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A B S T R A C T   

High-quality human annotations are necessary for creating effective machine learning-driven stream processing 
systems. We study hybrid stream processing systems based on a Human-In-The-Loop Machine Learning (HITL- 
ML) paradigm, in which one or many human annotators and an automatic classifier (trained at least partially by 
the human annotators) label an incoming stream of instances. This is typical of many near-real-time social media 
analytics and web applications, including annotating social media posts during emergencies by digital volunteer 
groups. From a practical perspective, low-quality human annotations result in wrong labels for retraining 
automated classifiers and indirectly contribute to the creation of inaccurate classifiers. 

Considering human annotation as a psychological process allows us to address these limitations. We show that 
human annotation quality is dependent on the ordering of instances shown to annotators and can be improved by 
local changes in the instance sequence/order provided to the annotators, yielding a more accurate annotation of 
the stream. We adapt a theoretically-motivated human error framework of mistakes and slips for the human 
annotation task to study the effect of ordering instances (i.e., an “annotation schedule”). Further, we propose an 
error-avoidance approach to the active learning paradigm for stream processing applications robust to these 
likely human errors (in the form of slips) when deciding a human annotation schedule. We support the human 
error framework using crowdsourcing experiments and evaluate the proposed algorithm against standard 
baselines for active learning via extensive experimentation on classification tasks of filtering relevant social 
media posts during natural disasters. 

According to these experiments, considering the order in which data instances are presented to a human 
annotator leads to increased accuracy for machine learning and awareness of the potential properties of human 
memory for the class concept, which may affect annotation for automated classifiers. Our results allow the design 
of hybrid stream processing systems based on the HITL-ML paradigm, which requires the same amount of human 
annotations, but that has fewer human annotation errors. Automated systems that help reduce human annotation 
errors could benefit several web stream processing applications, including social media analytics and news 
filtering.   

1. Introduction 

Filtering high-volume, high-velocity data streams is a typical process 
in many application domains such as journalism, public health, and 
crisis management. In this process, an avalanche of data must be filtered 
and classified to prevent recipient information overload and filter failure 
(Shirky, 2008). These continuous streams of data are often noisy, sparse, 

and redundant. Humans cannot keep pace with the high velocity and 
volume of data. A purely human-annotation based filtering system does 
not scale. These data streams are also problematic for purely 
automated/machine-annotation based filtering systems; depending on 
the application, they may have limited accuracy. In the case of super-
vised classifiers for such automated filtering, data sampled from previ-
ously collected streams can bootstrap classifier training. However, it is 
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invaluable to have annotations on samples specifically from the current 
data stream to adapt the pre-trained classifier model for the new data. 
Hence, to achieve high accuracy in this process, online human annota-
tion tasks are needed within an active learning paradigm (Gama et al., 
2014), sometimes at a large scale. Fortunately, social media and mobile 
devices have provided an unprecedented opportunity for the public to 
participate by volunteering in stream processing applications for digital 
humanitarianism, citizen science purposes, etc. A popular option for 
annotating complex data streams has been to create hybrid stream 
processing systems through a composition of human annotation tasks 
and automatic online classification (Imran et al., 2013; Lofi and Maarry, 
2014). 

In this paper, we study a hybrid online classification setting that 
categorizes relevant instances from a social media data stream using 
human annotation tasks and an active learning paradigm. Drawing on 
both classic (Ebbinghaus, 1913) and contemporary (Anderson, 2000) 
cognitive psychology, we analyze the effective decay related to atten-
tional processes (described below) in human memory in contributing to 
errors while doing human annotation tasks.1 

Data challenges in hybrid stream processing. A key challenge in stream 
processing is temporal variation in the concept space. This includes 
changes in the distribution of data that leads to change in decision 
boundaries (virtual drifts), changes in the population from which future 
samples will be drawn (population drift), and changes in the definition 
of a concept (concept drift) (Gama et al., 2014) as illustrated in Fig. 1. 
For example, consider the task of processing crisis-related instances 
posted on social media during a natural disaster, such as a hurricane. To 
find instances that can help emergency managers in a response agency, 
we need to categorize them as irrelevant or relevant for actionable 
services (Purohit et al., 2018b), and in the case of relevant instances, 
further categorize them into fine-grained information classes such as 
infrastructure damage, donations, and so on (Castillo, 2016). In this 
setting, both virtual drifts and population drifts occur as the crisis un-
folds. An example of virtual drift is content variation as a crisis evolves 
(Olteanu et al., 2015; Sutton et al., 2015). Consider a class concept such 
as caution and advice. In the beginning, instances might be urgent and 
generic, warning the public about a potentially dangerous event (such as 
a hurricane warning). Later, the same category of instances may become 

more specific and less urgent (such as warning people to avoid drinking 
contaminated water). An example of population drift is change in the 
prevalence of different class instances, which follow a certain progres-
sion across many events (Olteanu et al., 2015). For instance, immedi-
ately after a sudden onset crisis event, instances of caution and advice 
appear. Later on, other classes of information may be prevalent such as 
appeals for relief donations. These temporal variations are expected. 
They have a potential effect on annotation quality due to the learning 
behavior of human annotators about the representation of a class 
concept, which, in turn, impacts the entire system when used to train the 
automatic part of a hybrid system. 

Human challenges in hybrid stream processing. Human factors in the 
annotation process affect the quality of annotations for hybrid stream 
processing systems. Systems that rely on some form of crowdsourcing 
are affected by cognitive properties of human annotators, including 
their attentional heuristics (e.g., the fit with prior experience, the 
associated positive or negative affect) and vigilance (the ability to sus-
tain high attention over time) (Burghardt et al., 2018). High mental 
workload (e.g., demands on inference and decision making) causes a 
deterioration in annotation quality, known as annotator burnout 
(Marshall and Shipman, 2013), which can cause increased fatigue and 
reduced motivation to maintain accuracy. To prevent annotator 
burnout, one may cap the maximum number of annotation tasks per unit 
of time that the annotator must perform, which can reduce workload 
(Purohit et al., 2018a). Nevertheless, human error persists in the 
execution of annotation tasks. 

Psychologists distinguish between two types of human error: mis-
takes and slips (Reason, 2000). Mistakes result from incorrect or 
incomplete knowledge (Reason, 2000). In the annotation task context, 
this corresponds to annotators who have not yet grasped the concept to 
be annotated or who are annotating new instances for which they have 
not yet acquired a correct representation. Slips are errors in the presence 
of correct and complete knowledge (Norman, 1981; Reason, 2000), i.e., 
annotator knowledge is correct, but idiosyncrasies in the activation of 
this knowledge modify accessibility, resulting in an incorrect annotation 
assignment. Persistent slips after a large number of examples may result 
from vigilance decrements in underlying attentional processes (Wiener, 
1987). The classic serial position effect (Murdock, 1962) supports this 
distinction between knowledge-based mechanisms and attentional 
processes, in which early items are properly encoded and hence 
remembered while later items are only stored temporarily and subject to 
decay. Item order matters, particularly when the content to be acquired 
changes over time (Jacoby et al., 2001), as explained above under data 
challenges. 

1.1. Contributions 

This paper extends our prior conference publication (Pandey et al., 
2019), with the following new contributions.  

– First, we present a generic human error framework of mistakes and 
slips, adapted from the psychological theories that cover some 
common types of human errors and apply it to study human errors 
possible in an annotation task for streaming data, using the active 
learning system in a HITL-ML paradigm (Sections 3 and 4).  

– Second, we extend the validation of the proposed human error 
framework using a quantitative error model by presenting details of 
both lab-based and crowdsourcing-based testing experiments for the 
annotation task to filter relevant information from social media data 
streams collected during crises (Sections 5 and 6).  

– Third, we present a novel method for human error-mitigation in the 
active learning paradigm for designing a stream processing system 
against several baselines (Section 7). We also provide additional 
novel insights on different automated algorithmic approaches to 
prevent human error (Section 8). 

Fig. 1. Categories of drift in streaming data Gama et al. (2014).  

1 We appreciate the distinction between absent memory traces and the 
challenges of retrieval (Tulving and Pearlstone, 1966). For the purposes of this 
paper, the net result is memory decay that results in effective forgetting. 
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The application of the proposed human error framework can be used 
to design Human-AI collaboration strategies and improve the perfor-
mance of a human-in-the-loop approach for hybrid stream processing 
systems. 

2. Background 

2.1. Online active learning 

To the best of our knowledge, existing types of online active learning 
methods focus only on the possible machine/algorithmic errors. Prior 
literature (e.g., Almeida et al., 2018; Gama et al., 2014) provides 
extensive surveys of the different active learning paradigm-based 
methods. The primary categories include one group focused on a bet-
ter sampling of the instance space for querying (e.g., addressing concept 
drift Žliobaitė et al., 2014), and another group focused on better 
learning of a discriminatory model. 

To improve sampling of the instance space, prior research has 
explored different mechanisms to drop the outdated/drifted class in-
stances. The simplest way is to consider a fixed window over instance 
sequence and sample past instances from that window as they arrive. 
Windows can be specified by size and sampling on a first come first serve 
basis, or by time and sampling of instances from the last t seconds/mi-
nutes/hours. These approaches do not represent well the characteristics 
of a data stream. Hence, alternative approaches were utilized in the past 
that uniformly sample and therefore, retain the characteristics of the 
underlying incoming stream of instances (Delany et al., 2005; Ng and 
Dash, 2008; Salganicoff, 1993; Vitter, 1985; Yao et al., 2012; Zhao et al., 
2011; Žliobaitė, 2011). Other work does not completely drop all past 
instances but instead, reduce their weights for updating the classifier by 
an age-dependent factor (Helmbold and Long, 1994; Klinkenberg, 2004; 
Koren, 2010; Koychev, 2000; 2002). 

To improve acquisition of the discriminatory model, prior research 
has mainly explored two strategies. The first is called the blind adaptation 
strategy, which retrains the model without any detection of changes 
(Klinkenberg and Joachims, 2000; Klinkenberg and Renz, 1998; Lan-
quillon, 2001; Widmer and Kubat, 1996). The other way of improving 
learning includes an informed strategy, which updates the model 
whenever a certain criterion is fulfilled like change detectors (Bifet and 
Gavaldá, 2006; Hulten et al., 2001). These criteria can also be aligned 
with the adaptation strategy (Gama et al., 2006; Ikonomovska et al., 
2011), called model-integrated detectors. 

Our research premise is that the improvement of both types of the 
above active learning methods for stream processing systems require 
consideration of potential human annotation errors during the querying 
process as well, to be efficient and accurate in predictive model learning 
for the classifier. For simplicity, our method builds upon the blind 
adaptation strategy, which updates the model as we sample the in-
stances in a sequence-based window. 

2.2. Human annotation task and psychological processes 

Annotation quality can be affected by many factors. At the most basic 
level, a human annotation task can be conceptualized using signal 
detection theory (SDT) and its two fundamentally distinct parameters of 
discriminability (d’) and decision criterion bias (beta). Discriminability 
concerns the relationship between the mean signal strength of the dis-
tributions of positive and negative class instances. Nearly overlapping 
distributions pose difficult discrimination, such as using photographs to 
distinguish older from younger individuals that are close in age, whereas 
the overlap in signals is much smaller for gender discrimination from 
photographs (Nguyen et al., 2014). beta in signal detection theory is an 
independent parameter, concerning the position of the decision criterion 
on these overlapping distributions, dropping it down to be more liberal 
to reduce the chance of misses (false negatives) or moving it up to be 
more conservative to reduce the chance of false alarms (false positives). 

The classic manipulation of beta is achieved by the imbalanced distri-
bution of positive and negative class instances or weighing the cost of 
misses and false alarms differently. 

Signal detection theory has been applied to the analysis of sequential 
industrial inspection tasks, resulting in the supposition of a vigilance 
decrements that affects judgment quality over time (Mackworth, 1948; 
Wiener, 1987). This classic approach fails to recognize change over time 
in the relevant features in the data. Moreover, though influential in the 
perception literature, signal detection theory also fails to address several 
issues that arise in conceptual judgment tasks. Much later, Kahneman 
and Tversky (1979) elaborated a theory of bias to describe incoherence 
in decision making depending upon the influence of contexts such as 
prior belief or loss aversion. In this sense bias is an umbrella term to 
characterize the systematic departure of decisions from rational anal-
ysis, which can account for a human annotator’s errors given a drifting 
data stream. 

The annotation task is typically multi-class for a variety of applica-
tions that adds task complexity and hence, cognitive demand on the 
annotator. Following an initial training period, the failure to attain 
agreement between annotators on a multi-class coding scheme, known 
as inter-rater reliability in the social sciences (Creswell and Poth, 2016) 
has been generally attributed to a flawed coding scheme, rather than the 
cognitive challenge of learning the scheme and systematically applying 
it over time. 

Similarly, for information scientists developing machine learning 
models for data analytics, the appreciation of annotation as a psycho-
logical process emerges from the requirement for annotating large 
training datasets over an extended period of time, where each judgment 
matters. Although human annotation is often regarded as a gold stan-
dard, information scientists have noted that class imbalance leads to 
difficulties in appropriately representing the minority class to help 
human annotators learn the class concepts (Bröder and Malejka, 2017; 
Grant et al., 2017). Information scientists have also observed that 
annotation styles affect human annotation quality to factors such as 
objectivity and descriptiveness (Cheng and Cosley, 2013). Furthermore, 
annotation expertise affects quality, particularly in difficult tasks 
(Hansen et al., 2013). Item position with respect to its class concepts 
(referred to as “annotation schedule”), cognitive demand, and atten-
tional processes may lead to annotation error (Burghardt et al., 2018). 
Missing from both theory and method for human annotation tasks is a 
framework to organize and investigate specific human error types in the 
annotation tasks of hybrid stream processing systems. Moreover, unlike 
purely psychological research, the erroneous annotation of an individual 
item has consequences for the machine learning model, which learns to 
automate the data annotation process. 

3. Human error framework 

Our focus on a human error framework is intended to reveal the 
different human reasoning processes that result in erroneous annota-
tions. We assume a preliminary phase of the annotation task where in-
struction provides an initial understanding. However, this preliminary 
phase results in a mental representation of the concept (e.g., infra-
structure damage during a disaster) at the beginning of an extended 
annotation task that is only partial, in the sense that the changing 
boundaries and nuances about a concept are learned while the annota-
tions are performed. We also assume that the annotator can develop a 
mental representation of a concept by seeing a sufficient number of 
examples of this concept, even in the typical case where the examples 
are not annotated a priori. 

Following Reason (2000)’s human error taxonomy built on Norman 
(1981)’s theory and broadly applied, including the analysis of medical 
domain errors (Zhang et al., 2004), we distinguish two classes of errors 
for the human annotation task: mistakes and slips. Mistakes result from 
the absence of a correct cognitive representation of a concept. Slips are 
errors that happen despite acquiring the correct cognitive representation 
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of a concept. Based on these broad classes, we present a framework of 
human errors in the annotation task for stream processing in Table 1 and 
explain the main error types below. We do not claim that all classes of 
human errors are equally prevalent or are equally consequential. 

3.1. Serial ordering-induced mistakes 

The annotation schedule in which the tasks are presented to an 
annotator may prevent the annotator from adequately apprehending a 
concept, hence introducing mistakes. The main types of mistake include:  

• Concept not acquired yet: The annotator is asked to annotate an 
instance of a class for which s/he has not seen a sufficient number of 
examples to learn the concept overall.  

• Erroneous concept with missing or extraneous features: At best this 
blends categories and at worst creates uncertainty. 

3.2. Serial ordering-induced slips 

The annotation schedule in which judgments occur may cause slips, 
in which the annotator erroneously annotates an instance even if s/he 
has a correct representation of its concept. We identify two main cases 
for the types of slips: 

• Slip favoring an available activated concept: In this case, meta-
cognitive monitoring (vigilance) is suspended, resulting in an 
instance label that comes easily to his/her mind. Serial position, 
particularly the persisting activation of recent judgments, especially 
when reinforced with repetition has the potential to exacerbate slips 
that result in a false alarm (false positive).  

• Slip ignoring a minimally available concept: The complement of 
activation is effective inhibition. In this case, the correct category 
does not come to the annotator’s mind, because its activation is too 
small compared to other categories. The annotator has not forgotten 
the concept, but it is inaccessible, resulting in the application of the 
available label instead of the correct one. This results in a miss (false 
negative). 

Because slips result from activation failures of fundamentally correct 
knowledge, concept training is unlikely to help. Both cases result from 
extreme local divergence from the base rate or the loss of metacognitive 
function, boredom, or fatigue. These can be addressed with proper 
annotation schedules. 

Both types of errors described above, induced by primarily serial 

ordering constraints, are particularly vulnerable to a classification 
scheme that changes over time and underlying processes of proactive 
and retroactive inhibition on knowledge acquisition. As a whole, mis-
takes can be reduced by ordering instances to facilitate learning. This 
includes both a sufficient number of examples of each concept presented 
and reminders from old concepts, so that the annotator reinforces 
persistent and emergent critical distinctions between classes. Because 
the observable behavior (erroneous classification) is the same for both 
slips and mistakes, but the mitigation is different, the technical chal-
lenge is to identify the mechanism behind the observed error. 

3.3. Other influences (temporal and environmental constraints) that 
induce mistakes and slips 

As described in the background section, time and environmental 
constraints such as workload and its resulting stress during the anno-
tation task can also cause human error. These constraints can cause 
vigilance and oversight challenges to the human annotators, causing 
slips and potentially, mistakes due to insufficient attention spent on the 
example instances to learn the concept. To limit the scope for the first 
study on such human annotation framework for stream processing ap-
plications, we do not consider such constraints in the experimentation 
and plan to explore these in future work. One of the future explorations 
to address such constraints include providing work specification, an 
amount of work, and a working environment that is appropriate, 
providing pauses to the worker, and so on. 

In the following sections, we present three different experimental 
frameworks to reason about the existence of human errors and their 
mitigation by an algorithm: lab-based, crowdsourcing-based, and 
simulation-based. The lab-based error testing framework is similar to the 
conventional approach to experimentation in psychology, with greater 
control over the annotation task environment; however, a lab-based 
framework is difficult to scale to multiple annotators. The 
crowdsourcing-based approach can help to remedy the scalability 
challenge of the experimental setup. However, it provides less control on 
the setup to capture the annotators’ behavior and their unacquired 
knowledge. Lastly, the simulation-based approach allows us to generate 
the streaming data samples, emulate human errors through an auto-
mated agent (referred ‘oracle’), and demonstrate error mitigation 
techniques. However, it may oversimplify observations of the real world 
and thus, could not capture the behaviors of all the different human 
annotators out there. 

4. Annotation task for hybrid stream processing systems 

A hybrid stream processing application requires human annotation 
to adapt and improve the classification model continuously with new 
annotated instances. We define the specific annotation task for human 
error testing and mitigation to classify an instance from a given 
sequence/stream of Twitter instances (tweets) into k classes. 

We use labeled datasets from prior work in crisis informatics that 
contain labeled tweets related to natural disasters (Alam et al., 2018). 
We re-crawled the tweet instances from Twitter’s API for acquiring 
metadata such as timestamp and discarded any tweets deleted since the 
data were originally collected. The three natural disasters include major 
natural hazards affecting Central and North America in 2017 “Hurricane 
Harvey, Hurricane Maria, and Hurricane Irma. The labels were created 
using a crowdsourcing platform, classifying instances into four major 
categories:  

• infrastructure and utility damage (c1): information about any physical 
damage to infrastructure or utilities 

• rescue, volunteering, and donation effort (c2): information about of-
fering help through volunteering efforts by a community of users 

• affected individuals (c3): information about the condition of the in-
dividuals during this disaster event 

Table 1 
Framework of human annotation errors in hybrid stream processing applica-
tions. [*empirically studied in this article].  

Type of error Potential cause Mitigation approach 

*Mistakes induced by 
serial ordering 

• Concept not acquired 
yet  

• Show frequent concept 
examples for learning, 
potentially informed by 
judicious selection such as 
near misses  

*Slips induced by serial 
ordering 

• Imbalanced presence of 
a high-availability 
concept or a low- 
availability concept  

• Limit extreme divergence 
from base rate for concept 
instances  

Mistakes and slips due to 
temporal and 
environmental 
constraints 

• Concept memory 
decayed due to oversight 
in rapidly finishing the 
annotation task  

• workload and stress of the 
external environment 
causing vigilance 
challenges in learning a 
concept   

• Intervene reminders for 
concept examples  

• Limit the number of 
concepts to annotate or the 
number of instances in a 
time unit   
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• not relevant or cannot judge (c4): instance either does not contain any 
informative content or hard to decide. 

We considered human labels with a confidence score (computed by 
the crowdsourcing platform for agreement between multiple annotators 
(Alam et al., 2018)) greater than 65% for ground truth labeled instances 
in our experimentation. 

5. Lab-scale annotation error testing 

5.1. Overview 

We focus on verifying the effect of decayed memory behavior 
(Ebbinghaus, 1913), which underlies the above-mentioned error types 
of serial ordering-induced mistakes & slips and impacts the performance 
of both human annotation and ML models in the hybrid stream pro-
cessing system. 

5.1.1. Memory decay curve 
Psychologists have been studying memory-decay behavior in the 

context of learning and acquiring new knowledge for more than a cen-
tury. The Ebbinghaus Curve “shown in Fig. 2” is a fundamental and 
enduring contribution to the study of human memory. We observe from 
Fig. 2 an exponential decay of memory retention as the time since first 
learning passes. This exponential behavior has been widely observed in 
the psychology literature (Brown, 1958; Melton, 1963; Peterson and 
Peterson, 1959). Moreover, Loftus (1985) and Anderson and Schooler 
(1991) have used an exponential function with respect to time to model 
memory decay or retention. Hence, inspired by the Ebbinghaus curve, 
we model the decaying score for the memory retention of an annotator 
for a particular class (c). Specifically, we model the decaying score for c 
by observing how the annotator correctly annotates instances as an 
exponential function over time tc lapsed over its last seen annotated 
instance. We define the decaying score(c) function in Eq. (1) below: 

decaying score(c)∝e− tc (1) 

Moreover, to compute the probability of human annotators making 
an error, we use a function that is a vertical reflection of the afore-
mentioned decaying score(c) function along the x-axis. For our experi-
ments, we assume a parameterized sigmoid function to compute the 
annotation error probability given the similar asymptotic nature of the 
vertical reflection of the exponential memory decay curves. We define 
the error probability score function in Eq. (2) below: 

error probability score(c) = γ ×
1

1 + e− αtc+λ (2)  

Here the parameters α, λ, and γ represent different memory decaying 
intensities of human annotators. As each human annotator has indi-
vidual memory retention capability, the intensity of making errors in 
annotations varies for different human annotators, and hence these 
parameters help mimic different human memory decay behavior. For 
verifying the above function for human memory decay, we conducted a 
small-scale controlled lab study. 

5.2. Participants 

We selected three students working as Graduate Research Assistants 
at an Information Technology research lab on social media research to 
volunteer in this study. The participants included one female and two 
male students (authors refrained from participation), and all of them 
were in the age range of 25–30. These students have been working with 
social media mining for more than six months. They have routinely 
participated in categorizing social media messages in the past. Hence, 
they were well acquainted with social media messages during emer-
gencies and were given a brief training session and clear instructions on 

annotating different class instances. 

5.3. Design 

The experiment used an annotation system for the annotation task 
defined in Section 4. The input was a sequence of tweet instances for the 
Hurricane Harvey disaster. This synthetic input sequence contained in-
stances with a random amount of irrelevant instances (noise) between 
ground truth annotated instances of any class to better observe human 
memory decay of the class and resulting errors. We added between one 
to four irrelevant instances (randomly selected) between each of the 
ground truth annotated instances, and they were marked as “not_rele-
vant_or_cant_judge”. Our data stream contained 800 instances. 

5.4. Procedure 

All annotators were asked to annotate the instances into four class 
labels. Three annotators labeled a given instance in the stream sepa-
rately, with no ability to backtrack. 

5.5. Method 

Once we collected the three annotators’ responses, we observed 
whether or not the annotators reveal memory decay effects for that class. 
Given the correct class concept for a given instance, we first store the 
time difference since we last observe any previous instance of that class 
concept. Moreover, we store the number of annotators who identified 
the correct class concept of that given instance. We plot the number of 
annotators who correctly identified the class concepts and the time 
difference for every instance. 

5.6. Results 

Fig. 3 shows the plot of how many instances of each class were 
correctly identified with respect to the time difference (in steps) be-
tween the appearance of consecutive instances of that class in the data 
stream. The size of the circle represents the number of instances that ‘y’ 
annotators have correctly annotated with ‘x’ time difference since they 
last observed that class instance in Fig. 3. Due to the sequential nature of 
the experiment, most of the class instances appear in very few (< 10) 
steps, and hence, the figure is left-skewed. Moreover, we observe that 
many annotators incorrectly annotate the instances despite the class 
instances appearing frequently. This shows that multiple other in-
fluences can cause the annotators to make errors as described in Section 

Fig. 2. The effect of memory decay studied in Psychology (Ebbinghaus, 1913) 
over time in learning or retaining conceptual knowledge. We investigate such 
effects of memory decay on the human annotation quality for hybrid stream 
processing systems and corresponding mitigation approaches. 

R. Pandey et al.                                                                                                                                                                                                                                 



International Journal of Human - Computer Studies 160 (2022) 102772

6

3. However, we also observe that when the time difference between the 
class concepts increases, the chance of the annotators correctly identi-
fying the class decreases exponentially and finally tends to zero correct 
annotation. In comparison, the highest chance of all the annotators 
picking the correct class in annotating an instance is when the time 
difference is close to zero. 

5.7. Discussion 

These results support the quantitative model of memory decay 
behavior as described in Section 5.1.1, verifying the exponential nature 
of memory decay (ref. Eq. (1)) of annotators as they last see the instance 
of a particular class. Hence, we use an exponential function to compute 
the memory decay score for each class in our proposed Error-Avoidance 
Sampling technique for error mitigation described in Section 7.1.3. 
Moreover, as discussed in Section 5.1.1, a parameterized sigmoid-based 
error probability function from Eq. (2) can be used to induce an error in 
our algorithmic simulation experiments, later on, mimicking the real- 
world environment for a human annotation task in the stream process-
ing systems. We understand that the number of instances with large time 
steps was low. Hence, increasing the number of instances and the 
number of annotators would have shown more explicit exponential 
behavior of memory decay. Further, we observe a high inter-rater 
agreement (0.82 Cohen’s Kappa score) between two of the three anno-
tators, which is higher in comparison with the similar social media 
annotation task in the literature (0.68 Cohen’s Kappa score from Zhou 
et al., 2021), but the third annotator had low inter-rater agreements 
with the other two (0.48 and 0.46 Cohen’s Kappa score respectively). 
We also observe that with the increase in time difference, none of the 
annotators could correctly identify a class. Within the limitation of the 
scalability of a lab-scale study, we still achieve the same exponential 
decay behavior widely studied and suggested by the past psychology 
literature (Anderson and Schooler, 1991; Loftus, 1985). Furthermore, 
our proposed error testing and mitigation approach can use any func-
tion, which closely resembles the vertical reflection properties of the 
exponential function and not just the sigmoid function as an 
error-inducing function. 

6. Crowd-scale annotation error testing 

6.1. Overview 

Our crowdsourcing-based experiments seek to measure the preva-
lence of both mistakes and slips, and the conditions under which these 

appear. The goal of these crowd-scale experiments is to motivate the 
design of algorithms seeking to minimize these errors. 

6.2. Participants 

We asked ten human judges to annotate six fixed sequences of in-
stances per schedule for two schedules using the crowdsourcing 
platform. 

6.3. Design 

For the crowd-scale experiment, we generated two types of annota-
tion schedules for the task described in Section 4, corresponding to 
mistakes and slips. For practical reasons of the cost and time of crowd-
sourcing, we limited the length of the schedules to 20 instances. For 
constructing the schedules, we used the labeled data as ground truth, 
and based on the labeled data distribution, we chose the minority class 
c3 (instances about “affected individuals”) as our target class for error 
analysis. The selection of c3 as the target class is used as an example to 
create a different annotation schedule because it was appearing the least 
in the data distributions, and hence, more prone to error. 

For studying slips induced by serial ordering, we examine the case 
when instances of a target class (c3) are positioned with a mix of short 
and long gaps in the annotation schedule. 

We assume that non-uniform and infrequent occurrences cause the 
annotators to deactivate the knowledge of the target concept class, 
potentially leading to memory decay behavior. Thus, we hypothesize 
that the annotation error per position of the target class instance should 
increase at the end of the annotation schedule (H1). Similarly, we study 
mistakes induced by serial ordering when instances of a target class (c3) 
are positioned with equal gaps in an annotation schedule. We observe 
the annotation error at each position in the schedule where an instance 
of the target class appears. We permute the instances of the target class 
on these positions. We hypothesize that uniform and frequent occur-
rences would allow the annotators to acquire the knowledge of the 
target class slowly. Thus, we hypothesize that the annotation error per 
position of the target class should reduce as we move toward the end of 
the annotation schedule (H2). 

The first annotation schedule corresponding to slip errors (H1) is {c4, 
c1, c2, c3, c1, c3, c4, c1, c4, c1, c4, c2, c1, c4, c1, c2, c4, c2, c4, c3} and 
the second schedule corresponding to mistake errors (H2) is {c4, c1, c2, 
c1, c4, c2, c1, c4, c3, c1, c2, c4, c3, c1, c2, c1, c3, c2, c4, c4}. The 
underlined class label indicates the occurrence of target class instances 
and their position for analysis. For the three positions of the target class 
(c3) in an annotation schedule, we permuted the instances shown in 
those positions, leading to six experimental cases for each type of 
schedule. 

6.4. Procedure 

We used the Figure Eight platform (now called Appen) to obtain 
annotations for each type of experimental case. Initially, each partici-
pant was given a set of example tweet messages for each class label to 
train them for the annotation. Next, they were asked to annotate 20 
instances into the four labels described in Section 4. For simplicity of the 
labeling process, we separated the fourth label described in Section 4 
into “not relevant” and “cannot judge” respectively. We specified that 
the users should only look at the text while picking the label and not 
open any external link. The compensation amount for each task was 
$0.15. Figure Eight platform uses several layers of protection to prevent 
inattentive workers. It encourages workers to maintain a high reputation 
within the system and removes anomalous workers, including auto-
mated responses (“bots”). They also indicated whether the response was 
tainted or not in any form, and we only included non-tainted responses. 
After filtering all the tainted responses, we extracted a total of 120 re-
sponses for the two schedules. The reason for collecting many responses 

Fig. 3. The temporal distribution of correct answers by human annotators 
shows a similar pattern as Fig. 2 for memory decay behavior. The probability of 
incorrect answers (error) increases for annotating a given instance in the 
sequence with increased steps between instances of the same concept. 
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from the crowdsourcing platform is to avoid the chances of other kinds 
of error influences such as inattentiveness, workload, and stress to 
overpower the cause of serial-ordering-based errors due to our proposed 
schedules. 

6.5. Method 

With the Figure Eight platform, we could not enforce participants to 
participate in only one experiment. Therefore, we filtered out the re-
sponses from participants who have participated in multiple experi-
ments. As a result, after filtering, we got 44 responses for the slips-based 
annotation schedule and 38 responses for the mistakes-based annotation 
schedule, respectively. Once we filtered out the responses from dupli-
cate participants (who participated in multiple experiments), we 
analyzed the responses on both types of annotation schedules. We 
extracted annotations of the target positions for each response and 
checked if the annotators had incorrectly labeled to any class label other 
than c3. If incorrectly labeled, we considered the error score as one, else 
zero. We accumulated error scores from all the responses made at first, 
second, and third positions, respectively. Next, we took the union of the 
errors made at the first and second positions and compared this with the 
third position’s error using statistical significance testing. 

6.6. Results 

Table 2 shows the results of crowdsourcing for the micro-average 
error rate (average error by an annotator for a given target instance) 
at the positions of the target class in the schedule. We note inverse 
functions for the position effect on the potential knowledge acquisition 
and human error, depending upon the manipulation. The high micro- 
average error rate at the third position for slip error type supports the 
distinction with respect to the placement of the target instance. We also 
ran a paired two-tailed t-test to observe any statistically significant 
difference between the errors of the specific positions. For the slip 
errors-based annotation schedule (H1), we observe t(43) = − 2.20 with 
p-value of 0.03 < 0.05, whereas we observe t(37) = 1.87 with p-value of 
0.07 > 0.05 for the mistake errors-based annotation schedule (H2). 

6.7. Discussion 

From the paired two-tailed t-test results mentioned above, we found 
a significant difference (p-value = 0.03) for the error between the last 
position and the average of the earlier two positions in a sequence that 
depicts slips due to potentially memory decay of the knowledge of the 
target class. This shows that a significant gap with no occurrences of a 
class indeed increases annotation errors for that class and suggests 
frequent reminders of the concept/class are needed in a sequence for 
annotation tasks, and hence, the hypothesis H1 made for slips error was 
accepted. Whereas, with due to the low degree of freedom (37) and p- 
value of 0.07 > 0.05, we cannot accept or reject the hypothesis H2 as we 
cannot rule out a difference between the error at the last position and the 

average of the earlier two positions in the case of some annotations (p- 
value of 0.07). However, it is a major challenge to model the acquisition 
of knowledge for a concept due to a lack of information on the prior 
knowledge or experience level of the annotators, and hence, we could 
not validate the hypothesis made for the error type mistakes. We discuss 
these limitations in Section 8. Motivated by these promising results, we 
next describe large-scale simulations and algorithmic solutions to miti-
gate such human errors in the HITL-ML paradigm-based stream pro-
cessing applications focusing on slips due to potential memory decay. 

7. Simulation-based error testing and mitigation 

We simulate the annotation task in an active learning paradigm for 
online stream processing (Žliobaitė et al., 2014). We design a novel 
method for generating a dynamic annotation schedule (instance sam-
pling and ordering) for an annotator (simulated “oracle”) such that the 
schedule attempts to minimize human errors (Serial Ordering-induced 
Slips) and maximize the overall performance of the active learning 
paradigm. 

7.1. Mitigation algorithms 

Our method first samples a batch of m instances from a time interval 
[ti, ti+1) by using a conventional uncertainty sampling algorithm for an 
active learning paradigm, followed by applying constraints to select only 
n (n < m) instances for annotation that minimize the potential human 
memory decaying error, and then, update the machine learning model 
for predictions in the next time interval [ti+1, ti+2). For annotations by 
“oracle” in the simulation, we use ground truth labels (c.f. Section 4) 
along with the memory decay to simulate human errors (explained later 
in Section 7.3). We propose three types of algorithms (the first two being 
the baselines) based on diverse sampling strategies for selecting in-
stances to annotate at the end of time interval [ti, ti+1): 

7.1.1. (Baseline) Algorithm 1: random sampling 
We randomly sample n instances from the batch of m streamed in-

stances in the recent interval of [ti, ti+1). We hypothesize that random 
sampling can address the issue of data distribution changes for concept 
drift by selecting an instance from any region in the concept space, 
although it may be inefficient to improve learning performance over 
time. For consistency, we use an equal number of samples for this al-
gorithm to the number of instances sampled by the popular active 
learning paradigm of uncertainty sampling, as described next. 

7.1.2. (Baseline) Algorithm 2: uncertainty sampling 
We predict the classes of the incoming batch of instances with the 

current active learning algorithmic model. At the start of the time in-
terval of [ti,ti+1), along with the new incoming instances, we also receive 
a model, which was trained with all the annotated instances before ti. 
We use this model for prediction. After prediction, we select the classi-
fied instances with uncertainty in the prediction confidence – proba-
bility in the range of [30%, 70%]. We provide the uncertainty region 
instances to the oracle and obtain its annotations. We hypothesize that 
the model will become more robust if it starts learning from the cases on 
the decision boundary region (Winston and Brown, 1984). 

7.1.3. (Proposed) Algorithm 3: error-avoidance sampling 
This algorithm relies on uncertainty sampling to first select candi-

date instances from uncertain regions. It then discards the instances 
whose predicted class (from the model received at time ti) could either 
add noise to the new model or tend to be forgotten by the oracle (i.e., 
memory decay in human learning behavior toward that class). The 
algorithmic flow is formally described in Fig. 4. 

Specifically, at the beginning of each interval [ti,ti+1), we receive four 
information components described below: 

Table 2 
Annotation errors in the three positions of the target class instance (c.f. 
description in Section 6), observed after 44 and 38 filtered crowdsourced re-
sponses on two types of annotation schedule respectively. The p-value indicates 
the statistical significance for the difference between the error at the third 
studied position in comparison to the union of the errors at first and second 
positions.  

Error 
type 

Potential cause 1st position 
error 

2nd 
position 
error 

3rd 
position 
error 

p- 
value 

Slip decayed 
knowledge 

0.32 0.18 0.48 0.03 

Mistake unacquired 
knowledge 

0.13 0.25 0.18 0.07  
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– Incoming Instances. All incoming streams of instances at time in-
terval ti shown by a string of tweet symbols in Fig. 4.  

– Model. Streaming active learning model, which is trained with all 
the instances that are annotated by the oracle before ti.  

– Error Matrix. This is a matrix that contains information about each 
instance annotated by the oracle from the previous two intervals (i. 
e., [ti− 2, ti− 1) and [ti− 1,ti)) and the current interval (i.e., [ti,ti+1)). Each 
row in the matrix represents an annotated instance and contains 
information about its arrival time, annotated class by the oracle, and 
the set of per-class prediction error. The per-class prediction error for 
a class is the average error of predictions for the annotated instances 
of the class present in the current error matrix, and it is computed 
using the active learning model updated with the current instance. 
For example, if an instance X has been annotated with class c3 by the 
oracle at time tX, we store the values X, tX, and c3 to the error matrix. 
In addition, we also have column information for per-class prediction 
error as E(ci

⃒
⃒cj) where iϵ[1, num class], jϵ[1, num class], and i ∕= j. In 

our case num class = 4. In this example, all values of E(ci
⃒
⃒cj) for iϵ[1,

4] and jϵ{1, 2,4} are copied from the previous row to the current row 
for time tX, as the current instance that has arrived is annotated with 
class c3 (i.e., j = 3). Next we calculate E(ci|c3) for iϵ[1,4]. 

For computing E(ci|c3) at time tX, we predict all previous instances 
in the error matrix with the updated active learning model (re- 
trained with the annotated instance X). Next, we calculate the per- 
class F-measure (F measure(ci)) where the annotated class is 
considered as true class to compare with the predicted class, and 
thus, we compute per-class prediction error (1 − F measure(ci)). 
Finally, we get the per-class prediction error E(ci|c3) for each class ci 
in the final row of the error matrix for the instance X. This error 
matrix helps in determining a class to discard as explained next.  

– Discarded Class (Cdiscarded). This represents the class that has 
induced the most errors to the other classes or whose instances 
appear very frequently, causing memory decay for instances of other 
classes. To identify the discarded class Cdiscarded, we first compute the 
error avoidance score and decay score for each class to get its final 
score (explained below) and then, choose the class which has the 
highest final score. 

Algorithm steps. We now go through the flow of our proposed algo-
rithm summarized in Fig. 4 and refer to corresponding functions and 

variables in parenthesis. First, for each instance X (represented by a 
tweet symbol in Fig. 4), we predict its class based on our current model 
received at ti. Second, we select the instances that are in the uncertain 
region (dark-colored tweet symbols) and are not predicted with the class 
that is Cdiscarded. We believe that at each interval, Cdiscarded represents a 
class whose instances cause error in the active learning model. Third, we 
schedule the selected instances for annotation by the oracle and update 
our model (UpdateModel function). Finally, we update the error matrix 
by adding a row for instance X, and storing values as per the error matrix 
definition. 

To decide which class to discard, we compute two scores: error 
avoidance score and decay score. The error avoidance score determines 
the total error induced in the model for other classes due to the addition 
of the current instance into its training set. While the decay score de-
termines the class that appears with excessive frequency in the stream, 
causing memory decay for other classes and thus, leads to annotation 
error. Note that we use the error matrix to decide the classes to discard 
only after the first three intervals. 

We calculate the error avoidance score for each class cj (jϵ[1,4]) as: 

GetErrorAvoidanceScore
(
cj
)
=

∑m

k=0

∑n

i=0
Ek,(ci ,cj) (3)  

where k is the total number of instances in the error matrix. 
Next, we calculate the memory decay score to determine which class 

appears too frequently in the stream. For each class cj, we calculate the 
score as: 

GetDecayScore
(
cj
)
= e− ΔTj (4)  

where ΔTj is the time difference from the recent two occurrences of the 
instances of class cj in the error matrix. Note that the GetDecayScore 
function is a simplified version of the decaying score function defined in 
Eq. (1). We have not parametrized this function as we generalize this 
decaying factor the same for all humans. Hence the memory decay score 
only depends on the time since the last viewed class instance irrespective 
of the different decaying intensities of different humans. Additionally, 
we observe that the memory decay score for any class is reset every time 
that class instance gets picked for annotation. Moreover, as the time 
difference increases, the decay score decreases exponentially similar to 
the behavior of memory decay in psychology, which has been discussed 
in the lab-scale experiment in Section 5. 

Fig. 4. Summary of the proposed Error-Avoidance 
Sampling-based human error mitigation algorithm. 
At every interval, the streaming model predicts the 
potential class labels with uncertainty. The uncer-
tain instances and instances of the discarded class 
label are filtered out, and the remaining are anno-
tated by the oracle, which mimics the memory 
decay of human annotators. Based on the new an-
notations, the streaming model is updated, and the 
next class concept to discard is computed to avoid 
human errors in the annotation.   
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Lastly, the final score for each class cj is defined as: 

Scorecj = GetErrorAvoidanceScore
(
cj
)
× GetDecayScore

(
cj
)

(5) 

Once we calculate the final score for each class, we determine the 
class cj with the highest score as the error-inducing class to discard 
(GetDiscardedClass function). We observe that while choosing the dis-
carded class at each interval, we are not only looking for the memory 
decay factor but also the input text of the instance and the effect it has on 
the model performance for other class labels. 

7.2. Simulation experiments 

We describe the data preparation for the simulated stream processing 
task and the active learning paradigm. 

Data preparation We use labeled datasets from three major hurricanes 
in Central and North America as described in Section 4. We split the data 
into training, test, and warm-up sets. Twenty percent of the whole 
dataset is used as a test set. From the remaining 80% of the data, we 
randomly picked n instances (n = 20) of each class to create a warm-up 
set; the rest constitutes the training set. As we have a class imbalance in 
our data, we use an equal number of instances across classes for creating 
our warm-up phase model for robustness. The training data are sorted 
based on the arrival time of an instance (tweet) in the stream. After 
sorting, we divided the data into equal bins of size N. At each interval, N 
instances would arrive for annotation and get filtered for inclusion in the 
training set based on our mitigation algorithms. 

We fix N based on volume as our labeled dataset is not continuous in 
a real-time setting but is distributed over an extended period, given it 
was annotated through a crowdsourcing method in prior work. Hence, 
we cannot fix N based on time units (seconds, minutes, etc.), but our 
approach is generic and applicable for other scenarios. 

7.3. Active learning environment 

We implement the active learning paradigm following previous work 
(Žliobaitė et al., 2014). First, we train the base model with the warm-up 
set and then, keep updating with the new incoming instances sampled by 
our baseline or proposed algorithms. 

We used a fairly standard set-up for text classification, using pre-
trained GloVe-Twitter embeddings (Pennington et al., 2014) with 200 
dimensions for generating word-level features and then averaging the 
word-level embeddings to represent tweet-level features. We train a 
linear SVM model and measure the performance on the fixed test set. 

For every interval ti, we receive N instances for seeking the annotator 
feedback to acquire more labeled data for retraining the current model. 
Depending upon the mitigation algorithms, i.e. Random, Uncertainty, or 
Error-Avoidance Sampling; we sample the instances to obtain annota-
tions from the oracle. To mimic human behavior, the label for the 
instance given by the oracle annotator is not always correct. Based on 
the lab-scale experiment’s discussion in Section 5, we note that the error 
probability score for annotators making errors in annotation can be 
depicted using a parameterized sigmoid function in our annotation task. 
Thus, we utilize the value of a sigmoid function with different param-
eters to find the probability that the oracle generates a correct or erro-
neous label due to memory decay of the class as given in the formulation 
of Eq. (2). We define the “Memory Decay” component in Fig. 4 precisely 
to the oracle to highlight this memory decay behavior of the oracle. We 
use 3 different parameter settings to add errors through the memory 
decay behavior of the oracle (annotator): 

1) Slow decaying: computes a sigmoid function with parameters esti-
mated from errors observed in the crowd experiment: α = 0.0434, λ 
= 0.9025, and γ = 0.75.  

2) Fast decaying: uses a sigmoid function that converges to 1 faster 
than the slow decaying and induces errors more frequently: α =

0.03, λ = 1.00, and γ = 1.00.  
3) No decaying: assumes that our oracle always gives the correct labels 

and does not have any memory decay of the knowledge of any class. 
Hence, we use the true ground truth labels for each annotation. 

7.4. Results 

We experimented across three event datasets for a robust evaluation 
of our simulation algorithms. These event datasets have a varying 
number of instances per interval: Hurricane Harvey has N = 36, Irma 
has N = 59, and Maria has N = 18. Therefore, our results have taken 
into account the different burstiness of the streaming data instances 
during the real disaster event. We report the AUC scores for every 
experiment on the fixed test set per event. Fig. 5 shows the AUC scores of 
our three mitigation algorithms using different decay behavior settings 
of the oracle annotator, across all three datasets. We computed the micro 
average of the AUC scores at each time interval for different mitigation 
settings as the model is trained differently on each of them. The be-
haviors of accuracy and F-measure follow a similar pattern to those of 
AUC, thus, we omit those figures for brevity; however, they are included 
in the supplementary materials for transparency. The results demon-
strate the effectiveness of our proposed annotation scheduling approach 
in contrast to the two baselines for mitigating annotation errors, and 
thus, improve the automatic classification performance. 

7.5. Discussion 

We mimicked a real-world annotation scenario by inducing different 
types of memory decay-based human errors (slow vs. fast decaying) in a 
simulated annotation schedule. The error mitigation algorithm based on 
our error-avoidance sampling technique can select instances for a 
human to annotate, which mitigates the effect of human memory decay 
and improves AUC scores over time across all the event datasets, despite 
varying numbers of instances per interval. Also, for the first three in-
tervals, both the simple uncertainty-based and error-avoidance sam-
pling-based algorithms are equivalent in performance during the initial 
time. This is consistent with an interpretation in which our algorithm 
may still be learning about the class that induces errors to other classes 
or make other classes forgotten by the annotator. Both of these algo-
rithms show a gradual increment of performance as the new instances 
arrive, compared to the random sampling algorithm with highly variant 
behavior of the learning model. These observations support the claim 
that our proposed algorithm could help improve active learning 
paradigm-based real-time systems. 

In the case of a no-decaying simulation setting, where the oracle 
always (but unrealistically) provides the correct label, all mitigation 
algorithms perform similarly to each other. This is possible due to 
similarity in frequency and the amount of correct oracle feedback, which 
constantly updates the model with new training data that gradually 
improves on the test set. 

In the case of our error-avoidance sampling-based algorithm, the 
chances of inducing human error decrease due to accounting for the 
likelihood of memory decay of the knowledge about a class, which at-
tempts to reduce the expected errors in annotating instances of all 
classes. Through the GetDecayScore function in Eq. (4), we give more 
weight to the class to discard whose instances are appearing more often 
in the streaming data. Hence, those class instances will be discarded in 
the next period so that the annotators do not forget the other classes that 
are appearing less frequently. Moreover, as the GetDecayScore function is 
independent in our proposed algorithm, it can take any memory decay 
function making our error-avoidance sampling-based algorithm generic. 

In summary, our study of human error types in the annotation of 
streaming data presents novel insights on their effect on the perfor-
mance of active learning systems in the (HITL-ML) paradigm-based 
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stream processing systems. This study raises awareness of instance 
ordering when designing crowdsourcing-based tasks. In particular, we 
recommend using an annotation schedule in an active learning 
paradigm-based system that can help reduce human errors. To the best 
of our knowledge, this is the first study to investigate a principled 
framework for quantifying human annotation errors for social stream 
processing and develop mitigation methods by better understanding the 
human annotation task as a psychological process. 

8. Conclusions 

We defined a framework of human errors, including mistakes and 
slips in the context of stream processing, based on psychological theories 
of human errors. We specifically focused on a quantitative model of 
memory decay behavior in the context of annotation tasks of humans, 
given that it is a common cause for both mistakes and slips. We validated 
the existence of memory decay-based annotation errors in a variety of 
experimental setups from lab-scale to crowdsourcing and provided ev-
idence for the conceptual distinction between slips and mistakes for 
stream processing applications. We performed simulation-based studies 
to test a novel error mitigation algorithm targeted to slips that minimizes 
the likelihood of memory decay in an active learning paradigm-based 
human annotation task. The proposed method for human error mitiga-
tion can help design Human-AI collaboration systems for efficient 
stream processing for social media and web data in general. Such sys-
tems would require not only fewer human annotations but also reduce 
errors and decrease annotator memory decay. 

Limitations and future work. We have provided a proof-of-concept 
using an over-simplified model of human memory (Anderson, 2000). 
In particular, we have simplified the activation and decay functions and 
the self-reinforcing effect of classification on persisting knowledge of 

class concepts in an annotation task. Different error probability score 
functions other than sigmoid may better model the memory decay 
behavior of humans. Our approach to the characterization of human 
annotation error is also focused on cognition and ignorant of exogenous 
influences on cognition, including the physical and social environment 
(Hollnagel, 1998). We do not claim that this study covers all types of 
human annotation errors in stream processing, in particular, the 
knowledge modification problem posed by changes in streaming con-
tent. In focusing on serial effects, we have ignored the effect of absolute 
time. 

Our small crowd-scale study provided insufficient power to defini-
tively distinguish the mistake-based error. A future large-scale crowd-
sourced study could provide more definitive support for the 
effectiveness of our proposed error mitigation algorithm. Nevertheless, 
we have documented that blind confidence in human annotation as a 
gold standard is gravely erroneous. Dramatic performance improvement 
results when the annotation is utilized with an appreciation for the 
human processes that generated it and might lead to errors. We hope 
that our framework provides a foundation for studying diverse types of 
annotation errors and causes, beyond text to image object recognition 
for a variety of stream processing applications, such as addressing 
burnout or inattentive worker errors in the future for human-AI teaming. 
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available upon request for research purposes. 
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