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ABSTRACT

In this paper we introduce DELTR, a learning-to-rank framework
that addresses potential issues of discrimination and unequal oppor-
tunity in rankings. Following long-standing empirical observations
showing that users of information retrieval systems rarely look
past the first few results, we measure these problems in terms of
discrepancies in the average group exposure. Specifically, we define
our notion of group exposure as the average probability of items
from a legally protected social group to be ranked at the top posi-
tion. With this we design a ranker that optimizes search results
in terms of relevance, while at the same time reducing potential
discrimination or inequality of opportunity.

We describe this objective formally, how to optimize it efficiently,
and how to implement it. We perform an extensive experimental
study showing that being “colorblind,” i.e. ignoring protected at-
tributes such as race or gender, can be among the best choices or the
worst choices from the perspective of relevance and exposure, de-
pending on how much and which kind of bias is present in the train-
ing set. As baselines for benchmarking our in-processing method
we use pre-processing and post-processing methods based on FA'IR,
a state-of-the-art algorithm to re-rank search results according to
predefined fairness constraints. We show that our in-processing
method performs better in terms of relevance and equality of ex-
posure than pre-processing and post-processing across all tested
scenarios.

Our proposed method neither makes assumptions about biases
in the training data, nor does it ignore relevance scores of items
and thus can reduce discrimination and inequality of opportunity
without having to introduce large distortions in ranking relevance.

1 INTRODUCTION

Ranked search results, news feeds, and recommendations, have
become the main mechanism by which we find content, products,
places, and people online. These rankings are typically constructed
to provide a maximum utility to searchers, for instance, by ordering
items by decreasing probability of being relevant [26]. However,
when the items to be ranked represent people, businesses or places,
ranking algorithms have consequences that go beyond immediate
utility for searchers. With hiring, selecting, purchasing, and dating
being increasingly mediated by algorithms, rankings may determine
career and business opportunities, educational placement, access
to benefits, and even social and reproductive success.

Over the past decade, data mining researchers became increas-
ingly concerned with various systematic biases [15] against any
specific group (i.e., group discrimination), caused by historic and
current discriminatory patterns in society making their way into
data-driven models. A common element in this line of research is
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the presence of a historically and currently disadvantaged protected
group, and the concern of disparate impact, i.e., loss of opportunity
for the protected group independently of whether they are (inten-
tionally) treated differently. In the case of rankings, a natural way
of understanding disparate impact is by considering differences in
exposure [29] or inequality of attention [3], which translate into
systematic differences in access to economic or social opportunities.

Disparate exposure in rankings. There are a number of issues,
sometimes appearing simultaneously, that call for reducing dis-
parate exposure in information retrieval systems. First, there can be
a situation in which minimal differences in relevance translate into
large differences in exposure for different groups [3, 29], because
of the large skew in the distribution of exposure brought by posi-
tional bias [21]. Second, there can be a legal requirement, policy, or
voluntary commitment that requires that elements in the protected
group are given sufficient visibility among the top positions in a
ranking [9, 35]. Third, there can be systematic differences in the
way in which documents are constructed, as in the case of different
sections in online resumes, which are completed differently by men
and women [2]; these differences may systematically affect rank-
ing algorithms. Fourth, there can be systematic differences in the
way ground truth rankings have been generated due to historical
discrimination and/or annotator bias.

These situations point to two conceptually different goals: re-
ducing inequality of opportunities and reducing discrimination (as
defined by Roemer [27], chapter 12). Equality of opportunity seeks
to correct a historical or present disadvantage for a group of soci-
ety. Non-discrimination seeks to allocate resources in a way that
does not consider irrelevant attributes, and is a matter of efficiency.
DELTR can be applied in both cases, as our experiments show.

Post-processing methods for fair rankings. Fairness-aware data-
driven methods can be classified into pre-, in- and post-processing
approaches, in which pre-processing methods seek to mitigate bias
in training data, in-processing methods learn a bias-free model, and
post-processing methods re-rank output items [17].

For rankings, several post-processing methods have been pre-
sented in the scientific literature [3, 9, 29, 35], but these methods are
problematic for various reasons. First, the post-processing idea sug-
gests that there is always a trade-off between an optimally fair and
an optimally relevant ranking, because a presumably “exact” model
produces a “relevant” ranking that is then reordered to meet fair-
ness constraints. We show in our experiments that this assumption
is wrong, as reducing bias against a protected group can increase
relevance (experiment 6.3). Second, it is likely that post-processing
algorithms are legally open to criticism as the Ricci v. DeStefano rul-
ing (2009) in the US Supreme Court illustrates. At the center of this
case was a test administered by the firefighter department of New



Haven, in which white firefighters scored significantly better than
black ones. The result was then rejected by the department. The
US Supreme Court ruled that the white firefighters were subjected
to race discrimination, because the department could not demon-
strate a “strong basis in evidence that using the results would cause
them to lose a disparate-impact suit” However, “[e]Jmployers may
consider potential racial impact during the test-design stage”. [23]
This decision states that it is as much unlawful to score people
solely on the basis of race, as it is to reject scores produced from
lawful exams and procedures solely on that very same basis, which
is exactly what post-processing ranking algorithms do. One crucial
advantage of in-processing approaches such as DELTR is that they
satisfy the condition of “considering potential racial impact during
the test-design stage”. Pre-processing methods also satisfy this con-
dition. However, they suggest that if we only had unbiased training
data, we could use standard ranking tools without having to worry
about biased models. We show that creating an unbiased training
set is not trivial and may easily lead to reverse discrimination.

Our contribution. We address the problem of mitigating discrim-
ination and inequality of opportunity in rankings by reducing dis-
parate exposure under a learning-to-rank framework. We design
DELTR as a list-wise learning-to-rank approach that provides an
in-processing approach to fairness-aware rankings.

We perform extensive experiments in two different ranking tasks:
expert search in a document retrieval setting, and ranking students
by predicted performance. Our experiments comprise three real-
world datasets, of which two are newly introduced (section 5.1 and
5.2). We further show that being “colorblind” on discriminatory
training data, i.e., simply ignoring protected attributes, which is a
naive attempt to overcome discriminatory models, can yield the best
results in some cases, while in others it is among the worst results
both in terms of performance and fairness. This makes it difficult
to identify when or when not to include the protected attribute in
the training process. We describe the reasons for this somewhat
counterintuitive behavior in detail and show that DELTR performs
well in terms of fairness and relevance in all tested scenarios.

As one baseline we demonstrate a pre-processing approach
for fairness in rankings by applying a post-processing method,
FA”IR [35] to our training data before the learning routine starts.
These experiments show two interesting insights: (i) it is not easy
to produce fair training data, because discrimination is baked into
all attributes, and a truly bias-free dataset is just wishful thinking,
as argued earlier in this section; and (ii) re-ordering items in a “fair”
way can lead to significant performance decline and even to re-
verse discrimination. We show that DELTR does not suffer from the
aforementioned problems of post- or pre-processing methods, as it
makes no assumptions on whether or not bias against a protected
group is present in the training data. It performs well in both cases.

Additionally, we show that the current understanding of a nec-
essary trade-off between relevance and fairness can be sometimes
misleading. Only if we seek to enhance equality of opportunity, we
have to trade performance against fairness (experiments 6.2, 6.4
and 6.5). In a case of non-discrimination, optimizing for fairness as
equal exposure will increase relevance (experiments 6.1 and 6.3).

2 RELATED WORK

Fairness in data-driven modeling. In recent years the data min-
ing and machine learning communities have been increasingly
concerned with algorithmic bias, particularly with the fact that sen-
sitive attributes have been found to have an observable impact on
machine learning outcomes [17]. Membership in socially salient
groups defines a protected characteristic, while merely removing
sensitive attributes from training data may have little or no ef-
fect on a data-driven model [18]. Algorithmic fairness as defined
by Zliobaité [30] seeks that: (1) people that are similar in terms of
non-protected characteristics should receive similar predictions,
and (2) differences in predictions across groups of people can only
be as large as justified by non-protected characteristics. The study
of algorithmic discrimination and fairness is connected to open
debates in moral philosophy including, among other topics, dis-
tributive justice and egalitarianism (see, e.g., Binns [4]).

There are various approaches to algorithmic fairness. A basic
method for algorithmic fairness seeks to reduce disparate impact
by achieving statistical parity between the outcomes for protected
and non-protected elements; however, this can be inadequate if the
outcomes also depend on non-protected, legitimate attributes [14].
Other methods define algorithmic fairness in terms of predicted
and actual outcomes, reducing differences in false positive or true
positive rates that have been called disparate mistreatment [34] or
unequal opportunity [19].

Fairness in rankings. Fairness in ranking is concerned with a
sufficient presence, a consistent treatment, and a proper represen-
tation of different groups across all ranking positions [8]. At a high
level, this research is motivated by producing rankings based on
relevant characteristics of items, in which items belonging to the
protected group are not under-represented or relegated systemati-
cally to lower ranking positions [33]. This requires new evaluation
metrics that extend relevance-based ones [11].

Yang and Stoyanovich [32] introduce a generative model for
fair rankings with two groups (protected and non-protected). They
also introduce a series of ranking-aware measures of disparity,
such as averaging differences in NDCG (Normalized Discounted
Cumulative Gain) at different cut-off points across both groups.

Zehlike et al. [35] construct a statistical test for the generative
model of Yang and Stoyanovich [32]. Given a parameter p and a
statistical significance «, reject a ranking that has probably not
been generated according to this process, based on an adjusted
binomial test. They also provide a method for generating a ranking
that passes this statistical test, given two separate rankings for the
two groups. Celis et al. [9] consider a situation in which several
protected groups exist and hence several vectors containing the
exact number of protected elements (one per group) at each position
are given as input.

Singh and Joachims [28] introduce the concept of exposure of
a group based on empirical observations that show that the prob-
ability that a user examines an item ranked at a certain position,
decreases rapidly with the position. Biega et al. [3], in work parallel
to Singh and Joachims [28], introduce an integer linear program-
ming formulation that receives a vector of relevance scores and
produces a ranking that places high-scoring elements first, and at



Table 1: Summary of Notation

Q  set of queries g with |Q|=m
D set of documents
(@) ;
d; a document associated to query g
sgq) a general judgment on document di.q) for query g
xiq) feature vector for document dgq)
y'9  list of training judgments
f  ranking model
(@ list of predicted judgments
L error between the training judgments and those predicted by

model f
Ps(i) probability for document i to be ranked at the top position
Gr  groups of documents identifiable by the presence or absence

of sensitive attributes

vj  position bias

U disparate exposure metric

Lpgrtr  loss function that incorporates L and U at the same time
y  tuning parameter

the same time minimizes the accumulated attention received by
elements in both groups.

Previous works in fair rankings [3, 9, 28, 32, 35] have been con-
cerned with creating a fairness-aware ranking given a set of scores,
and can be considered post-processing approaches—they are given
a ranking and re-rank elements to achieve a desired objective. In
contrast, our approach DELTR is learning-based and the first in-
processing approach to reduce discrimination and inequality of
opportunity in rankings, because it learns a ranking function with
an additional objective that reduces disparate exposure. In the ex-
periments on this paper, we additionally describe how to use a post-
processing method on training data to implement a pre-processing
approach.

Diversity in rankings. A classical definition of diversity in rank-
ing is related to the marginal relevance of a document for a user,
considering the documents ranked above it, that the user has already
seen [7]. Another often-used definition is that diversity should be
understood as a way of incorporating uncertainty over user intents,
in the sense that all queries have some degree of ambiguity [1]. Both
interpretations (“seeking variety” and “hedging bets”) are present
in contemporary accounts of diversity in data-driven methods [13].
In contrast with diversification approaches, we are not only con-
cerned with the utility that search system users receive, but also with
the exposure of the items being ranked, which can represent indi-
vidual, organizations, or places. In other words, we also consider
their utility. Another key difference is that diversification is usu-
ally symmetric so groups are interchangeable, while fairness-aware
algorithms are usually asymmetric, as they focus on increasing the
overall benefit received by a disadvantaged or protected group.

3 PRELIMINARIES: LISTNET

In this section we describe ListNet [6], a well-known list-wise learn-
ing to rank framework. Given that lists present a natural way to
measure disparate exposure across groups for an entire ranking,
we describe DELTR using ListNet as a base algorithm. Readers fa-
miliar with ListNet can skip this section. The notation we use is
summarized on Table 1.

List-wise learning to rank. We consider a set of queries Q with
|Q|= m and a set of documents D with |D|= n. Each query q is asso-
ciated with a list of candidate documents d@ C D. We denote by
sgq) € Ra forqe Q;i=1,2,..., |d(‘1)| a judgment on document dEQ)
for query g, that indicates the extent to which document candidate
dﬁq) is relevant for q.

For each query g the list of candidate documents is associated

with a list of judgments: d9 - @ = (s(lq), sgq), .. ’SS{«)J))’ For a

clearer distinction between different judgment sets we call y(9 the
judgments of the training data and (%) the judgments predicted by
the model.

From each document dgq) we can derive a feature vector xgq).

Each list of feature vectors x(9) = (xiq), xgq), o ,xff{;)) and the cor-

y(lq)’ ygq), . y:{;) form an

. The standard
Q

responding list of judgments 3@ = (

instance of the training set 7 = {(x(‘I), y(q))}
qe
learning-to-rank objective then is to learn a ranking function f

that outputs a new judgment gg") for each feature vector xgq) which

forms a second list of judgments (@) = (f(xiq)), f(xgq)), e ,f(x:f()l))).
Ideally, the function f should be such that the sum of the dif-
ferences (or losses) L between the training judgments y? and the

predicted judgments g<q> is minimized:

min ( L (y(KI)’ g(Q))) .
q€Q
In list-wise learning to rank, training elements are processed as
lists of elements (not as individual elements having scores, which
corresponds to point-wise learning to rank, or as pairs of elements,
which corresponds to pair-wise learning to rank).

Probability models. As rankings are combinatorial objects the
naive approach to find an optimal solution for L leads to exponen-
tial execution time in the number of documents. Hence instead
of considering an actual permutation of documents we will reuse
Theorem 6 and Lemma 7 from Cao et al. [6], which focuses on the

probability for a document dgq) to be ranked onto the top position:

(")
a0 ()

with ¢ : Rj — R* being an increasing strictly positive function
and in which sj(.q)
Jj- The top-one-probabilities P () (dgq)) form a probability distribu-

Pyo (47) - 1)

denotes a relevance score/judgment for document

tion P over d@.

In a general list-wise learning-to-rank setting the document judg-
ments s(@ are given as lists of scores that represent the respective
relevance degree of document dgq) to query g. Documents are sorted
by decreasing top-one probabilities as predicted by the algorithm.

Loss function in list-wise learning to rank. Setting P ) to

Py(q) (xgq)) or Pg(q) (xgq)) respectively, leads to a way of measuring
the distance between the judgments provided in the training set
y(q) and the judgments ﬁ(q) produced by our function f. Following



Cao et al. [6] we use the Cross Entropy metric for the loss function:

|d@D|
L(y2.49) = = X P aiDlog (Pa™) @

4 OUR METHOD: DELTR

In this section we describe our method, DELTR (Disparate Exposure
in Learning To Rank). We assume that the retrieved items represent
people belonging to two distinct socially salient [22] groups (such
as men and women, or majority and minority ethnicity). Using
terminology from non-discriminatory data mining, we assume one
of these groups is protected [25]. DELTR is a supervised learning-
to-rank algorithm that simultaneously seeks to minimize ranking
errors with respect to training data, and to reduce disadvantages
experienced by the protected group in terms of exposure.

At training time, we are given an annotated set consisting of
queries and ordered lists of items for each query. The algorithm
learns from training data by minimizing a loss function. At testing
time, we provide a query and a document collection, and expect
as output a set of top-k items from the collection that should be
relevant for the query, and additionally should not exhibit disparate
exposure.

4.1 Disparate Exposure

We assume that items in D belong to two different groups, which
we denote by Gy for the non-protected group, and G; for the pro-
tected groups. Items in the protected group have a certain protected
attribute, such as belonging to an underprivileged group. As argued
in Section 1, the protected group may, due to various causes includ-
ing historic discrimination or erratic data collection procedures,
have a significant disadvantage in the training dataset. This is likely
to cause a model to predict rankings with a large discrepancy in
exposure, and hence not only to incorporate but to reproduce dis-
crimination and unequal opportunities for already disadvantaged
groups. As a remedy we design a learning-to-rank objective to opti-
mize the results not only for accuracy with respect to the training
data, but also with respect to the unfairness of the predictions.

To define a measure of unfairness we borrow [29]’s definition
of exposure of a document d in a ranked list generated by a proba-
bilistic ranking P as:

n

Exposure (d|P) = Z Py vj 3)
j=1

where Py ; is the probability that document d will be ranked in
position j, and vj is the position bias of position j, indicating its rela-
tive importance for users of a ranking system. We use a logarithmic
discount function v; = m which is commonly used [20]. In
our current implementation of this framework we deal only with
top-one probabilities, i.e., we adapt equation 3 such that the expo-

sure of document dgq) represented by features xiq) is its probability
of achieving the top position:
Ex @p _p (@) .
posure (x;" [Py ) = Py (x;) - 01 €

Hence, the average exposure of documents in group G, with p €
{0,1} is

> Exposure(xf-q)|Pg(q)) ®)
9 G,

1
Exposure(Gy |Pg(q)) = —
Gel

Finally, we adapt the first definition of equal exposure in Singh and
Joachims [29], demographic parity, which compares the average
exposure across items from all groups is equal. With this we can now
introduce an unfairness criterion measured in terms of disparate
exposure:

2
U(Q(q)) = max (0, Exposure(Go|Pg(q>) — Exposure(G; |Pg(q))) (6)

Note that using the squared hinge loss allows us to have a differ-
entiable loss function that prefers rankings in which the exposure
of the protected group is not less than the exposure of the non-
protected group but not vice versa. This means that our definition
will optimize only relevance in cases where the protected group
already receives as much exposure as the nonprotected group.

We note that other definitions of disparate exposure can be used
as long as they can be optimized efficiently (e.g., differentiable), and
that the definition in equation 6 can be trivially extended to multiple
protected groups by considering average or maximum difference
of exposure between a protected group and the nonprotected one.

4.2 Formal Problem Statement

Learning to rank obtains a ranking function f that is learned by
solving a minimization problem with respect to a loss function
L, as described in Section 3. In our case, we learn f by solving a
minimization problem with respect to loss function Lpgy 7, which
incorporates a measure of accuracy with respect to the training
data L, as well as a measure of unfairness U in terms of exposure
with respect to the generated rankings. Specifically, we seek to
minimize a weighted summation of the two elements, controlled
by a parameter y € Rf:

LpELTR (y<q), g(q>) - (y<q>,g<q>) YU (_,9<q>) 7

with larger y expressing preference for solutions that reduce dis-
parate exposure for the protected group, and smaller y expressing
preference for solutions that reduce the differences between the
training data and the output of the ranking algorithm. The param-
eter y depends on desired trade-offs between ranking utility and
disparate exposure that are application-dependent. In our experi-
ments, we consider two settings: yjarge in which y is comparable to
the value of the standard loss L, and yg,y in which it is an order
of magnitude smaller.

We remark that U only depends on g and is hence not directly
affected by biases in the training data, which is a great advantage
compared to the naive “colorblind” approach. Our new objective
can handle both cases, the one in which it is desirable to exclude
the protected attribute during training as well as the case in which
it is desirable to include it.

4.3 Optimization
For the ranking function to infer the document judgments we use a

linear function f, (xgq)) ={w- xgq)), and Gradient Descent to find



an optimal solution for Lpgr 7r. We can now rewrite the top-one-
probability for a document (Equation 1) and set ¢ to an exponential
function, which is strictly positive and increasing and convenient
to derive:

@) exp(fu(x\?))

Py, B ———
PO g exp(fule®)

To use Gradient Descent we need the derivative of L DELTR(y(q), g(q))
which in turn consists of the derivatives of the disparate exposure
and accuracy metric respectively.

®)

OLpELTR (y(q), 9@ ) OL(y'D, §(D) aU(§D)
= +y-
ow ow ow

The derivative of L can be found in [6]. For brevity we write e; 4

()

i

©

instead of exp(f,(x;"")) in equation 8:

e,
)= e
k=1%k.q
Hence, the inner derivative of the top-one probability with respect

to coordinate wj is:

Pyas,)

(q) . (Q) n L. n . (9)
OPgar,) (i) €hg¥ij " Dy Chig ~ g Dy Chag X

c'ia)j ( Zzl ek’q)z ( )
10

We summarize these equations into a vector w such that we can
write a single equation:

0Py )5i") gt SR e = eig i ehg - X
dw 2
(ZIZ=1ek,q)
(11)
Finally the gradient becomes,
aU(g(q)) B
do
1 1
2 iGol D Pg(q)(fw)(x,(-q))'vl—m > Py“ﬁ(fw)(xgq))'vl
0 xﬁ.q)eGo ! xf.q)eGl
OParr (V) IPyia ) x )
1 JD(f) i ) I_L 9D (fo) i .
|G0| xgq)EGo dow IGl| xg.q)GGl 0w

5 EXPERIMENTS

In our experiments, we consider three real-world datasets that
help us study non-discrimination, through experiments that seek
to reduce exposure disparities due to biases that are unrelated
to utility (experiments 6.1 and 6.3), and equality of opportunity,
through experiments that seek to reduce exposure disparities due
to utility differences that pre-exist (experiments 6.2, 6.4 and 6.5). As
explained in the introduction, these are the two prototypical cases
for applying this kind of method [27]. The datasets are presented
in subsections 5.1, 5.2 and 5.3. All of the data and code required, plus

instructions to reproduce all the experiments, will be available with
the camera-ready version of this paper.

We apply DELTR with two different values of y to each dataset,
and compare the results against several baselines: (i) a “colorblind”
learning-to-rank approach, which excludes protected attributes
during training; (ii) a standard learning-to-rank method, which
considers them during training; (iii) a post-processing approach
that applies learning to rank and then re-ranks the output; and (iv) a
pre-processing approach that modifies the training data. Baselines
are described in subsection 5.4.

5.1 W3C experts (TREC Enterprise) Dataset

This dataset originates from the expert search task at the TREC 2005
Enterprise Track [10], where an algorithm has to retrieve a sorted
list of experts for a given topic, given a corpus of e-mails written by
possible candidates. It contains 198,395 mail messages in mailing
lists of the World Wide Web Consortium (W3C). A series of 60 topics
and a list of hand-picked experts for each topic are provided; each
list contains between 7 and 20 experts, where the available expert
relevance judgments are binary (expert or non-expert), hence all
experts are considered equally expert. The number of candidates
(people who authored at least one e-mail) is 1092.

We computed a series of text retrieval features for each query-
document pair, such as word count and normalized tf-idf scores
by usage of the Learning to Rank ElasticSearch Plug-in [24]. Fur-
thermore we created a set of query expansion terms for each topic
manually to improve the quality of retrieval.

We consider a scenario in which women are the protected group.
We manually attributed gender to each candidate on the basis of
their given names. Women comprise 10.5% of e-mail authors and
on average 13.93% of experts across queries. To create training data,
for each query, we created a list of 200 people with all experts at
the top, followed by random non-experts sampled using the same
male/female proportion as for the entire set of candidates.

Given that, to the best of our knowledge, no real-world dataset
proven to contain discriminatory patterns is readily available for
document retrieval tasks, we injected a discriminatory pattern in
this dataset. This was done by sorting the training list for each train-
ing query in the following order: 1. all male experts, 2. all female
experts, 3. all male non-experts, and 4. all female non-experts. This
simulates a scenario where expertise has been judged correctly, but
training lists have been ordered with a bias against women, placing
them systematically below men having the same level of expertise.
For our training data we created a six-fold cross-validation dataset,

12) €ach containing 50 training queries and 10 testing queries. We will

release the dataset with the camera-ready version of this paper.

5.2 Engineering Students Dataset

This dataset corresponds to the task of sorting a list of applicants
to an engineering school by predicted academic performance, for
instance, to give a scholarship to the k most promising candidates.
Academic performance is measured by grades after the first year
in university. The dataset contains anonymized historical infor-
mation from first-year students at a large school in a university
(name withheld for double-blind review). It covers 5 years and on
average 675 students per year. Most of them (94.17%) are admitted



to the university based on a standardized, country-wide university
admission test (details withheld for double-blind review) and their
high-school grades. Other students are admitted through positive
action programs aimed at outstanding students from public schools
(4.06%), women right below the cut-off score (1.04%), and students
who excel in sports (0.74%).

For each student, the following features are available: (i) their
average high-school grades, computed using an official standard-
ization formula; (ii) their scores in math, language, and science
in a standardized test; (iii) the number of university credits taken,
passed, and failed during the first year; and (iv) their average grades
at the end of their first year. Additionally, we are given the gender
for each student, and whether they come from a public high school
or from a private one. We considered two scenarios, one in which
women are the protected group (they comprise less than 21% of stu-
dents), and one in which students from public high schools are the
protected group (measures of educational quality have consistently
shown public high schools lag behind private ones in this country
[reference withheld for double-blind review]).

We created a five-fold cross-validation setup in which each fold
contains four classes (years) of students for training and one class
for testing. The ground truth is created by sorting students by
decreasing grades upon finishing the first year, in which grades are
weighted by the credits of each course they passed (and divided by
the total number of credits they took). We will provide instructions
for access to this dataset and a cleaning script with the camera-ready
version of this paper.

5.3 Law Students Dataset

This dataset originates from a study by Wightman [31] that exam-
ined whether the LSAT (Law Students Admission Test in the US) is
biased against ethnic minorities. It contains anonymized historical
information from first-year students at different law schools and
consists of 21,792 students in total. We use a uniform sample of
10% of this dataset, while maintaining the distribution of gender
and ethnicity respectively. Our training data corresponds to 80%
of all candidates in this sample, and the ground truth is created
by sorting students by decreasing grades upon finishing the first
year. For the different experiments we divided the candidates into
protected and non-protected groups. When dividing by gender, we
consider women as the protected group. They comprise 44% of the
students in the dataset, compared to 21% in the engineering students
dataset; there is also a much smaller difference in terms of academic
performance between men and women than in the engineering
students dataset. When dividing by ethnicity, we consider minority
‘Black’ (the term used in the US census for African American) as
the protected group, while the non-protected group is the majority
(‘White’). ‘Blacks’ comprise less than 6% of the students. For each
student, the following features are available: (i) average high-school
grades; (ii) scores in the LSAT, a law-specific scholastic assessment
test; and (iii) average grades at the end of the first year. Additionally,
we are given the gender and ethnicity for each student.

The experimental setting is very similar to the engineering stu-
dents and also simulates a scenario in which one seeks to anticipate
the top-k students, e.g., to give a benefit such as a scholarship. We

predict academic performance after the first year in university on
the basis of high school grades and the LSAT score.

5.4 Baselines

We compare DELTR with a small and a large value for y to the
following pre-, in- and post-processing approaches: since we are still
lacking another in-processing fair learning-to-rank approach, our
in-processing baselines constitute (i) a “colorblind” LTR approach
in which a standard learning to rank algorithm (Cao et al. [6], i.e.,
DELTR with y = 0) is applied over all the non-sensitive attributes;
and (ii) the same learning to rank approach in which all attributes
are used (including the protected attribute). Note that in real life,
a “true” colorblind result is likely to be unachievable, because of
dependencies between protected and non-protected attributes (red
lining effect [5]). These dependencies become particularly prob-
lematic in cases of different baselines across groups, in the sense
that e.g. the same result in a test corresponds to different levels
of performance or expertise, because the test’s design happens
to favor the non-protected group. We will investigate on this in
section 6.3. Therefore a method is needed that neither takes any
assumptions on correlations of features to sensitive characteristics
such as standard LTR, nor is blind to biased non-sensitive features
such as colorblind LTR. DELTR constitutes such a method.

In the pre- and post-processing baselines we apply the algo-
rithm FA*IR [35] (i) to the training data in order to reduce bias before
model training; and respectively (ii) to the rankings predicted by a
standard LTR method to increase exposure of the protected group
if necessary. FA*IR is a top-k ranking algorithm that ensures a mini-
mum proportion of a protected group at every position in a ranking
based on a statistical significance test. With a given minimum tar-
get proportion p of protected candidates, FA*IR reorders a given
predicted ranking and places protected items at higher positions,
if its statistical test would fail otherwise. If a top-k ranking passes
the test, it just orders items according to their predicted scores.

In our pre-processing baseline experiments we process a given
training dataset with FA"IR to free the data from potential bias and
create fair training data. We use three different values of p, p* =
the ratio of protected candidates in the dataset, p* = p* + 0.1 and
p~ =p*—0.1, to show how crucial the right choice of p is, especially
in a pre-processing setting. Afterwards we use standard LTR [6] to
train a ranker over all features, both sensitive and non-sensitive. The
post-processing baseline uses the same learning to rank algorithm
[6] and trains a ranker over all available features, including the
protected one. Afterwards FA*IR is applied to the predicted rankings,
potentially resulting in a reordering of the items. We use the same
parameters p*, p* and p~ as in the pre-processing experiments.

6 EXPERIMENTAL RESULTS

In this section we present the results of each experimental setting.
Figure 1 depicts the relations between exposure of the protected
group and overall relevance. Figure 2 illustrates the distribution of
men and women across ranking positions for experiment 6.1.
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Figure 1: (Best seen in color.) Comparison of relevance and exposure achieved by each approach. Each plot (a)-(e) is one ex-
perimental setting consisting of a dataset and a protected attribute; (f) contains the legend. In all plots, relevance is in the
x axis, while the exposure of the protected group relative to the nonprotected group is in the y axis. We see that a trade-off
between exposure and relevance is not a law of nature. Instead its presence or absence depends on the concrete underlying
bias in the training data (plot (b) vs plot (c)). In case we observe a trade-off between performance and exposure (plot (b), (d) and
(e)), DELTR mostly outperforms the pre- and post-processing approaches. The plots focus on high-relevance results, hence
settings that obtain substantially lower relevance are omitted, their approximate position can be inferred from the respective
lines joining settings using the same approach with different parameters. We give the respective value of y and p* in each

evaluation subsection.

6.1 W3C experts (gender)

Experimental results are shown on Figures 1a and 2, averaged over
all folds, using ysma11 = 20K, y1arge = 200K and p* = 0.105, which
is the proportion of women in the dataset.

In this experiment we expect the “colorblind” approach to achieve
the best results, because we injected a strong bias against women
that was completely unrelated to their expertise. This setting corre-
sponds to a non-discrimination case, where we want to exclude the
protected feature from training for relevance reasons and we expect
to see no trade-off between relevance and exposure by usage of
DELTR. Instead we expect that a larger value for y corresponds to
better exposure and better relevance.

Figures 1a and 2 confirm our expectations. Note that for this
experiment we measure utility in terms of precision in the top ten
positions instead of Kendall’s tau, because we want to know which
algorithm finds most of the true experts and ranks them accordingly.
Colorblind L2R performs best in terms of relevance and achieves
almost equal exposure for men and women, by distributing women
evenly across rankings (Figure 2a). Standard L2R (including the

biased protected feature) performs worse in terms of relevance and
exposure than most of the other approaches. Indeed, it exaggerates
the bias against women, placing all women at the bottom of the
ranking, as shown in Figure 2b, even those that were considered
experts in the ground truth.

Our goal for DELTR in this experiment is therefore to get closest
to the colorblind results and away from the standard L2R results.
We achieve this goal, as shown in Figure 1a, where DELTR with
a large y and post-processing FA*IR with a large p produce the
best results. DELTR reduces the gap in exposure between men
and women, and scores best in terms of relevance compared to
all other fair algorithms. Post-processing with p* achieves better
exposure, but leads to a slight over-representation of women at
the top-positions (Figure 2h), which causes the drop in relevance
(Figure 1a).

A few more things are worth noticing: First, we see that the
choice of p is crucial for the success of FA*IR and that this choice
is not trivial. Particularly as a pre-processing approach (orange
“F” symbols), using the intuitive p*, which corresponds to the pro-
portion of women in the dataset, does not help to de-bias the L2R



proportion

0 % 50 7 100 125 150 17 200 0 0 2 30 7 00 125 10 1% 200

position position

(a) Colorblind LTR (b) LTR
—“ - - - - - m r ” . - " - — - - —“ - - - - - - -
0 25 30 (5] 100 125 150 17 200 0 2 50 7 100 125 150 175 200 0 25 30 (5] 100 125 150 175 200
position position position
(c) FA"IR as pre-processing p = 0.005 (d) FA*IR as pre-processing p = 0.105 (e) FA'IR as pre-processing p = 0.205
2 =
0 pe P o oF p L 0 oF P o pr 5 ps 0 oF 5 e - g L
0 2% 50 5] 100 125 150 1% 200 0 % 30 (] 00 125 10 175 200 0 2% 50 (b 00 125 10 1% 200
position position position
(f) FA*IR as post-processing p = 0.005 (g) FA’IR as post-processing p = 0.105 (h) FA’IR as post-processing p = 0.205

proportion

0 2 50 7 100 125 150 17 200 0 2 50 7 100 125 150 1% 200
position position

(i) DELTR, small y (j) DELTR, large y

Figure 2: (Best seen in color.) Distribution of men (blue) and women (orange) along rankings with DELTR and different base-
lines in the W3C experts dataset, using gender as the protected attribute. The training data has been biased against women by
breaking ties in expertise always in favor of men. At the top we see that the colorblind learning-to-rank approach distributes
women evenly (a), while the inclusion of gender leads learning-to-rank to place all women in the bottom positions (b). Plots
(c), (d), (e) show the results of pre-processing: depending on the parameter used, this can quickly go from no change at all
in exposure for women to the other extreme, in which women are placed in top positions because of their protected feature.
Plots (f), (g), (h) show the results of post-processing: re-ranking the output of standard learning-to-rank algorithm may in-
crease the share of women in the top positions. However if the expected proportion parameter p is not set well, it can lead
to an under- and over-representation of women. Plots (i) and (j) show the results of DELTR, which reduces the impact of the
biased training set to the model. When y is too small, DELTR may behave similar to standard learning to rank and cause an
under-representation of women in the top-positions. Contrary to the pre- and post-processing methods, over-representation
of the protected group is not possible due to the design of the algorithm, even if y were set to a very large value.

model. Figure 2d shows that this setting produces exactly the same 6.2 Engineering students (gender)
biased distribution as standard L2R. Also in all other cases of FA'IR, Figure 1b summarizes the averaged results obtained by applying
post- and pre-processing, a too small p does not show any effect on each ranker on all five cross-validation folds (yspa11 = 3K, Vlarge =
the exposure of women in the rankings (Figure 2c and Figure 2f). In 50K, p* = 0.202, which is the proportion of women in this dataset).
contrast, DELTR by design always results in better exposure, even We know that women score worse than men in the university
if y is set low. The change may be little but it is never zero, unless entrance test and also worse in terms of academic success. We
y = 0. Second, a too large p can result in an over-representation of therefore expect a trade-off between utility and exposure, if we
protected elements at the top positions (Figure 2e and Figure 2h). optimize for more exposure than the protected group should receive
Especially in the pre-processing case (Figure 2e) this may result based on their true performance. This is desirable if one wants to
into inverting the bias, such that non-protected items are now achieve equality of opportunity.
ranked lower by a standard LTR method because of their group In terms of performance the best approaches are standard L2R
membership. In addition this leads into a profound decline of re- together with DELTR with small y and FA*IR with small values
sult relevance, as shown in Figure 1a, where pre-processing using of p. Among these, DELTR achieves the highest exposure for the
p* not only increases disparate exposure to the detriment of the protected group. In contrast, pre- and post-processing FA*IR with
non-protected group, but also performs significantly worse than small ps do not have any effect on the rankings, which means
all other approaches in terms of relevance. that they produce the same results as a standard L2R setting. This
We note that, in contrast to FA"IR, DELTR by design excludes is confirmed by the fact that their markers are very close to the

the risk of reverse discrimination. standard L2R one (blue cross).



Compared to standard L2R, colorblind scores slightly less in
terms of relevance, but a lot better in terms of exposure. Because
women tend to have lower scores in the standardized test and
also lower grades after the first university year, we expect neither
colorblind nor standard L2R to be close to the line of total equality
of exposure. The standard learning-to-rank however, by usage of
the protected feature emphasizes the disadvantage of women and
puts them even lower then they deserve. This problem can be
mitigated using both DELTR and post-processing FA*IR. If one seeks
to increase the exposure of women beyond the colorblind result,
due to, e.g., requirements on equal opportunities or affirmative
action policies, Figure 1b shows that this comes with a penalty
in terms of relevance. Post-processing with p* and DELTR with
a large y come closest to equal exposure across groups (a ratio of
1 means total equality), but the relevance decrease is smaller for
DELTR. This means when using DELTR we trade less relevance for
the same fairness achievement in a search result than when using
FA'IR.

Asin the previous experiment, pre-processing with p* inverts the
disparate exposure problem by ranking female students to the top
positions just because they are female, which also causes a decline
in relevance. This shows again that trying to de-bias a dataset before
with a “fair” algorithm, can lead to reverse discrimination.

6.3 Engineering students (high school type)

In this experiment, we consider students coming from public high
schools as the protected group and those from private high schools
as the non-protected. Results appear in Figure 1c¢ (ysma11 = 100K,
Y1arge = 5M and p* = 0.348, which is the proportion of students
from public high schools).

We know that students from public schools perform worse on
average in the entrance test, but tend to have higher grades in uni-
versity than students from private high schools with the same scores
in the standardized test. One explanation is that public schools tend
to provide an education of inferior quality compared to private
schools in the country under study. This means that for achieving
the same test scores, students from public schools need to have bet-
ter academic aptitudes and/or more grit than students from private
ones (similarly to observations by [16] with respect to community
colleges in the US). Under these circumstances, which also cor-
respond to a case of non-discrimination, including the protected
attribute will lead to better performance in terms of relevance and
exposure. We therefore expect the colorblind to be among the worst
approaches and standard L2R to be among the best.

Given that, our goal for this experiment is to achieve results close
to standard L2R and away from the colorblind results. The results in
Figure 1c confirm our expectations. We can see that the colorblind
method performs significantly worse than most approaches both
in terms of exposure and in terms of relevance. DELTR, given that
students from the protected group already receive more exposure
than the students in the non-protected group in learning to rank,
does not further increase their exposure, preserving the quality
of the ranking result, both for small and large values of y (due to
the asymmetry of the method from the hinge loss function that
we use). The same is true for FA*IR in pre- and post-processing
with small values of p. As in the previous experiments, they always

behave like standard L2R and do not change the rankings. DELTR
only behaves like standard L2R when the exposure of the protected
group exceeds the one of the non-protected group. In the post-
processing setting FA*IR with p* achieves equal exposure ratios
as DELTR, but less relevance. In the pre-processing experiment, if
p becomes too large (p* and p*), more candidates than necessary
are pushed towards the top positions in the training data, which
in turn leads the LTR algorithm to place too much weight on the
protected feature, resulting in a decline of relevance.

6.4 Law students (gender)

Figure 1d summarizes the results obtained by the different meth-
ods with ysna11 = 3K, y1arge = 50K and p* = 0.437 (which is the
proportion of women in this dataset). We observe that the stan-
dard L2R approach performs marginally better than colorblind in
terms of relevance, which suggests that women’s LSAT results lag
slightly behind men’s in the ground truth. However, the standard
LTR exacerbates this small difference and the loss of exposure for
women is large. DELTR corrects this mistake. While the experiment
with a small y only shows a marginal decrease in performance but
a comparatively large increase in mitigating disparate exposure,
DELTR with large y achieves basically the same relevance as the
colorblind approach.

Interestingly the post-processing setting for FA*IR did not per-
form well in this experiment, which suggests that its success de-
pends on the underlying true score distribution of the training
dataset. With all values p*,p~ and p* we observe a substantial
decrease of relevance, for the same achievements in exposure for
women in comparison to DELTR. We interpret this as “too many
women that performed poorly being pushed to the higher positions”
by FA’IR, as it does not take relevance into consideration, while
DELTR will balance exposure and relevance of a candidate.

Again the pre-processing approach with p* and p~ show the
same results as standard LTR, while in case of p* the results exhibit
a too high exposure and a huge decline in relevance (the point lies
far outside of the plot boundaries). This means that using FA*IR
to de-bias the training data did not produce any meaningful fair
results in this experiments.

6.5 Law students (race)

In this experiment African American students, the largest minority
group in this dataset (6.4%), are considered the protected group.
Results appear in Figure le (Ysmall = 1M, ylarge = 50M and
p* = 0.064). We did not use p~ because it would have been a
negative number. Colorblind learning to rank places black stu-
dents a little lower than white students, which corresponds to their
lower high school and admission test performance found during
our data analysis. In contrast, the standard learning to rank ap-
proach weights the sensitive feature ‘race’ to such extent that all
black students are relegated to the lowest positions (not shown
in the figures), even those students who scored well in terms of
grades and standardized tests. This experiment corresponds to a
scenario in which both objectives, non-discrimination and equal
opportunity, are relevant simultaneously. Non-discrimination is
required because standard L2R places all black students to the bot-
tom of the ranking, even those who performed well in LSAT and



have good results in university. DELTR corrects this bias, with a
penalty in terms of relevance. Non-discrimination explains also,
why colorblind achieves better relevance than the other methods.
If we want to additionally achieve equal opportunity for blacks
and increase their overall exposure beyond the colorblind level,
this comes with a penalty in terms of relevance. DELTR allows
us to balance between exposure and performance of the students,
depending on how we choose y.

The pre-processing method with p* achieves approximately the
same exposure as DELTR with a small y, but less relevance. The
post-processing approach with p* performs slightly better in terms
of exposure than DELTR with small y, however from these three,
it shows the least relevance. In case of p* both pre- and post-
processing results show poor relevance, because they overcom-
pensate for the protected feature.

Note again that the design of DELTR prevents the model from
overrating protected candidates at the top positions, which avoids
a severe decline of precision. DELTR optimizes for exposure un-
til equality is achieved and not further. Then, only non-sensitive
features are considered.

7 CONCLUSIONS

Rankings obtained using learning to rank can reproduce and exag-
gerate differences in exposure between groups that can be present
in training data. In this paper we have presented DELTR, which
extends a list-wise learning to rank method with an objective that
reduces the extent to which non-protected elements receive less
exposure than protected elements.

Our experiments showed that optimizing for fairer results does
not necessarily come with a trade-off in relevance. On the contrary,
when the training data is strongly biased against the protected
group, without any relationship with utility, aiming for fair search
results will increase relevance. We also showed that this objective
can be achieved by explicitly excluding or explicitly including the
protected feature. As it is hard to understand a-priori, what kind
of underlying bias is present in the training data, and whether to
include or exclude the protected feature, DELTR provides a con-
venient approach, which can handle both situations. At the same
time it maintains high relevance compared to other state-of-the-art
fair ranking approaches, and critically, it cannot “overcompensate”
due to its asymmetry.

Limitations and future work. The parameter y provides great
flexibility for combining in the objective relevance with respect to
the training data and avoiding large differences in exposure. To
set it, we looked at the scale of L and U, which depend on many
factors including the number of items to be ranked, and then started
with a value of y that reflected the ratio of these scales. However,
more work is required to provide a systematic way of setting this
parameter, and to understand the implications of different values.

Our differential exposure criterion of Equation ?? can be easily
extended to multiple protected groups, for instance, by considering
the maximum difference in exposure between the non-protected
and any protected group. However, this needs to be experimentally
validated.

Reproducibility. All of the data and code required, as well as in-
structions for reproducing all the experiments we have presented,

including code implementing DELTR, will be made publicly avail-
able with the camera-ready version of this paper.
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