
J Intell Inf Syst
DOI 10.1007/s10844-011-0181-4

Meme ranking to maximize posts virality
in microblogging platforms

Francesco Bonchi · Carlos Castillo · Dino Ienco

Received: 13 January 2011 / Revised: 8 August 2011 / Accepted: 29 September 2011
© Springer Science+Business Media, LLC 2011

Abstract Microblogging is a modern communication paradigm in which users post
bits of information, or “memes” as we call them, that are brief text updates or
micromedia such as photos, video or audio clips. Once a user post a meme, it
become visible to the user community. When a user finds a meme of another user
interesting, she can eventually repost it, thus allowing memes to propagate virally
trough the social network. In this paper we introduce the meme ranking problem, as
the problem of selecting which k memes (among the ones posted by their contacts)
to show to users when they log into the system. The objective is to maximize the
overall activity of the network, that is, the total number of reposts that occur. We
deeply characterize the problem showing that not only exact solutions are unfeasible,
but also approximated solutions are prohibitive to be adopted in an on-line setting.
Therefore we devise a set of heuristics and we compare them trough an extensive
simulation based on the real-world Yahoo! Meme social graph, using parameters
learnt from real logs of meme propagations. Our experimentation demonstrates the
effectiveness and feasibility of these methods.
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1 Introduction

Microblogging is a well-established social communication medium in which users
share short snippets of text, images, sounds or videos (memes in this paper) with
other users. Currently most major social networking platforms including Twitter,
Facebook, Tumblr, LinkedIn, Yahoo! Meme, etc., offer microblogging features,
although there are minor differences among them, e.g., in the types of meme that can
be posted, and major differences in the way people provide feedback to each other
(comments, votes, favorites, etc.) and in the way social connections are established
(one-way or two-way, with users opting-in or opting-out to being followed by another
user). However, the basic mechanics are the same for all of them: a user posts a
meme, if other users like it, they repost it, and by a process of virality, a large number
of users can be potentially reached by a particular meme.

Figure 1 shows one specific meme from the microblogging service Yahoo! Meme.1

In this particular case, it is a photo posted by a user that shows the space required
to transport a number of people by car, bus, or bicycle. We depict the propagation
history2 of this meme along time, similarly to Adar and Adamic (2005). Each node
is a user: the darker a node is, the more followers the user has in the social graph.
In this particular case, we can observe that the meme was not so popular until it was
reposted by an influential user (very dark node), which then spawned a large number
of reposts.

In this paper we devise methods to select, for each user, a set of k memes to show
her when she logs into the system. We call this task meme ranking.

In selecting the k memes to show to a user, the objective function that we adopt is
not simply to maximize the number of these memes that the user is likely to repost,
but instead to maximize the global “virality” of the selected memes. This means
that we do not focus only on the immediate user’s satisfaction, favoring the memes
which are more likely to interest her. Instead, we also consider the likelihood of
her followers of being in turn interested and possibly reposting a given meme, thus
recursively propagating it.

Suppose a user receives $1 for each repost of her memes done by her followers,
by the followers of her followers, and so on recursively. The objective of the meme
ranking problem is to maximize users’ profit. Stated a bit more formally, what we
want to maximize is the size of the meme propagation trees.

The rationale for this objective function is twofold. By the general perspective
of the network, maximizing the virality of memes and thus the total number of
reposts, means keeping high the total level of activity of the network, i.e., its vitality.
From the user perspective instead, receiving many reposts might be gratifying, thus
enhancing the user’s sense of belonging to a community and her engagement with
the microblogging network.

In this paper we formally introduce the meme ranking problem, which to the best
of our knowledge has never been described before in the literature, and we deeply
characterize it, highlighting its complexity. In particular, we show that computing
the expected spread of a meme is #P-complete and we provide a theoretical bound

1http://meme.yahoo.com
2Animations of several meme propagations are available at http://barcelona.research.yahoo.net/
memerank.

http://meme.yahoo.com
http://barcelona.research.yahoo.net/memerank
http://barcelona.research.yahoo.net/memerank
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Fig. 1 Above a meme about sustainable transportation. Below depiction of the propagation history
of this meme. Nodes are users with darker colors indicating nodes with more followers. Each edge
indicates a repost, with the length of the edge proportional to the elapsed time; same-day reposts are
short, thick lines. The entire history (top-to-bottom) is 60 days long



J Intell Inf Syst

on the number of samples needed to approximate it by means of Monte Carlo
sampling. It is worth noting that the computation of the expected spread is also
the base operation in all the literature on influence spread maximization (Kempe
et al. 2003): hence our theoretical contribution goes beyond the present paper. The
conclusion of our analysis is that while Monte Carlo sampling approximation can
be afforded in the off-line context of viral marketing (Kempe et al. 2003), it can
not be applied in our on-line recommendation context. Therefore, we develop a set
of computationally inexpensive heuristics, based on information learnt by analyzing
past meme propagations.

1.1 Paper contributions and organization

Summarizing the main contributions of the paper are as follows:

– In Section 3 we present an empirical analysis of meme propagations in
Yahoo! Meme. The findings of this analysis are important to understand the
mechanism of meme propagations, and to reproduce them in our propagation
model and simulation framework.

– In Section 4 we first define the meme propagation model, then we introduce
and deeply characterize the meme ranking problem. In particular, we show that
computing the expected spread of a meme is #P-complete and we provide a
theoretical bound on the number of samples needed to approximate it by means
of Monte Carlo sampling. Our analysis highlights that, not only exact solutions
are unfeasible, but also approximated solutions are prohibitive to be adopted in
an on-line setting.

– In Section 5 we develop a set of computationally inexpensive heuristics,
grounded on a careful analysis of how propagation occurs in a real social
network.

– In Section 6 we present our simulation framework which implements the meme
propagation model based on the actual Yahoo! Meme social graph, and on
parameters learnt from real logs of meme propagations.

– In Section 7 we report the results of our experiments, showing that the proposed
computationally inexpensive methods can increase a network’s vitality.

Related works are discussed in the next section, and the last section of the paper
outlines future research directions opened by this paper and presents concluding
remarks.

2 Related work

In recent years the whole area of analysis of social network systems has branched
out in several sub-disciplines which focus on different aspects. These include the
characterization and prediction of links, the detection of communities, and the study
of influence propagation, among others. We focus on the latter outlining key results
related to our work.
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2.1 Empirical analysis of information propagation

In recent years, there has been tremendous interest in the phenomenon of influence
exerted by users of an online social network on other users and in how it propagates
in the network. The idea is that when a user sees their social contacts performing an
action that user may decide to perform the action themselves. In truth, when a user
performs an action, she may have any one of a number of reasons for doing so: she
may have heard of it outside of the online social network and may have decided it is
worthwhile; the action may be very popular (e.g., watching a blockbuster film may
be such an action); or she may be genuinely influenced by seeing her social contacts
perform that action (Friedkin 1998). If there is genuine influence, it can be leveraged
for a number of applications, the most famous among which is viral marketing. Other
applications include personalized recommendations (Song et al. 2006, 2007) and feed
ranking in social networks (Samper et al. 2006). Besides, patterns of influence can be
taken as a sign of user trust and exploited for computing trust propagation (Guha
et al. 2004; Ziegler and Lausen 2005; Golbeck and Hendler 2006; Taherian et al.
2008) in large networks and in P2P systems.

Thanks to the richness of available data, one domain in which most of the analyses
have been done is the blogging and microblogging domain. Gruhl et al. (2004)
characterize four categories of individuals based on their typical posting behavior
within the life cycle of a topic, then they develop a model for information diffusion
based on the theory of the spread of infectious diseases, capturing how a new topic
spreads from blog to blog. They also devise an algorithm to learn the parameters of
the model based on real data, and apply the algorithm to blog data, thus being able to
identify particular individuals who are highly effective at contributing to the spread
of infectious topics. In another work (Backstrom et al. 2006) it is shown that bloggers
are more likely to join a group that many of their friends joined, especially if those
friends belong to the same clique. Song et al. instead show that blogs are likely to
link to content that other blogs have linked to Song et al. (2007). In Agarwal et al.
(2008) instead the problem of how to identify influential bloggers is studied.

Adar and Adamic (2005) describe how information propagates in the blo-
gosphere, tracking the information “epidemics” of interesting blog postings that
are referenced or copied by other blogs. The authors consider different features
including structural information of the blog network, contents of the blogs, and
temporal information to set up a classification scenario that predicts if two blogs are
likely to be linked, and if one blog is likely to “infect” another blog with a post. The
propagation information available in their case is incomplete, as many blogs rarely
cite their sources. However there are ways of inferring the sources of a posting.

Leskovec et al. (2009) study the propagation of distinctive snippets of text
(typically related to news events) in a corpus of news articles and blogs postings.
They develop a scalable clustering algorithm to trace the sources of these fragments
of text across the network. Using this algorithm, they are able to infer the structure
of the propagation network and use it to determine, for instance, that with respect to
new items, blogs lag behind news sources by a few hours.

Wu et al. (2004) study the propagation of information in e-mail networks, showing
that the transmissibility of a piece of information decays with network distance. For
instance, users that are close together in the organizational hierarchy of a large
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company, are more likely to share common interests and thus are more likely to
“infect” each other with new information.

Bakshy et al. (2009) describe how information propagates in the on-line game
Second Life, tracking the propagation of in-game “gestures” which are information
assets that can be copied by other players. Using a simulation model they find that it
is more easy that the transfer happens between two friends instead that two strangers.
They also find that some users are more central in the process of information
diffusion and more susceptible to obtain new content than normal users. They define
this kind of user an early adopter. They also notice that information passed among
contacts produce deeper propagation trees for non-popular (niche) assets.

Cha et al. (2009) present a data analysis of how picture popularity is distributed
across the Flickr social network, and characterize the role played by social links in
information propagation. Their analysis provides empirical evidence that the social
links are the dominant method of information propagation, accounting for more
than 50% of the spread of favorite-marked pictures. Moreover, they show that
information spreading is limited to individuals who are within close proximity of
the uploaders, and that spreading takes a long time at each hop, oppositely to the
common expectations about the quick and wide spread of word-of-mouth effect.
Lerman and Jones (2006) also shows that the photos users view in Flickr are often
the ones they can observe their friends consuming too.

Crandall et al. (2008) describe a framework for using data from large online
communities to analyze the interactions between social influence and users simi-
larity. Their empirical analysis over the social network of Wikipedia editors and
LiveJournal users confirms that there exists a feedback effect between users’ sim-
ilarity and social influence, and that combining features based on social ties and
similarity is more predictive of future behavior than either social influence or
similarity features alone, showing that both social influence and one’s own interests
are drivers of future behavior and that they operate in relatively independent ways.

2.2 Maximizing information propagation

Suppose we are given a social network together with the estimates of reciprocal
influence between individuals in the network. Suppose we want to push a new
product in the market. The problem of inf luence maximization is the following: given
such a network, how to select the set of initial users, up to a given number, so that
they eventually influence the largest number of users in the social network.

Domingos and Richardson (2001, 2002) were the first to consider the propagation
of influence and the problem of identification of influential users as an optimization
problem: they developed a probabilistic model of interaction, and provided heuristics
for choosing the influential users.

Later Kempe et al. (2003) analyzed influence maximization as a problem of dis-
crete optimization. In particular their work focuses on two fundamental propagation
models: the Linear Threshold Model and the Independent Cascade Model. In both
of these models, at a given timestamp, each node is either active (an adopter of the
innovation, or a customer which already purchased the product) or inactive, and each
node’s tendency to become active increases monotonically as more of its neighbors
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become active. Time unfolds deterministically in discrete steps. As time unfolds,
more and more neighbors of an inactive node u may become active, possibly making
u become active, and u’s decision may in turn trigger further activation of nodes to
which u is connected.

Under these propagation models, the influence maximization problem was shown
to be NP-hard (Kempe et al. 2003). Kempe et al. however showed that the inf luence
spread of a set of nodes is a function with the nice properties of being monotone and
submodular. Thanks to these properties, approximation guarantees can be achieved
through a simple greedy algorithm, whose key step is the computation of the expected
spread. As we show later in Section 4.2, this is a complex computation, therefore they
rely on running simulations of the propagation model for sufficiently many times to
obtain an accurate estimate. While Kempe et al. only report empirical observations
on how many simulations are sufficient to obtain a reasonable approximation, in
Section 4.2 we provide a theoretical bound.

Following Kempe et al. (2003) a recent line of research (Leskovec et al. 2007; Chen
et al. 2009, 2010a, b) has started developing methods for improving the efficiency of
influence maximization algorithms.

Leskovec et al. (2007) study the propagation problem by a different perspective
namely outbreak detection: how to select nodes in a network in order to detect
the spread of a virus as fast as possible? They present a general methodology for
near optimal sensor placement in these and related problems. They also prove that
the influence maximization problem of Kempe et al. (2003) is a special case of
their more general problem definition. By exploiting submodularity they develop an
efficient algorithm based on a “lazy-forward” optimization in selecting new seeds,
achieving near optimal placements, while being 700 times faster than the simple
greedy algorithm. Regardless this big improvement over the basic greedy algorithm,
their method still face serious scalability problems as shown in Chen et al. (2009). In
that paper, Chen et al. improve the efficiency of the greedy algorithm and propose
new degree discount heuristics that produce influence spread close to that of the
greedy algorithm but much more efficiently.

Tang et al. introduce the novel problem of topic-based social influence analysis
(Tang et al. 2009). They propose a Topical Affinity Propagation (TAP) approach
to describe the problem using a graphical probabilistic model. They also deal with
the efficiency problem by devising a distributed learning algorithm under the map-
reduce paradigm. They also discuss the applicability of their approach to the problem
of expert finding.

How influential a user is, can also be considered as a domain-specific characteristic, in
the sense that a user may be influential in certain topics and not influential in others.
Weng et al. (2010) study a subset of the Twitter network and compute from network-
based and content-based features to measure how influential are users for each topic.

Cha et al. (2010) study different measures of user influence in Twitter. They
perform an in-depth analysis on three different measures of a user influence, namely
in-degree, re-tweets and mentions. The first is the number of people that follow the
given user, the second is the number of times other users repost her content, and the
last is the number of times other users mention her name. Among various findings,
they empirically show that having a million followers is not necessarily an indication
of influence.
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Table 1 Summary of
properties of our sample

Number of nodes (users) 57K
Number of connections: 1.48M 100%

Follows explicitly, but does not repost 1.14M 77%
Follows explicitly and reposts 233K 16%
Reposts, but does not follow explicitly 103K 7%

3 Analysis of propagations in Yahoo! Meme

In this section, we describe the Yahoo! Meme dataset and present key observations
about how propagations occur. We describe our dataset pre-processing, the model
we use to understand the data, some statistical properties of users, memes, and
propagation histories, and a summary of empirical findings.

The dataset that we analyze contains all of the publicly-available information
visible on the Web site (e.g., users, followed-follower relationship, posted memes,
“via” links indicating meme reposts, etc.), at the end of November 2009, roughly
corresponding to the first 8 months of operation of the system.

3.1 Social network

We define a social directed graph based on the followed-follower relationship. That
is a graph G = (V, E), where V is the set of all the users and for a given pair of
users, u, v ∈ V we say that they are connected if: (i) v has added herself explicitly as
a follower of u; or (ii) v has reposted a meme by u. In these cases, we draw an arc
(u, v) ∈ E. In this representation, the direction of the arc goes from the followed to
the follower as that is the direction in which memes eventually propagate.

We discarded from our sample users who were disconnected from the rest of the
network according to the relationship described above. The result is a sample with
the characteristics described in Table 1.

For the 16% of edges that are both following explicitly and reposted, in roughly
4/5 of the cases the users are first connected by an explicit relationship, and then a
re-post occurs, in the remaining 1/5 of the cases, it is first a re-post and then a follow
relationship.

In the rest of this paper, we make no distinction between a user v declaring
explicitly to be a follower of another user u, or simply reposting a meme posted by u.
In both cases, we say that v follows u. Figure 2 explains our notation.

The clustering coefficient of the (undirected) graph is 0.25, which is similar to what
has been observed in other social networks such as Flickr (0.31) and LiveJournal
(0.33) (Mislove et al. 2007). The fraction of pairs who are reciprocally connected is

Fig. 2 Example of the follows relation and the notation we use in the rest of the paper. Arcs are
always drawn in the direction of the possible propagation of memes
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Fig. 3 Distributions of in-degree and out-degree in the social network

around 29%, which is relatively low compared to Flickr (62%), LiveJournal (74%),
or Twitter (58%) (Java et al. 2007), perhaps because this network is directly oriented
to the propagation of interesting or amusing information, instead of having a more
conversational nature.

With respect to the number of followers dout(·), the distribution is unsurprisingly
very skewed, with an average of 31 and a median of 5. In the case of the number of
users being followed din(·), the distribution is also skewed with an average of 31 and
a median of 3. The two distributions are shown in Fig. 3.

3.2 Memes and propagation dynamics

The sample covers 948K memes, which belong to different types: short snippets
of text, photos, audio, or videos. On average each meme generates 2.5 posts (the
original post + 1.5 reposts). Not surprisingly, the number of reposts per meme seems
to follow a power law distribution, as shown in Fig. 4(left). The fraction of memes
that are never reposted is 77%, and most memes have very few reposts.

Since each user can only repost the same meme once, a meme propagation is a
tree (as the one in Fig. 1). It might happen that two or more users start a propagation
of the same picture of piece of news independently and concurrently. However, we
treat these cases as different memes.

100

101

102

103

104

105

1 10 100 1000

Fr
eq

ue
nc

y

Number of posts per meme

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 30 60

C
D

F

Meme age [days]

Fig. 4 Left Repost distribution. Right CDF of the fraction of reposts as a function of time



J Intell Inf Syst

Table 2 Statistic of the
propagation trees of the
sample of highly viral memes

min max Avg Median

Size 26 823 52.8 40
Depth 2 33 8.5 8
Branching factor 1 216 2.4 1
Branching factor at the root 1 216 11.7 7

As we are interested in understanding highly viral memes, in the rest of this section
we focus our analysis on a sample of popular memes posted in the last 3 months of our
observation period, and having more than 25 reposts. Our sample contains 1,100 such
memes. Statistics on size (total number of reposts), depth (length of longest repost
chain), and branching factors (number of reposts per node) of the corresponding
propagation trees are reported in Table 2.

We can observe that the branching factor at the root is generally much larger
than the branching factor at the other nodes (11.7 in average, against 2.4 of overall
average). This may be due to the effect of time, as re-posts are more likely to occur
shortly after the item is posted for the first time.

Temporal dependency We observe that most reposts occur shortly after a meme is
posted for the first time. Figure 4(right) shows that in most cases over 80% of the
reposts of a meme are done in the first ten days. Examining this fact closer, we find
that there are two ways, not necessarily independent, in which repost probability
depends from time.

First, as already said, the reposts probability depends on the age of a meme, this is
the time passed since it was first posted by any user and the present: in Fig. 5(left) we
can observe an exponential decay in the repost probability during the first few days.

Second, if we consider the time between a particular re-post by a user u (not
necessarily the first one) and a repost from one of the followers of u, we observe
that this is often in a quite narrow interval, as shown in Fig. 5(right). This can be
explained by constraints in the screen space of the user interface: after some time all
memes are eventually moved to the second page, which is rarely visited.

Similarity dependency We represent memes as bags of words (containing text,
tokens in their URLs, etc.) and each user as the concatenation of all the memes she
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Fig. 6 Probability of a repost vs user-user similarity (left) and vs user-post similarity (right)

has ever posted or reposted. Next we compute similarity between users and between
memes and users using cosine similarity as detailed in Section 6.1. In each case (user-
user or user-meme), we discretize the similarity into bins containing the same number
of pairs per bin.

Finally, for all the user-user pairs in each s, we compute the probability that a
meme posted by one user is re-posted by the other user (when both are connected
and their similarity is s); and in the same way, for all the user-meme pairs in each bin
s, we compute the probability that a meme posted by one user is re-posted by one of
her followers whose similarity with the meme is s.

The result in Fig. 6 matches the intuition: the more similar a user is to one of
her followers, the more likely that the follower will re-post a meme posted by the
followed, and similarly the more similar a meme is to a user, the more likely she is to
repost it.

Other factors We also tested how much the popularity (number of followers in the
social graph) of the user starting a meme, affects the extent of the propagation of the
meme: the two factors seem not to be correlated. Similarly, the branching factor at
the root of a propagation tree (number of re-posts by followers of the original poster)
does not seem to be correlated with the size of the propagation tree.

3.3 Patterns of propagation

As we stated earlier, each meme propagation is a tree where the root is the user that
started the meme and all the internal nodes are the users that reposted the meme.
As we have a dataset of many propagations (a bag of trees) it is natural to analyze
which common subtrees structure we can find frequently in our Yahoo! Meme
propagations. Therefore we apply a frequent pattern mining approach (Zaki 2005)
to our dataset, where the pattern extracted are subtrees.

The study of frequent patterns might uncover sub-structures in the network
interaction. In Leskovec et al. (2006) the authors also adopted frequent patterns to
understand influence dynamic in a recommendation network. In their work patterns
are directed subgraphs.

In our analysis we focus on patterns which are subtrees whose nodes are labelled
w.r.t. two different aspects. The first one is related to the relative elapsed time of
repost. This means that we label each node using the time it took to repost. We
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Table 3 Discretized time as
node labels in Relative Time
dataset

Class Elapsed time

0 the root node
H no more than 1 h
D more than 1 h but no more than 1 day
W more than 1 day but no more than 1 week
M more than 1 week but no more than 1 month
Y more than 1 month

discretize the time in six bins as reported in Table 3. We name the resulting dataset
Relative Time.

The second aspect that we want to analyze is the impact of the popularity of users,
that is their number of followers, or in other terms, their out-degree in the social
graph. Therefore we label each node with its number of followers. Also in this case
we discretize in three bins: 0 represents nodes with less than 50 followers, 1 represents
nodes with at least 50 but less than 100 followers and 2 represents users with at least
100 followers. We name this dataset Followers.

We run frequent subtrees mining algorithm (Zaki 2005) on these two datasets
using a minimum support threshold of 70% for the Relative time dataset and 40%
for the Follower dataset. In both datasets we use a very high threshold because we
are interested in the very frequent propagation patterns. For the first dataset we
use a threshold of 70% because with a lower threshold the algorithm crashes due to
memory requirements.

Fig. 7 Some representative patterns extracted from the Relative Time dataset, with their absolute
support. Letters in nodes indicate elapsed time discretized as less than one Hour, Day, Week, Month,
or Year



J Intell Inf Syst

Using these parameters we extract 555 frequent patterns from the Relative Time
dataset and 56 frequent patterns from the Follower dataset. Example of obtained
patterns are reported in Fig. 7 and Fig. 8 respectively.

The patterns reported in Fig. 7 are a selection of representative frequent patterns
among the 555 found in the Relative Time dataset. Each pattern is reported with its
absolute support, that is the number of propagations that contain the pattern, among
all the 1,100 propagations in our dataset. It is worth noting that many patterns can
be contained in the same propagation: as an extreme example, a single propagation
might actually contain all the patterns in Fig. 7.

A first worth observation is that all the reported patterns have very high absolute
support, all appearing in at least 800 of the 1,100 propagations. The second obser-
vation is that at the root node we can observe a mixture of quick reposts (the most)
and few late reposts. In particular quick, early reposts create patterns of propagation
both in depth and in width, thus confirming that they are the driving force behind the
successful viral spread of information. This is confirmed also by our previous findings
that the recency of a meme increases the propagation probability.

The patterns extracted from the Follower dataset (Fig. 8) are mostly done of
nodes of degree class 0. This is a consequence of the power law of the out-degree
of the social network, that makes the vast majority of the nodes belong to class 0.
It is interesting to observe that the popularity of users does not necessarily dictate
the direction of the propagation of a meme. In Fig. 8 indeed we can observe both
a pattern of propagation from a class-7-degree node to a class-0-degree node, and a
pattern of propagation in the reverse direction, i.e., a pattern of propagation from a
class-0-degree node to a class-5-degree node.

Fig. 8 Some representative patterns extracted from the Follower dataset, with their absolute
support. Numbers in the nodes indicate the number of followers (discretized in ad-hoc bins)
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3.4 Summary of findings

The findings of our preliminary inspections of Yahoo! Meme data, which drive the
propagation modeling and simulation we discuss in this paper, are the following:

– The number of reposts per meme is very skewed and follows a power law.
– A user v is more likely to repost a meme of user u, shortly after u’s post. Repost

probability also depends on the absolute age of the meme.
– Reposts are more likely between two users who have posted similar memes in

the past.
– Reposting a meme m is more likely for users who have posted memes similar to

m in the past.

Based on these finding in the next section we formally define a meme propagation
model, which is a variant of the Independent Cascade model (Kempe et al. 2003).

4 The meme ranking problem

In this section, we introduce the meme propagation model that we adopt, then we
formally define and characterize the meme ranking problem (Table 4).

4.1 Meme propagation model

We have a social network modeled as a followed-follower graph, i.e., a directed graph
G = (V, E), where an arc (u, v) ∈ E represents the fact that user v is a follower of
user u. We represent by M the set of all memes. In our meme propagation model
time unfolds deterministically in discrete steps. If a user u posts a meme m at time t,
whether a new post or a repost, we denote this event by the predicate post(u, m, t).
Similarly we use the predicate repost(v, u, m, t) to denote that v reposted m “via” u.

We assume (for the moment) that we are able to define the probability of the
event repost(v, u, m, t). In other terms, denoting by T the temporal domain, we
assume we have a computable function p : M × V × V × T → [0, 1], that might be
defined, for instance, by inference from historic data. We expect this probability to

Table 4 Notation used in the following sections

G = (V, E) the followed-follower social graph
post(u, m, t) user u posted meme m at time t
repost(v, u, m, t) user v reposted meme m at time t via u
in(v, t) set of incoming memes for user v at time t
cand(v, t) ⊆ in(v, t) the set of candidate memes for user v at time t
φ(v, t) ⊆ cand(v, t) the meme rank for user v at time t, i.e., the selected k memes
σ(m, v) the expected spread of meme m from user v

interest(m, v) a similarity value between a meme m and a user v

inf luence(u, v) extent of influence exerted by user u on user v

� super-user
num_clock number of timestamps of the simulation process
SU PER_U SER_LIV E the number of timestamps � can propose new memes
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depend on factors such as the influence exerted by user u on her follower v, the
topic-interestingness of meme m for v, and elapsed time.

Since in this paper our goal is to devise meme ranking strategies, we focus only two
types of posts: initial posts and reposts that are due to the meme rank itself. In other
terms we do not consider repost of memes which were not presented to the user by
the meme ranking system: even if these are obviously possible in a real system, we
are not interested in studying them here. Finally, we assume that a user can not post
the same meme twice.

The meme rank is a function φ that at each timestamp t selects the top-k memes
to show to v from a set of candidates memes cand(v, t). We denote the set of selected
memes as φ(v, t). The set of candidates memes is the union of all memes previously
posted by users in V that are followed by v, i.e.,

in(v, t) = {m ∈ M | post(u, m, t′) ∧ (u, v) ∈ E ∧ t′ < t}.

From in(v, t) we must subtract the memes previously presented to v, or previously
posted by v. That is:

cand(v, t) = in(v, t) \ {m ∈ M | post(v, m, t′) ∨ φ(v, t′)}.

We have now all the ingredients to define the meme propagation model. At each
timestamp t, a user v “decides” for each meme presented to her by the meme ranking
function whether to reposts it or not. In our propagation model this decision is
probabilistic, i.e., it is determined by flipping a coin of bias p(repost(v, u, m, t)).

Note that the same meme can enter the candidate set for v, “via” two different
users that v follows. In this case the two instances are considered independently and
both can be selected by the meme ranking. If both are selected, the user will flip a
coin for both of them independently. The only constraint is that the user can only
post a meme once.

We have described how reposts happen. We still have to say how we model
initial posts. For sake of uniformity (and later also to implement our propagations
simulator) we model initial posts by augmenting our graph G with a special node �,
which is followed by all the users in V. Essentially � is a super-user, the environment,
which feeds the system with new ideas that the other users can eventually adopt.
Node � posts at each timestamp some new memes from an infinite queue: these
memes are environmental inputs that the users in V might decide to post or not,
following the same mechanism of reposting described above.

4.2 Problem characterization and complexity

The meme ranking problem requires to select at each timestamp t and for each user
v, the set of k memes whose propagation subtrees rooted in v are expected to be the
largest (in number of nodes) among the memes in cand(v, t).

Problem 1 (The Meme Ranking Problem) Given a followers graph G = (V, E) and
a k ∈ N, and assuming the meme propagation model described in Section 4.1, the
Meme Ranking Problem requires to define a function φ : V × T → 2M that for each
user v and a timestamp t, selects a set of memes φ(v, t) ⊆ cand(v, t), |φ(v, t)| = k,
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to present to user v. As the propagation model is probabilistic, the function φ must
maximize the expected number of reposts:

E

[∑
m∈M

|{w ∈ V | ∃t ∈ T : post(w, m, t)}|
]

.

The complexity of the problem derives from the fact that the decisions made by
the meme ranking function at one node are not independent from the decisions made
by the same function at all the other nodes. Consider a node w which is a follower
of v. The meme ranking for v must take into account the likelihood that a meme
m will be reposted by w if posted by v. But this likelihood strongly depends on the
probability that m will be selected by the meme ranking for w once that v posted w.
This probability in turn depends on what is posted by all the users that w follows, but
also on the likelihood of all the other users following w of being interested in a given
post, and recursively on all the network.

Another level of hardness is brought in the picture by the probabilistic frame-
work. Indeed any meme m ∈ M induces on the social graph G = (V, E) a different
probabilistic graph Gm = (V, E, p), where p is the function described above that
associates to each arc (u, v) ∈ E the probability that m will “travel” over the arc (i.e.,
p(repost(v, u, m, t))). Those probabilistic graphs are all different because different
memes have different chances of being interesting to a given user.

Even removing all the dependencies previously described the problem remains
hard. Consider the simpler, local version of the problem, in which we execute the
meme rank for a single node v and we assume that whatever posted by v will also
be shown to all the other users. In other words, the meme rank only applies to
our node v, while we assume that any other node w can see and repost any meme
m ∈ cand(w, t).

Definition 1 (Expected spread of a meme) Given a meme m ∈ M, its corresponding
probabilistic graph Gm = (V, E, p), and a node v ∈ V, consider the probability space
in which each sample point specifies one possible set of outcomes for all the coin
flips on the arcs in E. Let X denote one sample point in this probability space. That
is, X is a deterministic subgraph of Gm containing all the arcs for which the coin
flip has given a positive outcome (m can travel on that arc). Given another node
w ∈ V, w 	= v, let path(v, w) be an indicator random variable that is 1 if there exists
a directed path from v to w and 0 otherwise. Moreover let pathX(v,w) denote the
outcome of such variable in X.

We define the spread of m from v in X as the number of nodes reachable from v

in X:

σX(m, v) =
∑
w∈V

pathX(v,w).

We denote the expected spread of a meme m from a node v as σ(m, v):

σ(m, v) =
∑

X

Pr[X] · σX(m, v).
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Problem 2 (Local Meme Ranking) 3Given a user v, a timestamp t, and k ∈ N, the
problem requires to compute φ(v, t) ⊆ cand(v, t), |φ(v, t)| = k, such that: � m1 ∈
cand(v, t) \ φ(v, t), m2 ∈ φ(v, t) : σ(m1, v) > σ(m2, v).

The hardness of this simpler problem derives from the fact that computing the
expected spread requires to sum over all possible worlds X (using the jargon of
probabilistic/uncertain data management), and these worlds are 2|E|.

To further characterize the complexity of this computation, consider the following.
By linearity of expectation we have that:

σ(m, v) = E

[∑
w∈V

path(v,w)

]
=

∑
w∈V

E[path(v, w)].

The expected value of an indicator random variable for an event is just the probabil-
ity of that event. Thus to compute σ(m, v) we can just sum the probability of each
node w to be reachable from v:

σ(m, v) =
∑
w∈V

Pr[path(v, w) = 1]

The problem of computing the probability that two nodes are connected in a
probabilistic graph is called reliability problem, that is known to be #P-complete
problem (Valiant 1979). It is very unlikely that there exists a polynomial time exact
algorithm for a #P-complete problem as this would imply that P = NP, thus usually
problems in this class are approximated by means of Monte Carlo sampling (see, e.g.
Mitzenmacher and Upfal (2005), Chapter 10). In our context this would mean: for
a meme m and a user v, sample r possible worlds X according to their probability
distribution, and compute the spread in these deterministic graphs. The average
spread is an unbiased estimator of the expected spread of m from v.

In order to establish a bound on the number of sampled graphs (or possible
worlds) needed to provide a good approximation of the expected spread σ(m, v)

we exploit Hoeffding Inequality (Hoeffding 1963).

Theorem 1 (Hoeffding Inequality) Let X1, X2, . . ., Xr be independent and identically
distributed random variables. Assume that Xi are almost surely bounded, that is
∀i, Pr(Xi ∈ [ai, bi]) = 1. Then for the sum of the variables S = X1 + ... + Xr we have

Pr(|S − E[S]| ≥ ε) ≤ 2 exp
(

− 2ε2∑r
i=1(bi − ai)2

)
.

The next lemma, proving the approximation of the sampling, is a direct application
of Hoeffding Inequality.

3This problem is in a sense the converse of the Inf luence Maximization problem, defined in Kempe
et al. (2003) in the context of Viral Marketing. In their problem it is given a single piece of information
and the problem is that of identifying k users from which to start the propagations so to maximize
the expected spread. Oppositely in our problem we are given a single user and we want to select k
memes to propagate.
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Lemma 1 Given a node v ∈ V, a meme m ∈ M, and its corresponding probabilistic
graph Gm = (V, E, p). Consider accuracy parameters ε and δ, and a number of
samples r. Let Xi, 1 ≤ i ≤ r, be a set of r graphs sampled according to their probability
distribution4. The random variables σXi(m, v) are independent identically distributed
and they are bounded in the range [0, |V| − 1]. They also have the same expectation
E[σXi(m, v)] = σ(m, v).

By selecting r ≥ (|V|−1)2

2ε2 ln( 2
δ
), we have:

Pr

(∣∣∣∣∣1
r

r∑
i=1

σXi(m, v) − σ(m, v)

∣∣∣∣∣ ≥ ε

)
≤ δ;

i.e., r samples provide an (ε, δ)-approximation for σ(m, v).

4.3 Discussion

Notice that even though the number of samples is polynomial, and not exponential
as the exact counting, due to the factor (|V| − 1)2 it is still prohibitively large. In their
paper on the inf luence maximization problem, Kempe et al. (2003) need to compute
the expected spread in the key step of the greedy algorithm. They find empirically
that simulating the propagation 10K times brings a reasonably good approximation
in a network with approximately 10K nodes and 50K arcs. This is still very costly,
but acceptable in their context as: (i) they must perform it only k × |V| times (where
k is the number of step of the greedy algorithm, that is also the desired size of the
set of users to target in a direct marketing campaign); (ii) their algorithm runs off-
line, as it is in the context of a marketing decision making process, and not an on-line
recommendation.

Instead in our context the meme rank must be performed on-line, at each
timestamp t, for each user v of the network, and for each candidate meme m ∈
cand(v, t), where |cand(v, t)| 
 k. This makes it prohibitive to adopt simulation
based approximation as an actual meme ranking strategy.

We also considered to apply simulation only to a bounded extent. In concrete,
we tried as meme rank strategy to select the top-k memes w.r.t. their spread up to a
distance-2 neighborhood of the node v. However, even this light simulation turned
out to be computationally prohibitive, or better, unfeasible in a real-world on-line
system.

Following these theoretical and empirical considerations, we can only rely on
simple and efficient heuristics that can be adopted in a real-world on-line setting, as
we do next. However, efficiently computing or approximating the top-k memes w.r.t.
their expected spread, is an interesting open problem deserving further investigation.

4The probability of a possible world X is given by

Pr[X] =
∏

e∈EX

p(e)
∏

e∈E\EX

(1 − p(e)) ,

where EX ⊆ E denotes the set of arcs for which the coin flip has given a positive outcome in X.
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5 Heuristic methods

In this section we describe several heuristics for solving the meme ranking problem.
In devising these heuristics, the main design goals are simplicity and computational
feasibility, as the meme ranking needs to be executed for all the users and at each
timestamp while they are logged into the microblogging system.

Let v be the user for which we are computing the meme rank. We introduce
four groups of methods: baseline methods for comparison purposes; user-centered
methods, i.e., heuristics geared only on v; followers-centered methods i.e., heuristics
geared on the immediate followers of v; and methods combining the best method
from each of the previous three groups. These heuristics will be then evaluated in
Section 7.

5.1 Baseline methods

As baselines for the meme ranking function we consider the Random and Recency
heuristics.

The Random heuristic simply chooses k memes at random (from the ones in the
set of candidate memes for user v at time t). The Recency heuristic chooses the k
most recent memes from the candidates. This method is justified by the temporal
analysis we presented in Section 3.2, but more importantly, by the fact that it is the
de facto standard in most microblogging platforms including Yahoo! Meme.

5.2 User-centered methods

The methods in the second group only focus on the user v to define the meme ranking
function φ(v, t), without considering her followers.

The first method in this group is the Interest heuristic. This strategy chooses the
k memes which are more likely to interest user v. In other terms, Interest selects
the k memes which have the highest topic similarity with user v (that we denote
interest(m, v)), without considering the influence exerted on v by those users that
she follows and that posted the memes.

The second method, named Influence, instead considers as the score of the meme
the influence exerted on v by the user which posted the meme, that we denote
inf luence(u, v), without considering topic similarity.

The method combining topic similarity and user influence is named
RepostProbability. This is essentially p(repost(v, u, m, t)), the probability of
reposting introduced in Section 4. This method considers both inf luence(u, v) and
interest(m, v), and it is a function of time.

The details on how interest(m, v), inf luence(u, v) and p(repost(v, u, m, t)) are
learnt from a log of historical propagation data will be provided in Section 6.1.

In our simulation framework all the values of interest(m, v), inf luence(u, v)

and p(repost(v, u, m, t)) are precomputed, for this reason the complexity of these
approaches is the ranking step base on the different measure involved. Also in this
case, given the number of average memes per user equals to q, the complexity is
O(q log q).
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5.3 Followers-centered methods

The methods in the third group are based on the set of followers of our user v. The
idea is that the meme ranking function should select k memes that are more likely
to be reposted by the followers of v. For this purpose we adopt the measures of
interest and probability described above: note that in this case inf luence(v,w) is not
appropriate as it is independent from the meme.

In order to make the heuristics computationally lightweight, we select a fixed
number n of followers of v and we aggregate the interest and probability measures
over the set of selected followers. In our experiments, except where explicitly stated,
we always sample at most n = 10, and we aggregate the score by taking the average
and the maximum.

As methods to select the n followers to aggregate on, we tried different strategies:
random selection, popularity or out-degree (i.e., select the top-n followers that have
the largest number of followers), and spread (i.e., select the top-n followers that
in the past have received the largest number of reposts). We empirically found
that considering the top-n followers w.r.t. spread yields better performance than
popularity. This confirms the finding on Twitter by Cha et al. (2010): the out-degree
of a user is not the best metric of her future influence.

Therefore, in what follows, we adopt the spread (computed off-line on a past log
of propagations) as criterium to select the n “most important” followers, on which to
compute our on-line, lightweight heuristics.

To obtain the complexity for this group of heuristics we consider that the cost
of both aggregation functions is linear in the number of followers n and the values
of the functions interest(m, v) and p(repost(v, u, m, t)) are precomputed. For each
meme we perform n operations to obtain the aggregate value. If we always assume q
as the average number of memes per user, we perform O(qn) operations. When we
have computed all the aggregation values for each meme, we need to sort them. This
operation costs O(q log q) operations. For this reason the complexity of this group of
heuristics is equal to O(qn + q log q).

6 Simulation framework

In this section we describe the simulation environment that we developed to compare
different meme ranking strategies. One of the main features of this simulation
framework is that it is based on real-world information, and the parameters are
learnt from actual logs. This feature distinguishes our empirical evaluation from most
previous works on influence propagation, where the parameters (e.g., the influence
probabilities) of the propagation simulations are usually sampled at random from a
uniform distribution.

Essentially our simulator is a software that takes in input (i) a social network
graph, (ii) a set of memes, (iii) a function to compute the repost probability
p(repost(v, u, m, t)). Then, it simulates meme propagations according to the prop-
agation model described in Section 4.1. In our experiments, all these pieces of input
come from the Yahoo! Meme dataset described in Section 3.

In order to map from the real data to the propagation model (and thus to
the simulator), we have to decide how to discretize time. We assume an hourly
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granularity: that is each timestamp in our discrete time model corresponds to an hour.
This also implicitly implies that we compute a new meme rank for each user every
hour.

Other input parameters of the simulator are the number of memes which will feed
the network during the simulation, the number of memes which will enter in the
network at each new timestamp, and the total temporal extension of the simulation.
Last but not least, the number of simulation rounds that we perform due to the
intrinsic probabilistic nature of the propagation model.

Algorithm 1 FeedRankingSim(k,num_clock,Users,SU PER_U SER_LIFE)
1: repost_counter = 0
2: t = 1
3: while t ≤ num_clock do
4: if t ≤ SU PER_U SER_LIV E then
5: for all v ∈ Users do
6: for all m ∈ � do
7: r = random Number (f lips a coin)
8: if prob(v,�, m, t) > r then
9: addPost(u, post, clock)

10: for all v ∈ Users do
11: recSet = φ(v, t)
12: for all m ∈ recSet do
13: r = random Number (f lips a coin)
14: selected = false
15: if (prob(v, u, m, t) > r) then
16: repost_counter + +
17: selected = true
18: addPost(u, m, t)
19: t + +
20: RETURN repost_counter

The general loop of the simulator is presented in Algorithm 1. The procedure
takes as parameters the number of top memes selected from the heuristic (k), the
number of timestamps of simulation to perform (num_clock), the users set (Users),
and the duration (in timestamps) of the period during which � can propose new
memes (SU PER_U SER_LIFE). For each timestamp t the simulator first shows to
all the users the set of new memes currently posted by the super-user �, then for
each user v it computes the meme rank φ(v, t) for the given heuristic. For all the
memes in φ(v, t) and the new memes coming from �, the user flips a coin to decide
which to post and which not to post according to the associated repost probability (as
described in Section 4.1).

6.1 Learning the repost probabilities

An important input for our simulator are the repost probabilities, which we compute
as a function of time, interest and influence. We next describe how we learn these
probabilities from a log of past meme propagations.
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6.1.1 Interest

We first discuss how we compute interest(m, v) for each meme m and each user v. We
represent m as a bag-of-words – considering all the words in its text, or, in the case of
images or multimedia files, all the tokens in the URL of the meme. We represent a
user v as a concatenation of the bags-of-words of all the memes she has ever posted.

Next we compute the similarity between a user and a meme, or between two
memes, using cosine similarity of their bags-of-words (Baeza-Yates and Ribeiro-
Neto 1999).

Finally, we also consider an extended representation of a meme, in which we
concatenate all the bags-of-words representing the users who first re-posted that
meme. This extended representation turns out to be necessary in practice as most
memes are images, and we do not attempt to process the images to extract visual
features from them. Of course any other reasonable meme-representation can be
adopted within our framework.

6.1.2 Inf luence

Following Goyal et al. (2010) we define the influence exerted by u on v by consider-
ing that each meme posted by u has a fixed probability of being reposted by v. When
a repost occurs, we consider this a successful case of influence. Each attempt, that is
each meme posted by u, can be viewed as a Bernoulli trial.

The Maximum Likelihood Estimator (MLE) of success probability is the ratio
of number of successful attempts over the total number of trials. Hence, influence
probability of v on u is estimated as:

inf luence(u, v) = |{m ∈ M | ∃t ∈ T : repost(v, u, m, t)}|
|{m ∈ M | ∃t ∈ T : post(u, m, t)}| .

6.1.3 Repost probability

First, we learn a time independent repost probability from interest(m, v) and
inf luence(u, v). This is done by means of logistic regression on a training
dataset made of positive and negative instances (reposts happened or not) from
Yahoo! Meme data. We denote this learnt probability pm

u,v .
Then, inspired by Fig. 5(right) and following Goyal et al. (2010), we incorporate

time by means of a step function. That is, the repost probability p(repost(v, u, m, t))
remains equals to pm

u,v for an interval of time τv , then it drops to a non-null but very
small ε (in all our experiments we used ε = 10−6).

The time interval length τv is defined as the ceiling of the average elapsed time,
observed in the data, between a post by a user u that is followed by v, and its repost
by v.

More precisely, let tu the time in which u posted m, we define the time-dependent
repost probability as follows:

p(repost(v, u, m, t)) =
{

max(pm
u,v, ε) if t − tu ≤ τv;

ε otherwise.

The distributions of the learnt parameters pm
u,v and τv are reported in Fig. 9. We

can observe that most of the users have a very short average elapsed time: more than
half of the users have τv = 1 h.
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Fig. 9 Left distribution of pm
u,v . Right distribution of τv

In the case of the memes “posted” by the super-user � we compute the probabili-
ties p(repost(�, v, m, t)) in the same way as we do for all the other users. In this case
the probability will represent the likelihood for the user v to start a new meme.

The only difference between the theoretical propagation model and the imple-
mentation in the simulator, is that for each meme m posted by � we make the user v

that has the maximal p(repost(�, v, m, t)) post the meme deterministically: this way
we force all the input memes to enter in the network at least once. All the other
users will flip the coin as usual. The effect is that all the memes will have at least one
initiator, and sometimes (rarely) more than one.

7 Meme ranking experiments

This section presents our experimental results. They were obtained by running
simulations of the behavior of the network during one simulated month (720 h). We
“seed” the network by making � offer 10 memes (real memes from Yahoo! Meme)
per hour during the first 100 simulated hours, for a total of 1,000 memes. As described
in Section 3 the social network contains 57K users. At each timestamp, the meme
rank presents up to k = 5 posts to each user.

We tested all the strategies described above, and executed 50 independent runs of
the simulator for each strategy. It should be noted that at the present time we can
not compare with any previously proposed method, as we are the first to introduce
and study the meme ranking problem. Moreover comparison with simulation-based
estimation of memes spread is also unfeasible as we reported in Section 4.3.

The experimental results in terms of total network activity (number of reposts),
averaged across all the runs of each experiment, is shown in Table 5.

A first observation is that all methods perform much better than Random, with
Recency generating more than the double of global activity.

The good performance of Recency is consistent with the dependency of repost
probability from time. The importance of time is also confirmed by the fact that
RepostProbability performs much better than Interest and Influence (recall
that RepostProbability is a combination of Interest and Influence to which we
incorporate the time dependency).
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Table 5 Final network activity
for each meme ranking
strategy, expressed in
thousands of posts

Boldface indicate the best in
each group. The last column is
the wallclock time of one run
of the simulator

Method Activity [K] Time [H:M]

Random 29 ± 1 0:03
Recency 59 ± 1 0:16
Interest 49 ± 2 0:29
Influence 47 ± 1 0:26
RepostProbability 58 ± 1 0:36
Followers10MaxProb 53 ± 1 0:29
Followers10AvgProb 55 ± 1 0:36
Followers10MaxInt 47 ± 1 0:26
Followers10AvgInt 48 ± 1 0:26
Combo-PR 61 ± 3 0:51
Combo-PF 64 ± 1 0:53
Combo-PRF 63 ± 2 1:25

The methods based on the followers of the user suffer from the fact that taken
alone, they do not consider at all the probability that a meme will pass the first
obstacle, that is, the likelihood that our user will post it when presented by the meme
rank. This is obviously an important limit, but it can be overcome when combining
with methods that keep in consideration such first and main hurdle.

Finally, even in this group of methods, the ones that are time-dependent out-
perform those that are not, with average outperforming maximum as aggregation
method.

Combined methods Table 5 also contains results of heuristics obtained by com-
bining the best methods from each group. Specifically: Combo-PR aggregates
RepostProbability and Recency, Combo-PF aggregates RepostProbability and
Followers10AvgProb, finally Combo-PRF combines all the three methods. The
aggregation of the ranks in each case is done by simple Borda counting.5

As expected all the combined methods work well, outperforming all the base
heuristics. It is interesting to note that Combo-PF performs slightly better than
Combo-PRF this can be explained by the fact that the temporal dependency is
already considered by RepostProbability, thus making Recency superfluous.

Figure 10 provides more details about how network activity evolves over time
under the different heuristics. Overall, these experiments demonstrate that the
particular set of memes selected and shown to users every time they log in, has a
strong influence in the level of activity of the entire system.

Ef f iciency Our straightforward implementation is quite efficient. We ran it on a
quad-processor Intel Xeon 3GHz with 16GB of RAM. The most expensive heuristic
to simulate is Combo-PRF which takes about one hour and a half to simulate one
month of network activity, as shown in the last column of Table 5. The running times
are also indicative of the time computational requirements of the different strategies
in practice.

5http://en.wikipedia.org/wiki/Borda_count

http://en.wikipedia.org/wiki/Borda_count
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Fig. 10 Results of the meme ranking simulation. Top: network activity over time. Bottom average
reposts per meme vs. meme age

The conclusion we can draw from these experiments is that the best trade-
off between efficacy and efficiency is achieved by Combo-PF which essentially
combines the probability of reposts of the given user with that of its immediate
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Fig. 11 Results of followers-based heuristics when varying the number of followers sampled. Left:
in terms of network activity. Right: in terms of wallclock time of the simulation

followers. Therefore, we can conclude that considering the followers of a user induces
improvements in the performance achievable by only considering the user herself, or
the recency of the meme.

Finally, since this method is quite efficient, a natural question to ask is to which
extent we can improve the performance by paying a little bit larger price in terms of
computation time. This is what we investigate next.

Varying sample size We focus on the followers-based heuristics assessing how the
size of the sample of followers selected to perform the computation affects the meme
rank performance and its run time. Results for Followers10AvgProb are reported
in Fig. 11. As expected, sampling more neighbors makes the strategy perform better
at the expense of a longer running time. The number of neighbors to sample is a
parameter to be fine-tuned according to the desired trade-off and the target response
time of the system to which the meme ranking solution is applied.

8 Conclusions

In this paper we introduced the Meme Ranking Problem, as the problem of selecting
k memes to show to a user when she logs into a microblogging system. The objective
is to maximize the overall activity of the network, that is, the total number of reposts
that occur. We proposed a meme propagation model, which is valid in general,
beyond the specific objective function that we tackled. The proposed model is
based on empirical observations drawn from an analysis of meme propagations in
Yahoo! Meme.

We choose Yahoo! Meme as the basis of our analysis, because this microblogging
platform is more explicitly oriented towards creating information cascades6 than
other platforms that have a more conversational design. However, we are already
working to reproduce our analysis in other platforms, such as, e.g., Twitter.

In the theoretical part of our investigation, we deeply characterized the computa-
tional hardness of the meme ranking problem and we showed that, even for a simpler

6Yahoo! Meme slogan is CREATE-FOLLOW-REPOST.
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formulation, we need to compute the expected spread of a meme from a user, that
we proved being #P-complete. We discussed theoretical bounds for sampling, thus
showing that even approximate solutions for this problem are prohibitively costly
for our on-line recommendation context. Therefore, we turned our attention to
efficient yet effective heuristic methods. In particular, we devised heuristics based
on estimating the probability of reposts. Such probability is learnt from a real log
of past propagations and it takes into account the influence existing among users,
the topical similarity, or interest, of a meme to a user, and the intrinsic decay of the
repost probability along time.

We compared our methods to two baselines, namely random selection, and a
recency-based heuristic. The latter is the de facto standard for most microblogging
platforms including Yahoo! Meme. The results of our experiments confirmed that (i)
the proposed methods are feasible and can be adopted as an on-line meme ranking
method, and (ii) they induce a total level of network activity larger than what is
achieved with the baseline methods.

The main limitation of our work is the simulation-based evaluation, which is by its
nature a simplification of the real process. For instance, we assume many things are
constant during the simulation such as the users’ connections, the rate of arrival of
external posts, etc. The only possible way to overcome these limitations is to conduct
a real-world human-based assessment.

As online social networks continue becoming not only larger, but also more
densely connected (Leskovec et al. 2005), the problem of selecting what to show
to users about their contacts’ activities will become an even more pressing issue.
Presumably, the meme ranking problem will increase in practical importance, and
thus finding more effective solutions to the meme ranking problem will be part of
our future investigations.

Reproducibility Our simulator and instructions to access publicly-available meme
data through YQL, are available at http://barcelona.research.yahoo.net/memerank.
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