Optimising Topical Query Decomposition

Marcin Sydow ** Francesco Bonchi?

'Web Mining Lab, Polish-Japanese Institute
of Information Technology, Warszawa, Poland

msyd@pjwstk.edu.pl

ABSTRACT

Topical query decomposition (TQD) is a paradigm recently
introduced in [1] , which, given a query, returns to the user a
set of queries that cover the answer set of the original query.
The TQD problem was studied as a variant of the set-cover
problem and solved by means of a greedy algorithm.

This paper aims to strengthen the original formulation
by introducing a new global objective function, and thus
formalising the problem as a combinatorial optimisation one.
Such a reformulation defines a common framework allowing
a formal evaluation and comparison of different approaches
to TQD. We apply simulated annealing, a sub-optimal meta-
heuristic, to the problem of topical query decomposition and
we show, through a large experimentation on a data sample
extracted from an actual query log, that such meta-heuristic
achieves better results than the greedy algorithm.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data
Mining H.4.3 [Information Systems Applications]: Commu-
nications Applications

General Terms Algorithms

Keywords Query logs, Query Decomposition, Query rec-
ommendation, Objective Function, Simulated Annealing.

1. INTRODUCTION

Search engines collect daily a huge volume of valuable in-
formation about the search activity of their users. Extract-
ing behavioural patterns from this wealth of information is
a key step towards understanding user needs and improving
the services provided by search engines.

A common query log mining application is query recom-
mendation: given a query submitted by a user, a list of other
related queries is returned to the user. Such queries are ex-
tracted from query logs and ordered by relatedness to the
one original query, or by frequency in the query log.

Topical query decomposition (TQD) [1] is a recently intro-
duced paradigm that, similarly to query recommendation,

*The first author worked on this project during his research visit
at Yahoo! Research Barcelona in November 2008.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WSCD °09, Feb 9, 2009 Barcelona, Spain.

Copyright 2009 ACM 978-1-60558-434-8 ...$5.00.

Carlos Castillo? Debora Donato?

2Yahoo! Research
Barcelona, Spain

{bonchi,chato,debora}@yahoo-inc.com

assists users in finding the information they are looking for.
Differently from the classical query-recommendation setting,
the goal is not to offer the users with the best query, i.e., the
query that is more likely to capture their information needs;
instead the goal is to provide to the users a suitable set of
queries that represent the different topical groups underlying
a query. The main intuition is that, since the user could be
not aware of all the possible facets related to a single topic,
great advantage could be provided by a tool able to discover
all the possible sub-topics subsumed in the user query.

The problem, originally stated and studied in the pa-
per [1], was presented as a variant of the set-cover problem
and it was solved adapting the greedy algorithm presented
in [3]. In this paper we outline the limitations introduced
by the original approach and extend it by introducing a new
global objective function.

2. BACKGROUND AND CONTRIBUTION

In this Section we recall the formal definition of the TQD
problem in order to outline the main limitations of its pre-
vious formulation. Moreover we briefly list the main contri-
butions we have done in order to address such limitations.

2.1 The problem Statement

For a given search engine, its current state of index X
and current log L containing the queries submitted to it in
a given period, let docs : L — 2% be a function such that for
any q € L, docs(q) denotes the set of documents returned
by the search engine to the query gq.

Each instance of the problem of query decomposition stud-
ied in this paper can be described as follows.

Problem INPUT:

1. the original query go submitted with the set of re-
turned documents Dy = docs(qo). We will call all the
documents in Do as blue documents. In addition, each
document d; € Dy has its associated weight or “impor-
tance” w;. The weights are precomputed using the in-
formation contained in query log concerning the clicks
on documents in Dg. Currently, the number of clicks
on a document (i.e. simple document popularity) is
used as the weight of importance. More robust charac-
teristics than document popularity could also be used.

2. the set @ of “candidate” queries purposely extracted
from the query log. Assume the candidate queries in
Q are indexed by the set of indices I = [1,|Q|] so that
Q = {q}i, i € I and, for each candidate query g,
the set of documents D; = docs(g;) it returned. The

set) is chosen so that each query ¢; € @ has the
property |docs(gi) N Do| > k, for some parameter k
, 1.e. it overlaps with at least k returned docs from
Dg. In our current settings, 2 is used as the value for
k. In addition, each candidate query ¢; has associated
a value of measure reflecting the degree of not being
“coherent”, ¢; (the lower ¢; the more coherent is the
query ¢;). Currently, the values of ¢; are computed
as scatters of documents in docs(g;). Intuitively, if
a query is “coherent” the distances among all of its
documents in text-vector space are small.

Problem OUTPUT: a subset Qg of the set of candidate
queries () which decomposes the original query go wrt some
desired properties, described below.

2.2 Quality of Decomposition

Assume that Qg is indexed by the set of indices D C I.
Further, for a given query decomposition problem and its
solution @4, let U denote the union of documents covered
by all the queries in Qq, i.e.: U = quQd docs(q). Then the
quality of the decomposition Q)4 is measured in terms of 4
factors:

1. high coherence of the selected decomposing queries, in
terms of the values ¢;;

2. low number of returned documents outside of the orig-
inal returned set (i.e. low |U \ Dy|). We will call such
documents as red documents (U \ Do);

3. low overlap of documents returned by different decom-
posing queries (i.e. for all p,q € Qg, such that p # g,
docs(p) N docs(q) should be as small as possible);

4. covering as much of the documents in Dy as possible,
either in terms of number of documents (i.e. Do NU
should be as close to Do as possible) or in terms of
total weight Zie p Wi of covered “blue” documents.

2.3 The Greedy Solution

The problem was originally [1] presented as a variant of
the set-cover problem and solved adapting the greedy al-
gorithm presented in [3]. The greedy algorithm proposed
there, in each step, added a new element to the decompos-
ing set, until the predefined fraction of weight of documents
was covered. Each step was chosen in a greedy manner ac-
cording to the value of a “local” objective function. The
function had 3 parameters: A1, A2 and A3 which controlled
the importance of the first 3 out of 4 factors listed above. In
addition, the stop condition of the greedy algorithm directly
corresponded to the 4th factor above.

Despite this, there was no global objective function that
the greedy algorithm optimised, so it was not easy to com-
pare its results with the results of other approaches to the
problem we subsequently developed, and which use the no-
tion of the global objective function to be optimised, such
as simulated annealing.

2.4 Contributions

In this paper, we strengthen the original framework by
making it more formally defined. In particular, we intro-
duce a global objective function and re-define the problem
as a combinatorial problem of optimising (minimising) this
function. This approach makes it possible to more naturally
compare the results of various approaches to the problem.

Finally, we apply simulated annealing, a sub-optimal meta-
heuristic, to the problem of topical query decomposition and
we show, through a large experimentation on a data sample
extracted from an actual query log, that such meta-heuristic
achieves better results than the greedy algorithm.

3. RELATED WORK

The original formulation of the topical query decomposi-
tion problem and the two variants presented in this paper are
reformulations of the set cover problem. The set cover for-
mulations and the adaptations of the greedy algorithm [3] we
use are inspired by related variants of the set cover problem
in the literature, such as the red-blue set cover problem [2,
7], and set cover with minimising the overlap of sets [5].

Simulated Annealing [6] is a randomised algorithm that
attempts to simulate the physical process of annealing. The
original motivation is to simulate the behaviour of molecules
when a material is annealed into optimal crystal structure.
Such method is a sub-optimal meta-heuristic for solving
combinatorial optimisation problems based on the key no-
tion of neighbourhood relation.

4. OBJECTIVE FUNCTION

In this section we introduce two variants of a global ob-
jective function, and we discuss their merits and limits.

4.1 Variant 1

The first variant that we introduce naturally extends the
“local” objective function described in [1] which used only
the first 3 factors described above (see “quality of a decom-
position”). We add a fourth factor, directly controlling the
coverage of original important documents Dy by the decom-
posing queries. More formally, for a given decomposition D,
the factors are:

1. (cost) cost =3, cpcif D icp Ci
2. (red fraction) redfrac = |U \ Do|/|U|

3. (inter-query overlap). Let ng(d), for any document d
returned by any candidate query, denote the number
of distinct candidate queries which returned this doc-
ument. igover =3_,c ynp,) 14(d)/|U N Dol

4. (uncover) uncover = |Do \ U|/|Do|

The objective function is controlled by 4 parameters A,
i € [1,4] which sum up to 1, and its value is a convex com-
bination:

0f1(Qd) = Aicost + Aaredfrac + Aziqover + Aguncover.

4.1.1 Discussion

Parametrisation of the function allows to study the quality
of decomposition for various different applications.

For example, in the case of query disambiguation the value
of A3 should be relatively high since the decomposing queries
should be non-overlapping with others, in case of query re-
finement, the value of Ay should be high so that the decom-
posing queries tend to narrow the search instead of making
it broader, in case of clustering the results the high value
of A1 additionally ensures that the clusters induced by the
decomposing queries tend to be coherent, etc. Arbitrary lin-
ear combinations of the parameter values make it possible

to flexibly emphasise various aspects of the particular appli-
cation or even to optimise the decomposition in the context
of some novel applications, other than mentioned above.

We additionally made all the parameters constrained to
sum up to 1.This is different to the approach in [1], where all
the (three) parameters could have any positive values. The
new constraint makes the problem statement more elegant
from the mathematical point of view without loosing the
generality. Most importantly, adding the constraint avoids
the problem of redundant settings. For instance, without the
constraint, the quadruple of parameter values (40,0, 10, 0)
would mean exactly the same as (4,0, 1,0), despite the val-
ues are different. Both the settings are uniquely represented
as (0.8,0,0.2,0) with the constraint. Due to this, the pa-
rameter space is now much simpler.

The variant 1 of the function was introduced mainly to di-
rectly compare the results of the previous greedy algorithm
with the new results obtained by other approaches. How-
ever, the function has several properties which may be not
desirable. Firstly, the value of cost potentially decreases as
the set of candidate queries @@ grows. On the other hand,
it grows with the “breadth” of the original query qo, inde-
pendently on quality of its decomposition. In our opinion,
it would be preferable, that any factor depends only on the
quality of particular solution Q4 and is not very dependent
on @ or ¢0. In particular, if cost measures the scatter of doc-
uments it should somehow relate to the original scatter of the
query qo. Secondly, in contrast to other 3 factors, iqover is
not upper bounded. Furthermore, its lowest value is 1, while
for the other factors the lowest value is 0. Also because of
this, even after normalisation of the sum of the parameters,
the value of the objective function is not upper-bounded.
Finally, uncover does not take into account the importance
weights of the documents in Dy which are present in problem
specification. The above issues are addressed in the second
variant of the objective function which is described below.

4.2 Variant 2

Here we address the issues of Variant 1 in the same order
as they were presented.

1. cost - to make this value independent on the size of
(@ the denominator should be different than in vari-
ant 1. One could propose the scatter of the origi-
nal query as the denominator. However in this case
the value of this factor could be greater than 1. To
keep the value of the factor in the range [0,1], and
at the same time, to make the factor maximally fo-
cused on the quality of decomposition instead on the
particular problem instance we propose the following:
cost = (3 ,cp ci/|D|)/maxCost, where maxCost is a
constant representing the maximum value of cost for
any query observed in our dataset. Due to this the
value of this factor will be usually much lower than 1
but will always be in [0, 1]. The numerator is the aver-
age cost in Qg which makes it possible to compare the
value of this factor for two different problem instances,
which was not possible in variant 1.

2. redfrac - the same as in variant 1. One could consider
making this factor growing as importance weights of
red documents grow, however, we considered that in-
troducing new important documents to the union does
not seem to be a bad property of the decomposition.

3. iqover - to fit the value of this factor into the range
[0, 1] we propose: igover = (igoverOld — 1)/|D|,where
iqoverOld denotes the corresponding factor in variant
1. Notice however, that now the factor never can reach
the value of 1, which does not seem to be a big problem.

4. uncover - to take into account the notion of impor-
tance weights we propose:

E . w;
1<:i<|Dgl:d; €(Do\U z
wncover — <i<|Do|:d; €(Do\U) 7

1<i<|Dg:d;€ Do Wi

i.e. the ratio of weights of documents from Dy that
were uncovered by the decomposition to the total weight
of documents in Dg

Finally, Variant 2 is defined as (similarly to Variant 1):
0f2(Qa) = Aicost + Aaredfrac + Azigover + Aquncover.

4.2.1 Discussion

The variant 2 of the objective function, in our opinion,
better than variant 1, reflects some intuitive properties and,
in addition, has nice mathematical properties: each of the
4 factors is now in the [0, 1] range and, hence, their convex
combination too. Thus, the function value is always in the
interval [0, 1] where the value of 0 means “ideal” solution and
the value of 1 represents a very bad solution.

S. SIMULATED ANNEALING

After introducing the objective function which maps each
potential solution Q4 of a given query decomposition prob-
lem to a real number in [0, 1] the problem can be formulated
as follows: find any subset Q7; of @ that minimises the objec-
tive function: Q) = argming,cq(obj;(Qaq)), for i € {1,2}.
Although it deserves for a separate investigation whether the
decision-version of this problem is NP-hard, the authors do
not know any fast (polynomial in |@Q|) method of finding the
optimum subset Q4 in general case, and it is not unlikely
that there is no such a method known, since the problem
is similar to the weighted set-covering problem (which is
NP-hard). Hence, it seems to be justified to apply to this
problem any sub-optimal meta-heuristic for solving combi-
natorial optimisation problems. In this section we describe
application of simulated annealing to our problem.

Simulated annealing [6] is an example of neighbourhood-
based combinatorial optimisation sub-optimal meta-heuristic.
Its name comes from a method in metallurgy for obtaining
metal with a very regular crystal structure by allowing for
a very slow cooling, which in turn allows the molecules to
find a lower energy configuration. Although the analogy is
rather far, this idea found application in combinatorial opti-
misation under the same name. The heuristic is repeatedly
reported to be relatively successful, especially when taking
into account its simplicity. While it does not guarantee find-
ing a global optimum it usually outperforms most simple
greedy sub-optimal solutions.

5.1 Neighbourhood Relation

Simulated annealing is a randomised algorithm for search-
ing the space of potential solutions using a notion of neigh-
bourhood relation. Assume that S is the set of all potential
solutions to the problem and f : S — R is the objective
function to be minimised. A neighbourhood relation is a
binary relation N C S x S with some desired properties

described below. The interpretation of N(s1,s2) is that so-
lution s; is a neighbour of solution so in the search space
of all solutions S. A neighbour-based heuristic proceeds in
steps. It starts searching at some initial solution so and in
each step moves from the current solution to some neighbour
(specified by the relation) according to some rules specific
to the heuristic. The performance can strongly depend on
appropriate choice of neighbourhood relation. Let’s assume
that variable n represents the size of the combinatorial prob-
lem to be solved. In our case it is the number of candidate
queries: n = |@Q|. A well designed neighbourhood relation
should satisfy the following properties.

1. it should be (strongly) connected, to make it poten-
tially possible to get to the optimum from any starting
solution by moving from neighbour to neighbour.

2. for any solution s € S the size of its neighbourhood
should be bounded by a (fixed) polynomial of n (i.e.
[{s" € S: N(s,s")}| = O(P(n)), where P(n) is a poly-
nomial of n). This property guarantees that each step,
which involves choosing the neighbour to move to out
of all neighbours, will have acceptable time complexity.

3. the diameter of the (directed) graph G(S, N) should
be bounded by a polynomial of n. This property guar-
antees that the total number of steps (getting to the
best solution by moving from neighbour to neighbour)
can be acceptably low.

4. the neighbourhood should be defined so that the values
of objective functions of any two neighbours should
differ as little as possible. This property is essential
for searching for the optimum solution by making local,
greedy-alike moves in the solution space.

We next describe how we define the neighbourhood rela-
tion for TQD. Actually, despite quite complex specification
of the TQD problem, the goal is to find an optimum subset
(Qq in our case) of some given set of items (Q), which is a
very common case in combinatorial optimisation. We define
the neighbourhood relation as follows. Any two solutions
5,8 C S are neighbours N (s, s') iff the following property is
satisfied: (s # s')A((Jacss = ' U{a})V (Fpesrs’ = sU{b})),
i.e. two solution-subsets are neighbours iff they differ by
exactly one item (candidate query, in our case).

It is straightforward to check that such defined neighbour-
hood relation has all the mentioned desired properties:

1. given S1,S2 C Q it is possible to move from S; to S
by exchanging all the elements in S1 \ S2 with all the
elements in S \ S1;

2. for any solution s € S the number of its neighbours
is exactly n = |D|. It is easily seen by the notion of
characteristic vector — a binary vector of size n rep-
resenting any subset. It has value of 0 on position
i € [1,n] iff the i-th item belongs to the subset and
value of 0 if it does not. Moving from a solution to a
solution is equivalent to switching any of the n bits of
the vector to its opposite value;

3. the diameter of the relation is exactly n — the most
distant subsets are the complements to each other and
it needs to change all the n bits to get from a subset
to its complement;

SIMULATEDANNEALING (M azIter, Gap)

1 s+« RANDOMINITIALSOLUTION()
2 best «— s;step «— 0
3 change < step;t — 1
4 while (step < MaxIter A step — change < Gap)
5 do
6 step = step + 1
7 s’ = RANDOMNEIGHBOUR(s)
8 if RANDOM(0, 1) < P(s,s',t)
9 then s = s’
10 if f(s) < f(best)
11 then best = s; change = step
12
13 t=1//step
14

15 return best

Figure 1: The version of simulated annealing algo-
rithm used for optimising the query decomposition.

4. the difference between values of objective function of
any two neighbours is little, since the neighbours differ
only by a single element.

5.2 The Algorithm

We adapted the simulated annealing algorithm to our
problem of optimising the query decomposition problem.
The variant which was used in most of our experiments
is shown on the figure 1. The idea of the algorithm is as
follows. It starts with a random solution. Variable best
keeps the best solution found, step counts the iterations
of the main loop and change remembers the last iteration
in which the algorithm improved the best solution. The
main loop proceeds until the number of iterations exceeds
MazxIter or there was no improvement for the last Gap it-
erations. After some exploratory experimentation we set
MazxlIter = 100,000 and Gap = 10,000. In each iteration,
the algorithm picks a random neighbour of the current so-
lution s (line 9). The key idea in the simulated annealing
algorithm is the function P(s,s’,t) : S x S x R — [0,1]
which specifies the probability of accepting the move from
solution s to a neighbour solution s’, which also depends on
so called temperature (t). The function P should satisfy the
following conditions:

1. P(s,s’,t) =1 if solution s is better then s in terms of
the cost function f (i.e. f(s') < f(s) in a minimisation
problem);

2. if s’ is worse than s the value of P is positive (i.e. it
allows for moving to a worse solution), but decreases

with [f(s) — f(s")];

3. for fixed s and s’, when s’ is worse than s the value of
P decreases with time and tends to 0.

The function P used in our algorithm is given by the fol-

lowing formula, which is a common choice in simulated an-

. IO IC] .
nealing: P(s,s’,t) = e t where t is the tempera-

ture. It is straightforward to check, that it satisfies all the
conditions mentioned above. The temperature in our algo-
rithm, after some exploratory experimentation, was chosen
to be the following function of iteration (step): t(step) =
1/4/step, and is updated in line 15 of the algorithm.

The best solution is updated in line 13.

'More precisely, it increases with temperature t and the tem-
perature is a decreasing function of time (iteration)

Variant 1 Variant 2
Grd SA Grd SA
Min | 0.005 0 0 0

Max | 2.982 1 0.981 | 0.957
Avg | 0.790 | 0.517 | 0.291 | 0.232
Won | 11% | 89% | 24.4% | 75.6%

Table 1: Experimental results.

6. EXPERIMENTAL RESULTS

The dataset we used comes from an in-house query log
from early 2008. We sampled uniformly at random a set
of 100 queries Q' C @ out of the top 10,000 queries made
by users. For each of the original 100 queries ¢; € Q’, we
collected all the URLSs seen by users that issued that query,
docs(qi) € D where D is the set of all the documents in
the search engine, and d; € docs(g;) if there was a user who
issued query ¢; and then was shown by the search engine the
document d; among the top 100 results for that query. Note
that click information is not taken into account. The sizes of
the sets docs(q;) vary between 10 and 472 in the sample, with
a median of 45 URLs. Next given the original query ¢; and
its set of seen URLs docs(¢;), we took the all the candidate
queries in @ having at least two queries overlapping with the
set of results seen by users: g¢; is a candidate for query ¢; iff
3dk,de € D s.t. d, # de Ndy, € docs(q;) Nde € docs(qi) ANdy, €
docs(qj)Ady € docs(g;) . If there were more than 100 queries
with an overlap of 2 documents or more, we picked only the
top 100 by overlap, breaking ties arbitrarily. The sizes of the
candidate sets vary between 0 (for 4 queries), and 100 which
was the maximum, with a median of 27 candidate queries.

We compared the greedy and the simulated annealing
methods on all the 96 non-empty queries, with 39 differ-
ent combinations of (A1, A2, A3, A4) for each query, and with
the two variants of the global objective function. The 39
combinations were obtained by taking all the 13 combina-
tions of the three parameters (A1, Az, A3) reported in [1]?,
and extending each of them with the fourth parameter, set
to the value of 0, 1 or 10, and normalising to sum up to 1.

Aggregated results over these 3744 runs are reported in
Table 1. The results confirm that the SA method is gener-
ally (89% of the cases for Variant 1, and 75.6% of the cases
for Variant 2) outperforming the previous greedy method.
The breakdown by combinations of parameter (Table 2)°
shows that the settings under which SA methods outper-
forms greedy more evidently are for Ay = 10 and/or A3 = 0.
It can also be observed that the average value of the opti-
misation function (Variant 2) grows with the value of As.

In our future work we plan (1) to test other heuristic meth-
ods such as genetic algorithms, (2) to analyse how far from
the optimum are the results (optimum obtained by brute
force, when feasible, and integer programming), and (3) to
set-up a human user-evaluation.
Acknowledgements.Thanks are due to Aristides Gionis
for valuable discussions and for providing the output of the
greedy algorithm.

2The settings in [1] were: (1,0,0), (0,1,0), (0,0,1), (0,1,1),
1,1,0), (1,0,1), (1,1,1), (10,1,0), (10,0,1), (10,1,1), (1,10,0),
1,0,10), (1,10,10)

3In this section, we report the parameter values before nor-
malisation, for easier readability

=
=

Max | Avg | Won
0.22 1 0.02 | 66
0.48 |1 0.13 | 59
0.88 1 0.20 | 53
094 | 045 | 87
092 | 044 | 74
0.95 | 0.27 | 64
0.53 1030 | 73
0.61 | 0.31 | 66
0.87 | 0.25 | 65
0.32 1 0.09 | 86
1] 065|017 | 76
091 | 021 | 75
0.19 | 0.06 | 75
0.43 1 0.13 | 70
0.83 |1 0.20 | 66
0.21 | 0.03 | 67
0.19 | 0.05 | 63
0.47 | 0.13 | 61
0.58 1 0.36 | 77
0.66 | 0.35 | 70
0.89 1 0.26 | 63
042 | 027 | 71
0.50 | 0.28 | 66
0.82 | 0.24 | 61
0.88 | 045 | 85
0.84 | 047 | 83
0.89 | 042 | 74
0.52 1031 | 71
0.50 | 031 | 71
0.60 | 0.31 | 67
0.29 | 0.09 | 86
0.35 | 0.11 | &4
0.61 | 0.17 | 81
0.36 | 0.15 | 82
0.41 | 017 | 79
0.65 |1 0.20 | 73
0.33 | 0.14 | 81
0.38 | 0.16 | 81
0.62 | 0.20 | 76

o

[\CR'S W

[y —_ —

R OoOoORRRSoEScoOoRRrRrOO0OE S S RrrRrOo0ORR~ROOO R~ HY
— DN

A4
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10
0
1

10

»A»—l)—tH»—H—AOOOSSESSSH)—AHHHHOOOOOOOOO»—H—H—HA»—H—AOOOS‘

oo oo oo oo 99 99 90O

wo wo

Table 2: Performance of SA on Variant 2,
breakdown by the 39 different combinations of
<>\17 AQ,)\37)\4> (MaX. Won is 96)

7. REFERENCES

[1] Francesco Bonchi, Carlos Castillo, Debora Donato, and
Aristides Gionis. Topical query decomposition. In
Proceeding of ACM SIGKDD’08.
Robert D. Carr, Srinivas Doddi, Goran Konjevod, and
Madhav V. Marathe. On the red-blue set cover
problem. In Symposium on Discrete Algorithms, 2000.
V. Chvétal. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research,
4:233-235, 1979.
[4] Bernard J. Jansen, Amanda Spink How are we
searching the World Wide Web? A comparison of nine
search engine transaction logs Information Processing
& Management. Formal Methods for Information
Retrieval., 1(42):248-263, 2006.
David Johnson. Approximation algorithms for
combinatorial problems. In Proceedings of the ACM
Symposium on Theory of Computing, 1973.
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220(4598):671-680, May 1983.
[7] David Peleg. Approximation algorithms for the
label-covermax and red-blue set cover problems.
Journal of Discrete Algorithms, 5(1):55-64, 2007.

[2

3

[5

[6

