Fast Shortest Path Distance Estimation in Large Networks

Michalis Potamias Francesco Bonchi

Carlos Castillo

Aristides Gionis

Context-aware Search

... use shortest-path distance in wikipedia links-graph!

YAHOO!

Social Search

... use shortest-path distance in friendship graph!

YAHOO!

Problem and Solutions

- DB: Graph G = (V, E)
- Query: Nodes s and t in V
- Goal: Compute fast shortest path d(s,t)
- Exact Solution
 - BFS Dijkstra
 - Bidirectional Dijkstra with A* (aka ALT methods)
 - [Ikeda, 1994] [Pohl, 1971] [Goldberg and Harrelson, SODA 2005]
- Heuristic Solution
 - Avoid traversals Use Random Landmarks
 - [Kleinberg et al, FOCS 2004] [Vieira et al, CIKM 2007]
 - Can we choose Better Landmarks ?!?

The Landmarks' Method

- Offline
 - Precompute distance of all nodes to a small set of nodes (landmarks)
 - Each node is associated with a vector with its SP-distance from each landmark (embedding)
- Query-time
 - -d(s,t) = ?

 $\mathbf{Y}_{A}\mathbf{HC}$

 Combine the embeddings of s and t to get an estimate of the query

Contribution

- 1. Proved that covering the network with landmarks is NP-hard.
- 2. Devised heuristics for good landmarks.
- 3. Experiments with 5 large real-world networks and more than 30 heuristics. Comparison with state of the art.
- 4. Application to Social Search.

Algorithmic Framework

• Triangle Inequality

 $d_G(s,t) \le d_G(s,u) + d_G(u,t),$ $d_G(s,t) \ge |d_G(s,u) - d_G(u,t)|$

• Observation: the case of equality

$$d_G(s,t) = d_G(s,u) + d_G(u,t)$$

$$d_G(s,t) = |d_G(s,u) - d_G(u,t)|$$

Shortest Paths in Large Networks @ CIKM 2009

u

The Landmarks' Method

- 1. Selection: Select *k* landmarks
- Offline: Run *k* BFS/Dijkstra and store the embeddings of each node:
 Φ(s) = <d(s, u₁), d(s, u₂), ..., d(s, u_k)>

 $= \langle s_1, s_2, ..., s_k \rangle$

- 3. Query-time: *d*(*s*,*t*) = ?
 - Fetch $\Phi(s)$ and $\Phi(t)$

 $\mathbf{V}_{A}\mathbf{HC}$

OSTON

- Compute $\min_{i \in S_i} + t_i$ (i.e. inf of UB) ... in time O(k)

Example query: *d*(*s*,*t*)

	d(_,u ₁)	d(_,u ₂)	d(_,u ₃)	$d(_,u_4)$
Φ(s)	2	4	5	2
$\Phi(t)$	3	5	1	4

UB	5	9	6	6
LB	1	1	4	2

$$\max_{i} |s_i - t_i| \le d_G(s, t) \le \min_{j} \{s_j + t_j\}$$

YAHOO!

RESEARCH

Coverage Using Upper Bounds

- A landmark u covers a pair (s, t), if u lies on a shortest path from s to t
- Problem Definition: find a set of k landmarks that cover as many pairs (s,t) in V x V as possible
 - NP-hard

 $\mathbf{V}_{A}HO$

- -k = 1: node with the highest betweenness centrality
- k > 1 : greedy set-cover (approximation too expensive)

... central nodes are a good start for devising heuristics!

Landmarks Selection: Basic Heuristics

- Random (baseline)
- Choose central nodes!
 - Degree
 - Closeness centrality
 - Closeness of *u* is the average distance of *u* to any vertex in *G*
- Caveat: many central nodes may cover the same pairs: newly added landmarks should cover different pairs

...spread the landmarks in the graph!

YAHOO! RESEARCH

Constrained Heuristics

- Remove immediate neighborhood
 - 1. Rank all nodes according to Degree or Centrality
 - 2. Iteratively choose the highest ranking nodes. Remove *h*-neighbors of each selected node from candidate set
- Denote as
 - Degree/h
 - Closeness/h
 - Best results for h = 1

Partitioning-based Heuristics

- Use graph-partitioning to spread nodes.
- Utilize any partitioning scheme and
 - Degree/P
 - Pick the node with the highest degree in each partition
 - Closeness/P
 - Pick the node with the highest closeness in each partition
 - Border/P
 - Pick the node closer to the border in each partition. Maximize the border-value that is given from the following formula:

$$b(u) = \sum_{j \in C, u \in C(i), i \neq j} d_j(u) \cdot d_i(u)$$

Versus Random - error

YAHOO! RESEARCH

UNIVERSITY

Shortest Paths in Large Networks @ CIKM 2009

flickr

Versus Random - triangulation

random landmarks have theoretical guarantees [FOCS04]

YAHOO! Shortest Paths in

Versus ALT - efficiency

	flickr	flick r	WIKIPEDIA	Q uni-trier.de Computer Science Bibliography	TAHOOL MESSENGER WIT WAR
Ours (10%) Operations	20	100	500	50	50
ALT LB Operations	60K >300x	40K >400x	80K >160x	20K >400x	2K >40x
ALT Visited Nodes	7K	10K	20K	2K	2K

state of the art exact ALT methods [SODA05]

YAHOO!

Social Search Task

random landmarks have been used [CIKM07]

YAHOO!

Conclusion

- Novel search paradigms need distance as primitive
 - Approximations should be computed in milliseconds
- Heuristic landmarks yield remarkable tradeoffs for SPdistance estimation in huge graphs
 - Hard to find the optimal landmarks
 - Border and Centrality heuristics:
 - outperform Random even by a factor of 250.
 - are, for a 10% error, many orders of magnitude faster than state of the art exact algorithms (ALT)
- Future Work
 - Provide fast estimation for more graph primitives!

Thank you!

?

