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ABSTRACT
This paper describes, develops, and validates SciLens, a method to
evaluate the quality of scientific news articles. The starting point
for our work are structured methodologies that define a series
of quality aspects for manually evaluating news. Based on these
aspects, we describe a series of indicators of news quality. According
to our experiments, these indicators help non-experts evaluate more
accurately the quality of a scientific news article, compared to non-
experts that do not have access to these indicators. Furthermore,
SciLens can also be used to produce a completely automated quality
score for an article, which agrees more with expert evaluators than
manual evaluations done by non-experts. One of the main elements
of SciLens is the focus on both content and context of articles,
where context is provided by (1) explicit and implicit references on
the article to scientific literature, and (2) reactions in social media
referencing the article. We show that both contextual elements can
be valuable sources of information for determining article quality.
The validation of SciLens, done through a combination of expert
and non-expert annotation, demonstrates its effectiveness for both
semi-automatic and automatic quality evaluation of scientific news.
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1 INTRODUCTION
Scientific literacy is broadly defined as a knowledge of basic scien-
tific facts and methods. Deficits in scientific literacy are endemic
in many societies, which is why understanding, measuring, and
furthering the public understanding of science is important to many
scientists [6].

Mass media can be a potential ally in fighting scientific illiter-
acy. Reading scientific content has been shown to help align public
knowledge of scientific topics with the scientific consensus, al-
though in highly politicized topics it can also reinforce pre-existing
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biases [27]. There are many ways in which mass media approaches
science, and even within the journalistic practice there are several
sub-genres. Scientific news portals, for instance, include most of
the categories of articles appearing traditionally in newspapers [21]
such as editorial, op-ed, and (less frequently) letters to the editor.
The main category of articles, however, are scientific news articles,
where journalists describe scientific advances.

Scientific news articles have many common characteristics with
other classes of news articles; for instance, they follow the well-
known inverted pyramid style, where the most relevant elements
are presented at the beginning of the text. However, they also dif-
fer in important ways. Scientific news are often based on findings
reported in scientific journals, books, and talks, which are highly
specialized. The task of the journalist is then to translate these
findings to make them understandable to a non-specialized, broad
audience. By necessity, this involves negotiating several trade-offs
between desirable goals that sometimes enter into conflict, includ-
ing appealing to the public and using accessible language, while at
the same time accurately representing research findings, methods,
and limitations [46].

The resulting portrayal of science in news varies widely in qual-
ity. For example, the website “Kill or Cure?”1 has reviewed over
1,200 news stories published by The Daily Mail (a UK-based tabloid)
finding headlines pointing to 140 substances or factors that cause
cancer (including obesity, but also Worcestershire sauce), 113 that
prevent it (including garlic and green tea), and 56 that both cause
and prevent cancer (including rice). Evidently, news coverage of
cancer research that merely seeks to classify every inanimate object
into something that either causes or prevents cancer does not help
to communicate effectively scientific knowledge on this subject.

Our contribution. In this paper we describe SciLens, a method
for evaluating the quality of scientific news articles. The technical
contributions we describe are the following:
• a framework, depicted in Figure 1, for semi-automatic and auto-

matic article quality evaluation (§3);
• a method for contextual data collection that captures the contents
of an article, its relationship with the scientific literature, and
the reactions it generates in social media (§4);

• a series of automatically-computed quality indicators describing:
– the content of a news article, where we introduce a method to
use quotes appearing on it as quality indicators (§5.1),

– the relationship of a news article with the scientific literature,
where we introduce content-based and graph-based similarity
methods (§5.2), and

1http://kill-or-cure.herokuapp.com
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Figure 1: Overview of SciLens, including contextual data col-
lection, quality indicators, and evaluation.

– the social media reactions to the article, where we introduce
a method to interpret their stance (supporting, commenting,
contradicting, or questioning) as quality signals (§5.3);

• an experimental evaluation of our methods involving experts
and non-experts (§6).

2 RELATEDWORK
In this section, we present background information that frames our
research (§2.1), previouswork on evaluating news quality (§2.2), and
methods to extract quality indicators from news articles (§2.3). This
is a broad research area where results are scattered throughmultiple
disciplines and venues; our coverage is by no means complete.

2.1 Background on Scientific News
A starting point for understanding communication of science has
historically been the “deficit model,” in which the public is assumed
to have a deficit in scientific information that is addressed by sci-
ence communication (see, e.g., Gross [25]). In a simplified manner,
scientific journalism, as practiced by professional journalists as well
as science communicators and bloggers from various backgrounds,
can be seen as a translation from a discourse inside scientific in-
stitutions to a discourse outside them. However, there are many
nuances that make this process much more than a simple transla-
tion. For instance, Myers [44], among others, notes that (i) in many
cases the gulf between experts and the public is not as large as
it may seem, as many people may have some information on the
topic; (ii) there is a continuum of popularization through different
genres, i.e., science popularization is a matter of degree; and (iii) the
scientific discourse is intertwined with other discourses, including
the discussion of political and economic issues.

Producing a high-quality article presenting scientific findings
to the general public is unquestionably a challenging task, and
often there is much to criticize about the outcome. In the process
of writing an article, “information not only changes textual form,
but is simplified, distorted, hyped up, and dumbed down” [44].
Misrepresentation of scientific knowledge by journalists has been
attributed to several factors, including “a tendency to sensationalize
news, a lack of analysis and perspective when handling scientific
issues, excessive reliance on certain professional journals for the

selection of news, lack of criticism of powerful sources, and lack of
criteria for evaluating information” [13].

In many cases, these issues can be traced to journalists adhering
to journalistic rather than scientific norms. According to Dunwoody
[15], this includes (i) a tendency to favor conflict, novelty, and sim-
ilar news values; (ii) a compromise of accuracy by lack of details
that might be relevant to scientists, but that journalists consider
uninteresting and/or hard to understand for the public; and (iii) a
pursuit of “balance” that mistakenly gives similar coverage to con-
sensus viewpoints and fringe theories. Journalists tend to focus on
events or episodic developments rather than long-term processes,
which results in preferential coverage to initial findings even if they
are later contradicted, and little coverage if results are disconfirmed
or shown to be wrong [14]. Furthermore, news articles typically
do not include caveat/hedging/tentative language, i.e., they tend
to report scientific findings using a language expressing certainty,
which may actually have the opposite effect from what is sought,
as tentative language makes scientific reporting more credible to
readers [32].

2.2 Evaluation of Quality of News
There are many approaches for evaluating the quality of articles
on the web; we summarize some of these approaches in Table 1.
Manual Evaluation. The simplest approach for evaluating news
article quality relies on the manual work of domain experts. This
is a highly subjective task, given that quality aspects such as cred-
ibility are to a large extent perceived qualities, made of many di-
mensions [20]. In the health domain, evaluations of news article
quality have been undertaken for both general health topics [53]
and specific health topics such as Pancreatic Cancer [57].

Independent, non-partisan fact-checking portals perform manual
content verification at large scale, typically employing a mixture of
professional and volunteer staff. They can cover news articles on
general topics (e.g., Snopes.com) or specific topics such as politics
(e.g., PolitiFact.com). In the case of science news, ClimateFeed-
back.org is maintained by a team of experts on climate change
with the explicit goal of helping non-expert readers evaluate the
quality of news articles reporting on climate change. Each evalu-
ated article is accompanied by a brief review and an overall quality
score. Reviews and credibility scores from fact-checking portals
have been recently integrated with search results [36] and social
media posts [40] to help people find accurate information. Further-
more, they are frequently used as a ground truth to build systems
for rumor tracking [54], claim assessment [50], and fake multimedia
detection [8]. Articles considered by fact-checking portals as mis-
information have been used as “seeds” for diffusion-based methods
studying the spread of misinformation [56].

Our approach differs from previous work because it is completely
automated and does not need to be initialized with labels from
expert- or crowd-curated knowledge bases. For instance, in the
diffusion graph, which is the graph we construct during contextual
data collection (§4) from social media posts and scientific papers,
we do not need prior knowledge on the quality of different nodes.
Automatic and Semi-Automatic Evaluation. Recent work has
demonstrated methods to automate the extraction of signals or in-
dicators of article quality. These indicators are either expressed at a
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Table 1: Summary of selected references describing techniques for evaluating news article quality.
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SciLens
Automatic assessment ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

No ground-truth needed ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓

Uses article content ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Uses reactions from social media ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓

Uses referenced scientific literature ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓

Domain-agnostic ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Web-scale ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

conceptual level [58] (e.g, balance of view points, respect of personal
rights) or operationalized as features that can be computed from an
article [62] (e.g., expert quotes or citations). Shu et al. [55] describe
an approach for detecting fake news on social media based on social
and content indicators. Kumar et al. [37] describe a framework for
finding hoax Wikipedia pages mainly based on the author’s behav-
ior and social circle, while Ciampaglia et al. [11] use Wikipedia as
ground truth for testing the validity of dubious claims. Baly et al.
[5] describe site-level indicators that evaluate an entire website
instead of individual pages.

Our work differs from these by being, to the best of our knowl-
edge, the first work that analyzes the quality of a news article on the
web combining its own content with context that includes social
media reactions and referenced scientific literature. We provide a
framework, SciLens, that is scalable and generally applicable to any
technical/scientific context at any granularity (from a broad topic
such as “health and nutrition” to more specific topics such as “gene
editing techniques”).

2.3 Indicator Extraction Techniques
Our method relies on a series of indicators that can be computed au-
tomatically, and intersects previous literature that describes related
indicators used to evaluate article quality or for other purposes.

Quote Extraction and Attribution. The most basic approach to
quote extraction is to consider that a quote is a “block of text within
a paragraph falling between quotation marks” [16, 51]. Simple reg-
ular expressions for detecting quotes can be constructed [45, 52].
Pavllo et al. [48] leverages the redundancy of popular quotes in large
news corpora (e.g., highly controversial statements from politicians
that are intensely discussed in the press) for building unsupervised
bootstrapping models, while Pareti et al. [47] and Jurafsky et al. [34]
train supervised machine learning models using corpora of political
and literary quotes (Wikiquote, https://www.wikiquote.org, is such
a corpus that contains general quotes).

Our work does not rely on simple regular expressions, such
as syntactic patterns combined with quotations marks, which in
our preliminary experiments performed poorly in quote extraction
from science news; instead we use regular expressions based on
classes of words. We also do not use a supervised approach as there

is currently no annotated corpus for scientific quote extraction.
For the research reported on this paper, we built an information
extractionmodel specifically for scientific quotes from scratch, i.e., a
“bootstrapping” model, which is based on word embeddings. This is
a commonly used technique for information extraction when there
is no training data and we can manually define a few high-precision
extraction patterns [33].

Semantic Text Similarity.One of the indicators of quality that we
use is the extent to which the content of a news article represents
the scientific paper(s) it is reporting about. The Semantic Text Sim-
ilarity task in Natural Language Processing (NLP) determines the
extent to which two pieces of text are semantically equivalent. This
is a popular task in the International Workshop on Semantic Evalua-
tion (SemEval). Three approaches that are part of many proposed
methods over the last few years include: (i) surface-level similar-
ity (e.g., similarity between sets or sequences of words or named
entities in the two documents); (ii) context similarity (e.g., similar-
ity between document representations); and (iii) topical similarity
[26, 38].

In this paper, we adopt these three types of similarity, which we
compute at the document, paragraph, and sentence level. The results
we present suggest that combining different similarity metrics at
different granularities results in notable improvements over using
only one metric or only one granularity.

Social Media Stance Classification. Our analysis of social media
postings to obtain quality indicators considers their stance, i.e., the
way in which posting authors position themselves with respect to
the article they are posting about. Stance can be binary (“for” or
“against”), or be described by more fine-grained types (supporting,
contradicting, questioning, or commenting) [28], which is what we
employ in this work. Stance classification of social media postings
has been studied mostly in the context of online marketing [35]
and political discourse and rumors [63].

In our work, we build a new stance classifier based on textual and
contextual features of social media postings and replies, annotated
by crowdsourcing workers. To the best of our knowledge, there is
no currently available corpus covering the scientific domain. As
part of our work, we release such corpus.

https://www.wikiquote.org


3 SCILENS OVERVIEW
The goal of SciLens is to help evaluate the quality of scientific news
articles. As Figure 1 shows, we consider a contextual data collection,
a computation of quality indicators, and an evaluation of the results.
Contextual Data Collection (§4). First, we consider a set of key-
words that are representative of a scientific/technical domain; for
this paper, we have considered a number of key words and phrases
related to health and nutrition. Second, we extract from a social
media platform (in this case, Twitter), all postings matching these
keywords, as well as public replies to these postings. Third, we
follow all links from the postings to web pages, and download such
pages; while the majority of them are news sites and blogs of vari-
ous kinds, we do not restrict the collection by type of site at this
point. Fourth, we follow all links from the web pages to URLs in
a series of pre-defined domain names from scientific repositories,
academic portals and libraries, and universities. Fifth, we clean-up
the collection by applying a series of heuristics to de-duplicate
articles and remove noisy entries.
Quality Indicators (§5).We compute a series of quality indicators
from the content of articles, and from their referencing social media
postings and referenced scientific literature.

Regarding the content of the articles, we begin by computing
several content-based features described by previous work. Next,
we perform an analysis of quotes in articles, which are a part of
journalistic practices in general and are quite prevalent in the case
of scientific news. Given that attributed quotes are more telling of
high quality than unattributed or “weasel” quotes, we also carefully
seek to attribute each quote to a named entity which is often a
scientist, but can also be an institution.

Regarding the scientific literature, we would like to know the
strength of the connection of articles to scientific papers. For this,
we consider two groups of indicators: content-based and graph-
based. Content-based indicators are built upon various metrics of
text similarity between the content of an article and the content
of scientific papers, considering that the technical vocabulary is
unlikely to be preserved as-is in articles written for the general
public. Graph-based indicators are based on a diffusion graph in
which scientific papers and web pages in academic portals are
nodes connected by links. High-quality articles are expected to be
connected through many short paths to academic sources in this
graph.

Regarding social media postings, we measure two aspects: reach
and stance. Reach is measured through various proxies for attention,
that seek to quantify the impact that an article has in social media.
The stance is the positioning of posting authors with respect to
an article, which can be positive (supporting, or commenting on
an article without expressing doubts), or negative (questioning an
article, or directly contradicting what the article is saying).
Evaluation (§6). We evaluate the extent to which the indicators
computed in SciLens are useful for determining the quality of a
scientific news article. We consider that these indicators can be
useful in two ways. First, in a semi-automatic setting, we can show
the indicators to end-users and ask them to evaluate the quality of
a scientific news article; if users that see these indicators are better
at this task that users that do not see them, we could claim that
the indicators are useful. Second, in a fully automatic setting, we

Figure 2: Contextual data collection, including social media
postings, which reference a series of news articles, which
cite one or more scientific papers. In our diffusion graph,
paths that do not end up in a scientific paper or paths that
contain unparsable nodes (e.g., malformedHTML pages) are
pruned, and articles with the same content in two different
outlets (e.g., produced by the same news agency) aremerged.

can train a model based on all the indicators that we computed. In
both cases, the ground truth for evaluation is provided by experts
in communication and science.

4 CONTEXTUAL DATA COLLECTION
The contextual data collection in our work seeks to capture all
relevant content for evaluating news article quality, including refer-
enced scientific papers and reactions in social media. This method-
ology can be applied to any specialized or technical domain covered
in the news, as long as: (i) media coverage in the domain involves
“translating” from primary technical sources, (ii) such technical
sources can be characterized by known host/domain names on
the web, and (iii) social media reactions can be characterized by
the presence of certain query terms. Examples where this type of
contextual data collection could be applied beyond scientific news
include news coverage of specialized topics such as law or finance.

We consider two phases: a crawling phase, which starts from
social media and then collects news articles and primary sources
(§4.1), and a pruning/merging phase, which starts from primary
sources and prunes/de-duplicates articles and postings (§4.2). This
process is depicted in Figure 2 and explained next.

4.1 Crawling of Postings, Articles, and Papers
The crawling phase starts with social media postings, which are
identified as candidates for inclusion based on the presence of cer-
tain topic-related keywords in them. In the case of this study, we
selected “health and nutrition” as our main topic: this is among
the most frequent topics in scientific news reporting, which is
known to have a medical/health orientation [4, 15, 61]. The ini-
tial set of keywords was obtained from Nutrition Facts (https:
//nutritionfacts.org/topics), a non-commercial and non-profit web-
site that provides scientific information on healthy eating. The list
contains over 2,800 keywords and key phrases such as “HDL choles-
terol,” “polyphenols” and the names of hundreds of foods from
“algae” to “zucchini”. We further expanded this list with popular
synonyms from WordNet [42].

https://nutritionfacts.org/topics
https://nutritionfacts.org/topics


We harvest social media postings from DataStreamer.io (for-
merly known as Spinn3r.com), covering a 5-year period from June
2013 through June 2018. In this collection, we find 2.5M candidate
postings matching at least one of our query terms from which we
discard postings without URLs.

Next, we crawl the pages pointed to by each URL found in the
remaining postings. These pages are hosted in a wide variety of
domains, the majority being news outlets and blogging platforms.
We scan these pages for links to scientific papers, which we do
identify by domain names. We use a predefined list of the top-1000
universities as indicated by CWUR.org plus a manually curated
list of open-access publishers and academic databases obtained
from Wikipedia2 and expanded using the “also visited websites”
functionality of SimilarWeb.com. Overall, we obtained a diffusion
graph of 2.4M nodes and 3.7M edges.

4.2 Pruning and Merging
The initial data collection described in §4.1 is recall-oriented. Now,
we make it more precise by pruning and merging items.

Pruning. During the pruning phase, we keep in our collection only
documents that we managed to successfully download and parse
(e.g., we discard malformed HTML pages and PDFs). We also prune
paths that do not end up in a scientific paper i.e., articles that do not
have references and all the tweets that point to these articles. This
phase helps us eliminate most of the noisy nodes of the diffusion
graph that were introduced due to the generic set of seed keywords
that we used in the crawling phase (§4.1).

Merging. We notice a large number of duplicate articles across
news outlets, which we identify by text similarity i.e, by cosine
similarity of more than 90% between the bag-of-words vectors
representing the articles. This happens when one outlet re-posts
an article originally published in another outlet, or when both
syndicate from the same news agency. Once we find such duplicates
or near-duplicates, we keep only one of them (the one having more
out-links, breaking ties arbitrarily) and remove the redundant ones.
Social media postings that point to the duplicates are re-wired to
connect to the one that survived after merging, hence we do not
lose a potentially important signal of article quality.

The resulting collection is large and mostly composed of ele-
ments that are closely related to the topic of health and nutrition:
49K social media postings, 12K articles (most of them in news sites
and blogs), and 24K scientific links (most of them peer-reviewed
or grey-literature papers). Even after pruning, our collection is pos-
sibly more comprehensive than the ones used by systems used to
appraise the impact of scientific papers. For instance, when com-
pared to Altmetric.com [1] we find that our collection has more
links to scientific papers than what Altmetric counts. In their case,
referencing articles seem to be restricted to a controlled list of
mainstream news sources, while in our case we often find these
references plus multiple references from less known news sources,
blogs, and other websites.

2https://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines

Figure 3: Example of quote extraction and attribution (best
seen in color). Quotee has been anonymized.

5 QUALITY INDICATORS
We compute indicators from the content of news articles (§5.1),
from the scientific literature referenced in these articles (§5.2), and
from the social media postings referencing them (§5.3). The full list
of indicators is presented on Table 2.

5.1 News Article Indicators
These indicators are based on the textual content of a news article.

5.1.1 Baseline Indicators. As a starting point, we adopt a large set
of content-based quality indicators described by previous work.
These indicators are: (i) title deceptiveness and sentiment: we con-
sider if the title is “clickbait” that oversells the contents of an article
in order to pique interest [41, 60]; (ii) article readability: indicator
of the level of education someone would need to easily read and
understand the article [19]; and (iii) article length and presence of
author byline [62].

5.1.2 Quote-Based Indicators. Quotes are a common and important
element of many scientific news articles. While selected by jour-
nalists, they provide an opportunity for experts to directly present
their viewpoints in their own words [12]. However, identifying
quotes in general is challenging, as noted by previous work (§2.3).
In the specific case of our corpus, we observe that they are seldom
contained in quotation marks in contrast to other kinds of quotes
(e.g., political quotes [51]). We also note that each expert quoted
tends to be quoted once, which makes the problem of attributing a
quote challenging as well.

Quote Extraction Model. To extract quotes we start by address-
ing a classification problem at the level of a sentence: we want
to distinguish between quote-containing and non-containing sen-
tences. To achieve this, we first select a random sample from our
dataset, then manually identify quote patterns, and finally, we gen-
eralize automatically these patterns to cover the full dataset. As we
describe in the related work section (§2.3), this is a “bootstrapping”
model built from high-precision patterns, as follows.

The usage of reporting verbs is a typical element of quote ex-
traction models [47]. Along with common verbs that are used to
quote others (e.g., “say,” “claim”) we used verbs that are common
in scientific contexts, such as “prove” or “analyze.” First, we manu-
ally create a seed set of such verbs. Next, we extend it with their
nearest neighbors in a word embedding space; the word embed-
dings we use are the GloVe embeddings, which are trained on a
corpus of Wikipedia articles [49]. We follow a similar approach for
nouns related to studies (e.g., “survey,” “analysis”) and nouns re-
lated to scientists (e.g., “researcher,” “analyst”). Syntactically, quotes
are usually expressed using indirect speech. Thus, we also obtain
part-of-speech tags from the candidate quote-containing sentences.

http://DataStreamer.io
http://Spinn3r.com
http://CWUR.org
http://SimilarWeb.com
http://Altmetric.com
https://en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines


Using this information, we construct a series of regular expres-
sions over classes of words (“reporting verbs,” “study-related noun,”
and part-of-speech tags) which we evaluate in §6.1.

Quote Attribution. For the purposes of evaluating article quality,
it is fundamental to know not only that an article has quotes, but
also their provenance:who orwhat is being quoted. After extracting
all the candidate quote-containing sentences, we categorize them
according to the information available about their quotee.

A quotee can be an unnamed scientist or an unnamed study if the
person or article being quoted is not disclosed (e.g., “researchers
believe,” “most scientists think” and other so-called “weasel” words).
Sources that are not specifically attributed such as these ones are
as a general rule considered less credible than sources in which the
quotee is named [62].

A quotee can also be a named entity identifying a specific person
or organization. In this case, we apply several heuristics for quote
attribution. If the quotee is a named person, if she/he is referred with
her/his last or first name, we search within the article for the full
name. When the full name is not present in the article, we map the
partial name to the most common full name that contains it within
our corpus of news articles. We also locate sentences within the
article that mention this person together with a named organization.
This search is performed from the beginning of the article as we
assume they follow an inverted pyramid style. In case there are
several, the most co-mentioned organization is considered as the
affiliation of the quotee.

If the quotee is an organization, then it can be either mentioned
in full or using an acronym. We map acronyms to full names of
organizations when possible (e.g., we map “WHO” to “World Health
Organization”). If the full name is not present in an article, we follow
a similar procedure as the one used to determine the affiliation of a
researcher, scanning all the articles for co-mentions of the acronym
and a named organization.

An illustrative example of the extraction and the attribution
phase can be shown in Figure 3.

Scientific Mentions. News articles tend to follow journalistic con-
ventions rather than scientific ones [15]; regarding citation prac-
tices, this implies they seldom include formal references in the
manner in which one would find them in a scientific paper. Often
there is no explicit link: journalists may consider that the primary
source is too complex or inaccessible to readers to be of any value,
or may find that the scientific paper is located in a “pay-walled”
or otherwise inaccessible repository. However, even when there is
no explicit link to the paper(s) on which an article is based, good
journalistic practices still require to identify the information source
(institution, laboratory, or researcher).

Mentions of academic sources are partially obtained during the
quote extraction process (§5.1.2), and complemented with a second
pass that specifically looks for them. During the second pass, we
use the list of universities and scientific portals that we used during
the crawling phase of the data collection (§4.1).

5.2 Scientific Literature Indicators
In this section, we describe content- and graph-based indicators
measuring how articles are related to the scientific literature.

Figure 4: A news article (left) and a scientific paper (right)
with Semantic Text Similarity of 87.9%. Indicatively, two pas-
sages from these documents, whose conceptual similarity
is captured by our method, are presented. In these two pas-
sages we can see the effort of the journalist on translating
from an academic to a less formal language, without mis-
representing the results from the paper.

5.2.1 Source Adherence Indicators. When there is an explicit link
from a news article to the URL where a scientific paper is hosted, we
can measure the extent to which these two documents convey the
same information. This is essentially a computation of the Semantic
Text Similarity (STS) between the news article and its source(s).
Supervised Learning for STS. We construct an STS model us-
ing supervised learning. The features that we use as input to the
model consist of the following text similarity metrics: (i) the Jac-
card similarity between the sets of named entities (persons and
organizations), dates, numbers and percentages of the two texts;
(ii) the cosine similarity between the GloVe embeddings of the two
texts; (iii) the Hellinger similarity [30] between topic vectors of
the two texts (obtained by applying LDA [7]); and (iv) the relative
difference between the length in words of the two texts. Each of
them is computed three times: (1) considering the entire contents
of the article and the paper; (2) considering one paragraph at a time,
and then computing the average similarity between a paragraph
in one document and a paragraph in the other; and (3) considering
one sentence at a time, and then computing the average similarity
between a sentence in one document and a sentence in the other. In
other words, in (2) and (3) we compute the average of each similarity
between the Cartesian product of the passages.

The training data that we use is automatically created from
pairs of documents consisting of a news article and a scientific
paper. Whenever a news article has exactly one link to a scientific
paper, we add the article and the paper to training data in the
positive class. For the negative class, we sample random pairs of
news articles and papers. The learning schemes used are Support
Vector Machine, Random Forests and Neural Networks. Details
regarding the evaluation of these schemes are provided in §6.1.2.
An example of a highly related pair of documents, as determined
by this method, is shown in Figure 4.
Handling Multi-Sourced Articles. When an article has a single
link to a scientific paper, we use the STS of them as an indicator of
quality. When an article has multiple links to scientific papers, we
select the one that has the maximum score according to the STS
model we just described. We remark that this is just an indicator
of article quality and we do not expect that by itself it is enough
to appraise the quality of the article. Deviations from the content
of the scientific paper are not always wrong, and indeed a good
journalist might consult multiple sources and summarize them in a
way that re-phrases content from the papers used as sources.



5.2.2 Diffusion Graph Indicators. We also consider that referencing
scientific sources, or referencing pages that reference scientific
sources, are good indicators of quality. Figure 2 showing a graph
from scientific papers to articles, and from articles to social media
postings and from them to their reactions, suggests this can be done
using graph-based indicators. We consider the following:
(1) personalized PageRank [29] on the graph having scientific ar-
ticles and universities as root nodes and news articles as leaf
nodes; and

(2) betweenness and degree on the full diffusion graph [22, 23].
Additionally, we consider the traffic score computed byAlexa.com

for the website in which each article is hosted, which estimates the
total number of visitors to a website.

5.3 Social Media Indicators
We extract signals describing the quantity and characteristics of
social media postings referencing each article. Quantifying the
amount of reactions in various ways might give us signals about
the interest in different articles (§5.3.1). However, this might be
insufficient or even misleading, if we consider that false news may
reach a larger audience and propagate faster than actual news [59].
Hence, we also need to analyze the content of these postings (§5.3.2).

5.3.1 Social Media Reach. Not every social media user posting the
URL of a scientific news article agrees with the article’s content,
and not all users have sufficient expertise to properly appraise its
contents. Indeed, sharing articles and reading articles are often
driven by different mechanisms [2]. However, and similarly to
citation analysis and to link-based ranking, the volume of social
media reactions to an articlemight be a signal of its quality, although
the same caveats apply.

Given that we do not have access to the number of times a social
media posting is shown to users, we extract several proxies of
the reach of such postings. First, we consider the total number of
postings including a URL and the number of times those postings
are “liked” in their platform. Second, we consider the number of
followers and followees of posting users in the social graph. Third,
we consider a proxy for international news coverage, which we
operationalize as the number of different countries (declared by
users themselves) from which users posted about an article.

Additionally, we assume that a level of attention that is sus-
tained can be translated to a larger exposure and may indicate
long-standing interest on a topic. Hence, we consider the temporal
coverage i.e., the length of the time window during which postings
in social media are observed. To exclude outliers, we compute this
period for 90% of the postings, i.e., the article’s “shelf life” [9].

5.3.2 Social Media Stance. We consider the stance or positioning of
social media postings with respect to the article they link to, as well
as the stance of the responses (replies) to those postings. According
to what we observe in this corpus, repliers sometimes ask for (addi-
tional) sources, express doubts about the quality of an article, and
in some cases post links to fact-checking portals that contradict the
claims of the article. These repliers are, indeed, acting as “social
media fact-checkers,” as the example in Figure 5 shows. Following

Figure 5: Example inwhich the stance of socialmedia replies
(bottom row) indicates the poor quality of an article pro-
moted through a series of postings (top row).

a classification used for analyzing ideological debates [28], we con-
sider four possible stances: supporting, commenting, contradicting,
and questioning.
Retrieving replies. Twitter’s API does not provide a program-
matic method to retrieve all the replies to a tweet. Thus, we use a
web scraper that retrieves the text of the replies of a tweet from
the page in which each tweet is shown on the web. The design of
this web scraper is straightforward and allows us to retrieve all the
first-level replies of a tweet.
Classifying replies. To train our stance classifier, we use: (i) a
general purpose dataset provided in the context of SemEval 2016
[43], and (ii) a set of 300 tweets from our corpus which were anno-
tated by crowdsourcing workers. From the first dataset we discard
tweets that are not relevant to our corpus (e.g., debates on Atheism),
thus we keep only debates on Abortion and Climate Change. The
second set of annotated tweets is divided into 97 contradicting, 42
questioning, 80 commenting and 71 supporting tweets. We also
have 10 tweets that were marked as “not-related” by the annotators
and thus we exclude them from our training process. The combined
dataset contains 1,140 annotated tweets. The learning scheme we
use is a Random Forest classifier based on features including the
number of: (i) total words, (ii) positive/negative words (using the
Opinion Lexicon [31]), (iii) negation words, (iv) URLs, and (v) ques-
tion/exclamation marks. We also computed the similarity between
the replies and the tweet being replied to (using cosine similarity on
GloVe vectors [49]), and the sentiment of the reply and the original
tweet [39]. Details regarding the evaluation are provided in § 6.1.3.

6 EXPERIMENTAL EVALUATION
We begin the experimental evaluation by studying the performance
of the methods we have described to extract quality indicators (§6.1).
Then, we evaluate if these indicators correlate with scientific news
quality. First, we determine if publications that have a good (bad)
reputation or track record of rigor in scientific news reporting have
higher (lower) scores according to our indicators (§6.2). Second, we
use labels from experts (§6.3) to compare quality evaluations done
by non-experts with and without access to our indicators (§6.4).

6.1 Evaluation of Indicator Extraction Methods
6.1.1 Quote Extraction and Attribution. The evaluation of our quote
extraction and attribution method (§5.1.2) is based on a manually-
annotated sample of articles from our corpus. A native English
speaker performed an annotation finding 104 quotes (37 quotes
attributed to persons, 33 scientific mentions and 34 “weasel” or
unattributed quotes) in a random sample of 20 articles.
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Table 2: Summary of all the quality indicators provided by the framework SciLens.

Context Type Indicator

Article Baseline Title [Clickbait, Subjectivity, Polarity], Article Readability, Article Word Count, Article Bylined
Quote-Based #Total Quotes, #Person Quotes, #Scientific Mentions, #Weasel Quotes

Sci. literature Source Adherence Semantic Textual Similarity
Diffusion Graph Personalized PageRank, Betweenness, [In, Out] Degree, Alexa Rank

Social media Reach #Likes, #Retweets, #Replies, #Followers, #Followees, [International News, Temporal] Coverage
Stance Tweets/Replies [Stance, Subjectivity, Polarity]

We compare three algorithms: (i) a baseline approach based on
regular expressions searching for content enclosed in quote marks,
which is usually the baseline for this type of task; (ii) our quote
extraction method without the quote attribution phase, and (iii) the
quote extraction and attribution method, where we consider a quote
as correctly extracted if there is no ambiguity regarding the quotee
(e.g., if the quotee is fully identified in the article but the attribution
finds only the last name, we count it as incorrect).

As we observed, although the baseline approach has the optimal
precision, it is unable to deal with cases where quotes are not
within quote marks, which are the majority (100% precision, 8.3%
recall). Thus, our approach, without the quote attribution phase,
improves significantly in terms of recall (81.8% precision, 45.0%
recall). Remarkably, the heuristics we use for quote attribution
work well in practice and serve to increase both precision and
recall (90.9% precision, 50.0% recall). The resulting performance is
comparable to state-of-the-art approaches in other domains (e.g.,
Pavllo et al. [48] obtain 90% precision, 40% recall).

6.1.2 Source Adherence. We use the supervised learning method
described on §5.2.1 to measure Semantic Text Similarity (STS). We
test three different learning models: Support Vector Machine, Ran-
dom Forests and Neural Networks. The three classifiers use simi-
larities computed at the document, sentence, and paragraph level,
and combining all features from the three levels. Overall, the best
accuracy (93.5%) was achieved by using a Random Forests classifier
and all the features from the three levels of granularity, combined.

6.1.3 Social Media Stance. We evaluate the stance classifier de-
scribed in §5.3.2 by performing 5-fold cross validation over our
dataset. When we consider all four possible categories for the stance
(supporting, commenting, contradicting and questioning), the ac-
curacy of the classifier is 59.42%. This is mainly due to confusion
between postings expressing a mild support for the article and post-
ings just commenting on the article, which also tend to elicit dis-
agreement between annotators. Hence, we merge these categories
into a “supporting or commenting” category comprising postings
that do not express doubts about an article. Similarly, we consider
“contradicting or questioning” as a category of postings expressing
doubts about an article; previous work has observed that indeed
false information in social media tends to be questioned more often
(e.g., [10]). The problem is then reduced to binary classification.

To aggregate the stance of different postings that may refer to
the same article, we compute their weighed average stance con-
sidering supporting or commenting as +1 (a “positive” stance) and
contradicting or questioning as −1 (a “negative” stance). As weights

we consider the popularity indicators of the postings (i.e., the num-
ber of likes and retweets). This is essentially a text quantification
task [24], and the usage of a classification approach for a quantifi-
cation task is justified because our classifier has nearly identical
pairs of true positive and true negative rates (80.65% and 80.49%
respectively), and false positive and false negative rates (19.51%
and 19.35% respectively).

6.2 Correlation of Indicators among Portals of
Diverse Reputability

We use two lists that classify news portals into different categories
by reputability. The first list, by the American Council on Sci-
ence and Health [3] comprises 50 websites sorted along two axes:
whether they produce evidence-based or ideologically-based report-
ing, andwhether their science content is compelling. The second list,
by Climate Feedback [17], comprises 20 websites hosting 25 highly-
shared stories on climate change, categorized into five groups by
scientific credibility, from very high to very low.

We sample a few sources according to reputability scores among
the sources given consistent scores in both lists: high reputability
(The Atlantic), medium reputability (New York Times), and low rep-
utability (The Daily Mail). Next, we compare all of our indicators in
the sets of articles in our collection belonging to these sources. Two
example features are compared in Figure 6. We perform ANOVA
[18] tests to select discriminating features. The results are shown
on Table 3. Traffic rankings by Alexa.com, scientific mentions, and
quotes, are among some of the most discriminating features.

6.3 Expert Evaluation
We ask a set of four external experts to evaluate the quality of a set
of articles. Two of them evaluated a random sample of 20 articles
about the gene editing technique CRISPR, which is a specialized
topic being discussed relatively recently in mass media. The other
two experts evaluated a random sample of 20 articles on the effects
of Alcohol, Tobacco, and Caffeine (the “ATC” set in the following),
which are frequently discussed in science news.

Experts were shown a set of guidelines for article quality based
on previous work (§2). Then, they read each article and gave it a
score in a 5-point scale, from very low quality to very high quality.
Each expert annotated the 20 articles independently, and was given
afterwards a chance to cross-check the ratings by the other expert
and revise her/his own ratings if deemed appropriate.

The agreement between experts is distributed as follows: (i) strong
agreement, when the rates after cross-checking are the same (7/20
in ATC, 6/20 in CRISPR); (ii) weak agreement, when the rates differ
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(a) (b)

Figure 6: Kernel Density Estimation (KDE) of a traditional
quality indicator (Title Clickbaitness on the left) and our
proposal quality indicator (Replies Stance on the right). We
observe that for both high and low quality articles the dis-
tribution of Title Clickbaitness is similar, thus the indica-
tor is non-informative. However, most of the high quality
articles have Replies Stance close to 1.0 which represents
the Supporting/Commenting class of replies, whereas low
quality articles span a wider spectrum of values and often
have smaller or negative values representing theContradict-
ing/Questioning class of replies. Best seen in color.

by one point (12/20 in ATC, 10/20 in CRISPR), and (iii) disagreement,
when the rates differ by two or more points (1/20 in ATC, 4/20 in
CRISPR). Annotation results are show on Figure 7, and compared
to non-expert evaluations, which are described next.

6.4 Expert vs Non-Expert Evaluation
We perform a comparison of quality evaluations by experts and
non-experts. Non-experts are workers in a crowdsourcing platform.
We ask for five non-expert labels per article, and employ what our
crowdsourcing provider, Figure Eight (figure-eight.com), calls tier-3

Table 3: Top five discriminating indicators for articles sam-
pled from pairs of outlets having different levels of rep-
utability (p-value: < 0.005 ***, < 0.01 **, < 0.05 *).

The Atlantic vs. Daily Mail NY Times vs. Daily Mail
(very high vs. very low) (medium vs. very low)

Alexa Rank*** Alexa Rank***
#Scientific Mentions*** Article Bylined***
Article Readability** #Scientific Mentions***
#Total Quotes* Article Readability***
Title Polarity #Total Quotes**

The Atlantic vs. NY Times All Outlets
(very high vs. medium) (from very high to very low)

Alexa Rank*** Alexa Rank***
Article Bylined*** Article Bylined***
Article Word Count* Article Word Count***
#Replies* #Scientific Mentions***
#Followers Article Readability***

workers, which are the most experienced and accurate. As a further
quality assurance method, we use the agreement among workers
to disregard annotators producing consistently annotations that
are significantly different from the rest of the crowd. This is done
at the worker level, and as a result we remove on average about
one outlier judgment per article.

We consider two experimental conditions. On the first condition
(non-expert without indicators), non-experts are shown the ex-
act same evaluation interface as experts. On the second condition
(non-expert with indicators), non-experts are shown 7 of the
quality indicators we produced, which are selected according to
Table 3. Each indicator (except the last two) is shown with stars,
with89999 indicating that the article is in the lowest quintile ac-
cording to that metric, and 88888 indicating the article is in the
highest quintile. The following legend is provided to non-experts
to interpret the indicators:

Visitors per day of this news website (more visitors = more stars)
Mentions of universities and scientific portals (more mentions = more stars)
Length of the article (longer article = more stars)
Number of quotes in the article (more quotes = more stars)
Number of replies to tweets about this article) (more replies = more stars)
Article signed by its author (!= signed,%= not signed)
Sentiment of the article’s title (,,= most positive, //= most negative)

Results of comparing the evaluation of experts and non-experts
in the two conditions we have described are summarized in Figure 7.
In the figure, the 20 articles in each set are sorted by increasing
expert rating; assessments by non-experts differ from expert ratings,
but this difference tends to be reduced when non-experts have
access to quality indicators.

In Table 4 we show how displaying indicators leads to a decrease
in these differences, meaning that non-expert evaluations become
closer to the average evaluation of experts, particularly when ex-
perts agree. In the ATC set the improvement is small, but in CRISPR

Table 4: Differences among expert evaluations, evaluations
provided by non-experts and fully automatic evaluations
provided by the SciLens framework, measured using RMSE
(lower is better). ATC and CRISPR are two sets of 20 articles
each. Strong agreement indicates cases where experts fully
agree, weak agreement when they differed by one point, and
disagreement when they differed by two or more points. No-
Ind. is the first experimental condition for non-experts, in
whichno indicators are shown. Ind. is the second experimen-
tal condition, in which indicators are shown.

Experts Non-Experts Fully
by agreement # No ind. Ind. automated

A
T
C

Strong agreement 7 0.80 0.45 1.41
Weak agreement 12 1.28 1.18 0.76
Disagreement 1 0.40 1.30 0.00

All articles 20 1.10 1.00 1.00

C
R
IS
PR

Strong agreement 6 1.40 1.17 1.00
Weak agreement 10 0.86 0.76 0.67
Disagreement 4 0.96 1.22 1.03

All articles 20 1.96 0.96 0.85
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(a) Articles on Alcohol, Tobacco, and Caffeine (b) Articles on CRISPR

Figure 7: Evaluation of two sets of 20 scientific articles. The line corresponds to expert evaluation, while the bars indicate fully
automatic evaluation (red), assisted evaluation by non-experts (light blue), and manual evaluation by non-experts (dark blue).
Best seen in color.

it is large, bringing non-expert scores about 1 point (out of 5) closer
to expert scores.

Table 4 and Figure 7 also includes a fully automated quality
evaluation, built using a weakly supervised classifier over all the
features we extracted. As weak supervision, we used the lists of
sites in different tiers of reputability (§6.2) and considered that all
articles on each site had the same quality score as the reputation
of the site. Then, we used this classifier to annotate the 20 articles
in each of the two sets. Results show that this achieves the lowest
error with respect to expert annotations.

7 CONCLUSIONS
We have described a method for evaluating the quality of scientific
news articles. This method, SciLens, requires to collect news articles,
papers referenced in them, and social media postings referencing
them. We have introduced new quality indicators that consider
quotes in the articles, the similarity and relationship of articles
with the scientific literature, and the volume and stance of social
media reactions. The approach is general and can be applied to any
specialized domain where there are primary sources in technical
language that are “translated” by journalists and bloggers into
accessible language.

In the course of this work, we developed several quality indica-
tors that can be computed automatically, and demonstrated their
suitability for this task through multiple experiments. First, we

showed several of them are applicable at the site level, to distin-
guish among different tiers of quality with respect to scientific
news. Second, we showed that they can be used by non-experts to
improve their evaluations of quality of scientific articles, bringing
them more in line with expert evaluations. Third, we showed how
these indicators can be combined to produce fully automated scores
using weak supervision, namely data annotated at the site level.

Limitations. Our methodology requires access to the content of
scientific papers and social media postings. Regarding the latter,
given the limitations of the data scrapers we have used only replies
to postings and not replies-to-replies. We have also used a single
data source for social media postings. Furthermore, we consider a
broad definition of “news” to build our corpus, covering mainstream
media as well as other sites, including fringe publications. Finally,
our methodology is currently applicable only on English corpora.

Reproducibility. Our code uses the following Python libraries:
Pandas and Spark for data management, NetworkX for graph pro-
cessing, scikit-learn and PyTorch forML, and SpaCy, Beautiful
Soup, Newspaper, TextSTAT and TextBlob for NLP. All the data,
code as well as the expert and crowd annotations used in this paper
are available for research purposes in http://scilens.epfl.ch.
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