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Machine learning for decision making



The criminal justice case

Trade-off: predictive performance vs fairness



Criminal recidivism 
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Criminal recidivism prediction
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Examples of static 
features:



Fairness

A decision is fair if it does not 
discriminate against people 
based on their membership to 
a protected group



Fairness
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Measuring unfairness

False positive

False negative
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False negative rate = Miss rate
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False positive rate = False alarm rate
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Group fairness - sex
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False negative rate disparity 

How likely it is for a member of 
a group to be wrongfully 
labeled as non-recidivist.

FNRdisparity=
FNRfemale

FNRmale



Headache?



Too complicated?

The fairness in machine 
learning literature comprises at 
least 21 disparity metrics.



Juvenile recidivism



Structured Assessment of Violence Risk in Youth (SAVRY)

Risk assessment tools

● high degree of involvement from human experts

● open and interpretable (in comparison with COMPAS)

● 24 risk factors scored low, medium or high



SAVRY

Early violence

Self-harm history

Home violence

Poor school achievement

Stress and poor coping

Substance abuse

Criminal parent/caregiver

Examples of SAVRY 
features:



Criminal recidivism prediction
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Static + SAVRY ML
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Juvenile offenders in Catalonia1 

Dataset

● 855 people

● crimes between 2002 -2010, release in 2010 

● age at crime between 12 and 17 years old

● status followed up on 2013 and 2015

1. Open data: http://cejfe.gencat.cat/en/recerca/opendata/jjuvenil/reincidencia-justicia-menors/index.html

http://cejfe.gencat.cat/en/recerca/opendata/jjuvenil/reincidencia-justicia-menors/index.html


Training a set of ML methods

Experimental setup

● logistic regression (logit), multi-layer perceptron (mlp), 
support vector machines (lsvm), k-nearest neighbors (knn), 
random forest (rf), naive bayes (nb)

● k-fold cross validation with k=10 (10% test, 10% validation, 
80% training) 

● we run 50 different experiments with different initial conditions

● we compute feature importance with LIME1

1. LIME https://github.com/marcotcr/lime

https://github.com/marcotcr/lime


Predictive performance - AUC ROC



Results, predictive performance AUC

SAVRY Sum has 0.64 AUC
Expert has 0.66 AUC
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Results: feature importance for logit



Results: feature importance for mlp



Results: difference in base rates (prevalence)



Results: difference in base rates



Results: difference in base rates



Conclusions

● ML models have better predictive performance

● ML models tend to discriminate more

● static features outweigh SAVRY features as importance 

● preliminary study: the cause may be in the data (base rates)



We propose a methodology and a ML framework1 

Contributions

● to easily train ML models on tabular data (csv files)

● to evaluate these models in terms of predictive 
performance and fairness

● to connect to interpretability frameworks 

● to reproduce with ease results and research

1. Open framework: https://gitlab.com/HUMAINT/humaint-fatml 

https://gitlab.com/HUMAINT/humaint-fatml


Thank you!
Any questions?
You can find me at @nkundiushuti & marius.miron@ec.europa.eu & 
mariusmiron.com 

mailto:marius.miron@ec.europa.eu
http://mariusmiron.com/

