history non-violent offending	112.17	7.44	√ national group	181.68	32.23	\checkmark maincrime program sentence	143.29	10.50
positive/resilience characteristics	111.62	7.32	√ prior crimes frequency	156.15	20.98	√year of maincrime	141.88	9
previous violence	113.22	8.93	√ maincrime category	144.27	18.26	√maincrime violent	148.92	16.23
early violence	111.42	7.17	√ maincrime violent	137.20	14.95	\checkmark province of execution	146.07	13.76
pro-social activities	109.82	5.57	\checkmark prior crimes	131.53	12.66	\checkmark prior crimes	146.97	14.71

Results: difference in base rates (prevalence)

	Base rate	Not Recidivated	Recidivated	Difference
protected features				
male	40.03%	0.839	0.931	0.093***
female	20.37%	0.161	0.069	-0.093***
Spanish	32.06%	0.667	0.523	-0.143***
foreign	46.22%	0.333	0.477	0.143**

Descriptive statistics of input features by recidivism status.

Results: difference in base rates

	Base rate	Not Recidivated	Recidivated	Difference
protected features				
male	40.03%	0.839	0.931	0.093***
female	20.37%	0.161	0.069	-0.093***
Spanish	32.06%	0.667	0.523	-0.143***
foreign	46.22%	0.333	0.477	0.143**

Descriptive statistics of input features by recidivism status.

Results: difference in base rates

10	Base rate	Not Recidivated	Recidivated	Difference
protected features				
	- 17 - 11 - 1800000			
male	40.03%	0.839	0.931	0.093***
female	20.37%	0.161	0.069	-0.093***
Spanish	32.06%	0.667	0.523	-0.143***
foreign	46.22%	0.333	0.477	0.143**

Descriptive statistics of input features by recidivism status.

Conclusions

- ML models have better predictive performance
- ML models tend to discriminate more
- static features outweigh SAVRY features as importance
- preliminary study: the cause may be in the data (base rates)

Contributions

We propose a methodology and a ML framework¹

- to easily train ML models on tabular data (csv files)
- to evaluate these models in terms of predictive performance and fairness
- to connect to interpretability frameworks
- to reproduce with ease results and research

Thank you!

Any questions?

You can find me at @nkundiushuti & <u>marius.miron@ec.europa.eu</u> & <u>mariusmiron.com</u>

