
FairSearch: A Programming Library for Fair Search Results
Extended Abstract

Meike Zehlike

Technische Universität Berlin

Berlin, Germany

meike.zehlike@tu-berlin.de

Carlos Castillo

Universitat Pompeu Fabra

Barcelona, Catalunya, Spain

chato@acm.org

Ivan Kitanovski

Faculty of Computer Science and

Engineering

Skopje, Macedonia

ivan.kitanovski@finki.ukim.mk

1 INTRODUCTION
In the last decade, the online world has evolved well beyond being

just a platform for trivial content findings, personal updates and

traveling blogs. Social media, e-commerce, professional, political,

educational, and dating sites, to mention just a few, determine

our possibilities and success as individuals, consumers, employees,

voters, students, and lovers. Ranked search results, news feeds, and

recommendations, have become the main mechanism by which we

find content, products, places, and people online. Indeed, there are

very few large websites without a search function.

It is therefore of societal and ethical importance to ask whether

search algorithms produce results that can demote, marginalize, or

exclude individuals of unprivileged groups (e.g., racial or gender

discrimination) or promote products with undesired features (e.g.,

gendered books).

Search results are almost always ranked in descending order of

some relative quality measure of the items. There are, however,

reasons to depart from a simple ranking by relevance or utility, and

also consider the utility of those being searched, particularly when

the items represent people or businesses.

Due to its high importance and impact, our aim is to develop
the first fair open source search API, FairSearch. Our goal for

FairSearch is to provide pre-, in- and post-processing approaches

for fair ranking algorithms. It currently provides a post-processing

method, FA*IR [1], which can enforce ranked group fairness, ensur-

ing that all prefixes of the ranking have a fair share of items across

the groups of interest, and ranked individual fairness, reducing the

number of cases in which a less qualified or lower scoring item is

placed above a more qualified or higher scoring item. By usage of

in-processing methods such as DELTR [2] web and search engine

developers will be able to tune their applications during search

ranking computation for reduction of disparate exposure across

groups within the results with great flexibility.

We build FairSearch by extending a popular, well-tested open

source search engine: ElasticSearch.
1
Taking a long-term view, we

believe the use of this tool will be an important step towards achiev-

ing equality of opportunity and reducing inequality and discrimi-

nation in the online world, and consequently in society as a whole.

With this paper we want to present details about the implemen-

tation and architecture of FairSearch, how to use it as a developer

and future ideas for its extension.
23

1
https://www.elastic.co/

2
Funded by Data Transparency Lab https://datatransparencylab.org/grantees-dtl-2017/

3
Code available on https://github.com/fair-search

DSSGW’19, May 2019, San Francisco, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Tool structure and main components

2 ARCHITECTURE
Figure 1 shows the architecture and main components of the pro-

posed tool as an extension of the Elasticsearch platform. Elastic-

search is an open source enterprise search system written in Java,

used by thousands of online services including Netflix, Facebook,

Ticketmaster, and Instagram. Its major features include full-text

search, hit highlighting, faceted search, real-time indexing, dynamic

clustering, database integration, NoSQL features
4
and rich docu-

ment (e.g., Word, PDF) handling and is designed for scalability and

fault tolerance. At each stages of the Elasticsearch

Front-end. The front-end will contain a UI system administrators

for to enter parameters for all included methods (such as the mini-

mum fraction p of items that have a protected attribute for FA*IR),

while defaults will be preset in a configuration file.

Back-end. The main back-end component are different modules

to generate the fair top-k search results with respect to the user-

provided input parameters. Each module component will consist of

one “fair” search algorithm. This will allow users of FairSearch

to choose from different fairness and distributive equality frame-

works and such adjust their application to their specific needs of

non-discrimination and equal opportunity. While DELTR works

in-processing and will be used during search index computation

such that the resulting ranking models reduce disparate exposure

across groups, the post-processing algorithm FA*IR reorders the re-

sult ranking itself to satisfy the fairness constraints defined in [1].

FA*IR is additionally provided as a stand-alone Java library in case

developers want to use it in a different ranking environment than

Elasticsearch.

REFERENCES
[1] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, MohamedMegahed,

and Ricardo Baeza-Yates. 2017. FA*IR: A fair top-k ranking algorithm. In Proc. of
the 2017 ACM on Conference on Information and Knowledge Management. ACM,

1569–1578.

[2] Meike Zehlike and Carlos Castillo. 2018. Reducing Disparate Exposure in Ranking:

A Learning To Rank Approach. arXiv preprint arXiv:1805.08716 (2018).

4
http://nosql-database.org/

1

https://www.elastic.co/
https://datatransparencylab.org/grantees-dtl-2017/
https://github.com/fair-search
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://nosql-database.org/

	1 Introduction
	2 Architecture
	References

