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This article describes a method for early detection of disaster-related damage to cultural heritage. It is based on data from

social media, a timely and large-scale data source that is nevertheless quite noisy. First, we collect images posted on social

media that may refer to a cultural heritage site. Then, we automatically categorize these images according to two dimensions:

whether they are indeed a photo in which a cultural heritage resource is the main subject, and whether they represent damage.

Both categorizations are challenging image classification tasks, given the ambiguity of these visual categories; we tackle both

tasks using a convolutional neural network. We test our methodology on a large collection of thousands of images from the

web and social media, which exhibit the diversity and noise that is typical of these sources, and contain buildings and other

architectural elements, heritage and not-heritage, damaged by disasters as well as intact. Our results show that while the

automatic classification is not perfect, it can greatly reduce the manual effort required to find photos of damaged cultural

heritage by accurately detecting relevant candidates to be examined by a cultural heritage professional.
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1 INTRODUCTION

Cultural heritage resources are finite, scarce, non-renewable, and valuable [80]. They represent our collective
memory, shape our identity, and also drive the economy [49, 50, 82]. These resources are globally under
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immense threat in present times due to natural and human-induced disasters. The increased frequency and
severity of disasters affecting cultural heritage [85] has increased the international awareness toward protection
and conservation of cultural heritage [13, 91]. It also points toward the need for an organized response in such
cases by utilizing efficient tools.

Social networking sites, particularly Twitter, have been acknowledged as an efficient communication tool for
disaster management due to its instantaneous nature [65]. Twitter has been used to disseminate news, support the
immediate disaster response, and track efforts of relief and reconstruction. Consequently, developing efficient
systems to harness and use real-time information from social media to help relief activities for humanitarian
response in disasters has been a priority area for researchers [16, 64]. Researchers have developed methods
for timely detection of events [7, 9, 10, 74], automatic extraction of information from postings [46, 95], and
automatic classification of images [4], among many other tasks. Most works have focused on extracting urgent
needs from the affected populations, while in comparison applications for detecting and evaluating damage to
cultural heritage using social media data have not been studied.

This article aims to bridge this gap by describing a method to automatically detect images of cultural heritage
sites, particularly images depicting damage.

The need for this automation arises from the quantity and variety of images posted on social media. Firstly,
the amount of images posted on social media is enormous. According to Meeker and Wu, approximately
1.8 billion images are shared daily on social media platforms [63]. The quantity of images posted on social
media during disasters is even larger [16]. Secondly, this enormous amount of images posted during disasters
contain irrelevant and redundant content, including images not related to the disaster, duplicate images, and
“memes,” among many others [68]. In fact, the images of cultural heritage sites are a small proportion of the
total images: in our datasets from social media during disasters, we estimate that less than 10% of images shared
might be about heritage sites. Nevertheless, these images are an unparalleled source of information to detect in
near real-time if a cultural heritage site has been affected by a disaster.

Considering the enormous amount of relevant and irrelevant images, manual annotation of each image might
not be feasible. In this work, we propose to use supervised machine learning techniques, specifically deep neural
networks, to automatically identify heritage sites and detect if they show any damage. The models trained on
images found through Google Image Search are evaluated on a real-world disaster dataset collected from Twitter.
The automatic classification methodology discussed in this article provides a helpful tool to support the work of
heritage preservation professionals. By examining a relatively small set of potentially relevant candidate images
extracted by automatic means from a much larger collection, professionals are able to understand the extent of
damage to cultural heritage without necessarily being on site, saving time and resources. Given the immediacy
of social media, the tool is particularly useful for preliminary analysis, and therefore, can help toward organizing
the response by identifying priority areas.

There are four main contributions of this article:

(1) A methodology for collecting, annotating, and learning classifiers to identify heritage sites’ images
(2) An evaluation of this methodology performed on a real-world dataset taken from a disaster event
(3) A corpus1 of annotated images into heritage vs. not-heritage sites with/without damage labels
(4) A lexicon of heritage-related keywords for social media filtering tasks

The rest of this article is structured in five parts. Section 2 conceptually frames this research, particularly
linking it to similar techniques used in the heritage context and beyond. Section 3 briefly describes the method-
ology adopted for this work. Section 4 discusses the process of data collection and annotation. Lastly, Section 5
describes the experiments and results. The article concludes with possibilities of future work in Section 6.

1https://crisisnlp.qcri.org/heritage.
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2 RELATED WORK

2.1 Images of Disaster and Cultural Heritage in Social Media

There is a growing interest among researchers to study images about disasters posted on social media. Images
have been studied from many different perspectives including typology analysis [41], spatial and temporal pat-
tern analysis [39], and ethics [35, 72], among others. Faulkner et al. present a good overview of the current
research on social media images by using three methodological approaches: large-scale image analysis, working
with images at different scales, and in-depth qualitative analysis of images [25]. Further, they adopt the three
methodological approaches to analyze the case of Alan Kurdi2 in order to draw different insights from the same
dataset. Bozdag and Smets’s qualitative study using small data concluded that the images of Alan Kurdi did not
cause a major shift in common discourses and representations [14]. Similarly, Kharroub and Bas’s analysis of
518 images circulated during the 2011 Egyptian revolution revealed more efficacy-eliciting than emotionally
arousing content posted by Egyptian users [53]. Hjorth and Burgess analyzed the 100 most retweeted images
during the Queensland flood to understand the genres and resonating themes in images [38]. Vis et al.’s ex-
ploratory study of the images tweeted during the 2011 UK riots also considers different types of images posted
during the event [93]. Seo identified themes and frames prominently appearing in a total of 243 Twitter images
posted by the Twitter accounts of the Israel Defense and Hamas’s Alqassam Brigades during the Israeli-Hamas
Conflict [76]. Additionally, a few studies focus on the analysis of self-portraits (i.e., “selfies”) posted on social
media during disasters [36, 44].

The cultural heritage domain use the images on social media for two main purposes: (i) enable users to interact
with an already existing image database, and (ii) create new databases of (heritage) images on social media. The
US Library of Congress uses photo sharing platform Flicker to enable users to interact with old photographs
[81]. Other cultural institutions in the US such as The Smithsonian carried out similar initiatives [48, 52]. In
contrast, Terras investigated the growing trend of the creation of digital images of cultural and heritage mate-
rials by amateurs on Flickr [87]. Garduño Freeman studied the public engagement with the world heritage site
Sydney Opera House on Flicker and argued that such socio-visual practices themselves constitute an intangible
heritage [29]. A number of studies focus on cultural heritage institution’s use of image-based social media such
as Flickr and Instagram to understand the content created by the institutions, the relation between audience and
institution, among other topics [47, 60]. To the best of our knowledge, no prior study deals with the analysis of
images depicting cultural heritage circulated on social media during disasters.

2.2 Automated Processing of Images from Heritage Sites

Image processing techniques have been used in the cultural heritage context for various purposes. For example,
Hurtut et al. introduced a method for the analysis of the pictorial content of line drawings using the geometrical
information of stroke contours [43]. They showed that the proposed method could be used successfully for
the indexing of line drawings in a retrieval framework. In another example, Makridis and Daras presented a
technique for automatic archaeological sherd classification based on a bag-of-visual-words representation of
local color and texture information and discriminative feature selection [61]. Amato et al. defined a pipeline
that combined a convolutional neural network with Fisher vector features for visual recognition of ancient
inscriptions. Their study suggested that these features could be effective in visual retrieval of other types of
objects related to cultural heritage such as landmarks and monuments [6]. Can et al. studied visual analysis of
Maya glyphs using both handcrafted and data-driven shape representations in a bag-of-words-based pipeline
[15]. Similarly, Hu et al. proposed a system for automatic extraction of hieroglyph strokes from images of
degraded ancient Maya codices via a region-based image segmentation framework [40]. According to their

2A Syrian boy, age 3, who drowned in the Mediterranean Sea in 2015 while his family, escaping from the Syrian war and ISIS, attempted to

reach Greece from Turkey.
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experimental results, automatically extracted glyph strokes achieved comparable retrieval results to those
obtained using glyphs manually segmented by epigraphers.

Focusing more on architectural heritage, Shalunts et al. presented an approach based on clustering and learn-
ing of local features to classify the architectural style of facade windows [78]. Mathias et al. used features ex-
tracted by a steerable pyramid of Gabor filters to train a Support Vector Machine for automatic architectural style
recognition [62]. To tackle the same problem, Chu and Tsai proposed a higher-level feature representation that
takes into account spatial relationships between local features to identify repetitive subgraphs as visual patterns
in an image [18]. Furthermore, Goel et al. explored the utility of mining characteristic configurations of low-level
discriminative features in categorizing different architectural styles and used them for improving classification
performance [31]. Alternatively, Oses and Dornaika presented a semi-automatic approach for delineation of the
masonry to classify architectural style [71], whereas Zhang et al. introduced blocklets that capture the morpho-
logical characteristics of buildings and developed an architectural style recognition model based on hierarchical
sparse coding of blocklets [98]. Xu et al., on the other hand, adopted Deformable Part-based Models to capture
the morphological characteristics of basic architectural components and proposed Multinomial Latent Logistic
Regression for architectural style classification [94]. Amato et al. combined k-nearest neighbor classification and
landmark recognition techniques to tackle the problem of monument recognition in images efficiently [5]. More
recently, Llamas et al. explored deep learning-based techniques, specifically convolutional neural networks, for
the classification of architectural heritage images into one of the 10 types of architectural elements of heritage
buildings [58]. However, their dataset consists mostly of churches and religious temples. More importantly, they
do not consider images from any damage or disaster context. In contrast, in this article, our goal is to analyze the
visual content of images to determine whether they show any type of cultural heritage, even when the image is
taken potentially in some damage or disaster context.

2.3 Detection of Images Showing Damaged Structures

There has been a significant increase in the use of image analysis techniques for automatic damage assessment
in the last couple of decades. Most of these studies can be divided into two groups based on the type of data and
domain knowledge they use.

The first group of studies corresponds mainly to the remote sensing domain and mostly rely on the analyses
of images obtained from satellites, aircrafts, and unmanned aerial vehicles (UAVs). Early examples include de-
tection of damaged or collapsed buildings using aerial photographs collected from earthquake-hit regions [89,
90]. Similarly, Pesaresi et al. investigated rapid damage assessment of built-up structures using satellite data in
tsunami-affected areas [73]. In order to produce comprehensive per-building damage scores, Fernandez Galarreta
et al. studied UAV-based urban structural damage assessment using object-based image analysis and semantic
reasoning [26], whereas Attari et al. explored fine-grained segmentation of UAV imagery based on deep learning
techniques for damage assessment [8]. Alternatively, Vetrivel et al. combined multiple kernel learning with 3D
point cloud features derived from high resolution oblique aerial images to detect disaster damage [92]. Likewise,
Cusicanqui et al. investigated the usability of aerial video footage for 3D scene reconstruction and structural dam-
age assessment [21]. To maximize their data utilization, Kakooei and Baleghi [51] and Duarte et al. [24] explored
fusion of multiple data sources such as satellite, aircraft, and UAVs for automatic disaster damage assessment.

The second group of studies includes relatively recent work in the crisis informatics domain and rely mostly
on the analyses of ground-level images collected from online social media platforms during disasters [4, 11, 68].
Early examples specific to damage assessment tasks are presented by Lagerstrom et al. [55] and by Daly and
Thom [23] where both studies analyzed social media data in a binary image classification setting for fire/not-
fire detection. Later, Nguyen et al. investigated a more generic solution to classify disaster images according to
damage severity using convolutional neural networks [69]. Similarly, Li et al. proposed a method based on class
activation mapping to localize and quantify damage in social media images posted during disasters [57]. Taking
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Fig. 1. Overview of methodology.

a step further, Li et al. explored a domain adaptation approach to identify disaster damage images during an
emergent event when there is scarcity of labeled data [56]. To advance the state-of-the-art in this area, Alam
et al. [3] and Mouzannar et al. [67] recently introduced multimodal datasets comprising both social media text
messages and images. Furthermore, Mouzannar et al. defined a deep learning approach to identify damage images
in their dataset [67]. Inspired by these recent advancements, Alam et al. developed an image processing pipeline
to extract meaningful information from social media images during a crisis situation, including damage severity
assessment [2]. In this study, we ran the images in our heritage image datasets through Alam et al.’s system
to perform the damage assessment task. It is important to note that our dataset, in contrast to previous works,
focuses on elements from cultural heritage sites that often look old or aged. This makes the damage assessment
task more challenging than the aforementioned studies, which use all kinds of images; indeed, the vast majority
of images processed in previous works to identify damaged structures are not images of heritage sites.

3 METHODOLOGY OVERVIEW

The methodology adopted for this research has the following steps:

(1) Definition of elements and categories of interest
(2) Data collection
(3) Data filtering and annotation
(4) Construction of classification models

Figure 1 outlines the overall methodology.

Definition of elements and categories of interest. The elements we want to classify are images embedded
in social media postings. The category of interest corresponds to all images that show damage to a heritage site.
This is the intersection of two broader categories: images depicting heritage sites and images depicting damaged
structures.

ACM Journal on Computing and Cultural Heritage, Vol. 13, No. 3, Article 23. Publication date: August 2020.
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Fig. 2. Images in our collection corresponding to heritage sites (left) and not-heritage sites (right).

Firstly, a balanced list containing the names of cultural heritage and not-cultural heritage sites was created.
Given the inherent complexity of cultural heritage, we considered the legal protection status as the criteria for
defining cultural heritage and not-cultural heritage. At the international level, the scope of the term “cultural
heritage” has broadened since the adoption of the Venice Charter in 1964 [45]. It is now applicable to individual
buildings, groups of buildings, historical areas, towns, sites, environments, social factors, and intangible enti-
ties (intangible heritage). It also includes artifacts, artworks, practices, and the like. At the national level, finer
terminologies of heritage are not standardized; therefore, no uniformity exists between countries [1]. Moreover,
researchers have argued that heritage is an inherently complex phenomenon and can contain conflicting mean-
ings [33]. Acknowledging these complexities, we decided to limit our dataset to the legally protected (either by
national or local governments) cultural heritage.

The cultural heritage list included archaeological sites, monuments, cultural landscapes, museums, galleries,
libraries, and artifacts in urban space. We tried to create a list that was visually and geographically varied in
terms of period (ancient to modern), material, and construction. The not-cultural heritage lists also included
buildings and artifacts in urban space. The lists of cultural heritage and not-cultural heritage sites are provided
in Tables 10 and 11, respectively, in Appendix Section A. We must acknowledge that defining heritage is always
an ongoing process, depending on what is valuable to people in a given place and time. Indeed, there is even
de-listing of protected heritage buildings in some countries. Therefore, the list of heritage sites used as training
data for the automatic classifier needs to be updated regularly to maintain the quality of the results.

Data collection (Section 4.1). Google Image Search was used to construct two datasets of images. The first
dataset corresponds to images of heritage and not-heritage sites. Figure 2 shows examples of cultural heritage
and not-cultural heritage from our list. The second dataset corresponds to damaged scenes from both heritage
and not-heritage sites.

Data filtering and annotation (Section 4.2). The underlying problem of online images, whether on social
media or Google, is that it contains many irrelevant or unusable images. In this study, the irrelevant or unusable
images were primarily the ones where heritage was not the primary subject of the image or images, which were
edited to an extent that the original context was significantly altered. Figure 3 shows some irrelevant images in
our dataset. Firstly, these irrelevant images were removed, as explained in Section 4.2.1 in depth. Secondly, the
remaining images were annotated using the following criteria: heritage vs. not-heritage and damaged heritage
(Section 4.2.2) vs. not-heritage (Section 4.2.3). Both of the tasks were carried out by the lead author of this article,
as shown in Figures 1 and 6.

Construction of classification models (Section 5). We built two different heritage classifiers using the labeled
data annotated by our expert. First, we used only the images collected without any damage queries to train a

ACM Journal on Computing and Cultural Heritage, Vol. 13, No. 3, Article 23. Publication date: August 2020.
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Fig. 3. Images from Google that could not be used for training the classifier.

classifier as shown in Figure 1 (top). Second, we used all images collected both with and without damage queries
to train another heritage classifier (Figure 1, bottom). The performance of both classifiers is evaluated on the
dataset collected during the 2015 Nepal earthquake (Section 5.3).

4 DATA COLLECTION AND ANNOTATION

In this section, we discuss our data collection and annotation details.

4.1 Cultural Heritage and Not-Cultural Heritage Images

We selected 92 cultural heritage sites around the world and downloaded their images from Google. The list in-
cludes sites related to architectural heritage, archaeology, monuments, cultural landscapes, museums, galleries,
libraries, and art in urban space. We sought to make the list geographically, period (ancient to modern), material
and construction-wise, and visually representative. Since we treat the detection of heritage sites as a binary clas-
sification task, we also create another list containing built structures (i.e., buildings and sites), which look some-
what similar to heritage sites, but, officially, they are not designated as cultural heritage. Selecting not-cultural
heritage sites is a difficult task, given the ever-expanding boundaries of cultural heritage. Keeping in mind the
protection criteria, a list of 32 not-cultural heritage sites was carefully curated to be geographically and visually
representative. Interestingly, some of the buildings in this list are iconic buildings that are not protected. The
complete lists containing the selected sites related to heritage and not-heritage are provided in Tables 10 and 11 in
Appendices Section A. Figure 4 shows all the selected sites for both heritage and not-heritage categories on a map.

We downloaded approximately 100 images of each heritage and not-heritage site from Google image search
using the heritage site name as a query. The image search criteria needed to be robust to yield better results.
Some of the site names had more risk of yielding bad results. For instance, image search criterion for the Walkie-
Talkie building in London was Walkie-Talkie London, as the possibility of a bad result was higher if London was
not included in the search query.

In addition to the images that show heritage sites that are potentially undamaged, we searched for images of
the heritage sites showing some damage. For this purpose, our query consists of the heritage site name combined
with two keywords (i.e., “damage” and “destroyed”) separately. In total, we were able to download 13,333 images
from Google.

It is important to note that the proportion of cultural heritage images in social media streams, especially during
disasters, is minuscule, which makes the detection task inherently imbalanced. In such situations, it is not ideal
to leave the minority class (i.e., heritage) so small to avoid training machine learning models that trivially predict
the majority class (i.e., not-heritage) all the time. Therefore, we recommend that this type of imbalance reduction

ACM Journal on Computing and Cultural Heritage, Vol. 13, No. 3, Article 23. Publication date: August 2020.
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Fig. 4. Map showing locations of heritage and not-heritage sites.

Table 1. Filtering and Annotation Results for Heritage vs. Not-Heritage Annotation

of Images Found Using Google Image Search

Removed Labeled as Labeled as
Dataset images Heritage Not-heritage
Images found using heritage/not-heritage queries 2,974 6,612 2,266
Images found using damaged heritage queries 78 836 (447) 567
Total 3,052 7,448 2,833

The number in parentheses represents the number of damaged heritage images.

is done, i.e., to over sample from the minority class, ultimately to strengthen the performance of the classifier in
the minority class (see Table 1).

4.2 Data Filtering and Annotation

4.2.1 Data Filtering. Many images, which were collected from publicly available websites using Google Image
Search, are not useful for training an automatic classifier and were thus removed. Specifically, images with
one of the following issues were removed: images that are significantly edited, images where a heritage site is
merely a backdrop and not the main subject (e.g., selfies), images that are covered almost entirely with text,
3D reconstruction or 3D models of sites, paintings of heritage sites, memes, architectural plans and sections of
heritage sites, sketches, maps, images in which contextual information is missing (e.g., a close-up photograph
of a stone in a building), and images of replicas unless it has a protected status. Table 1 shows the results of the
filtering task. Figure 3 shows a few images that were removed as a result of manual filtering. The remaining
images are used to perform two annotation tasks as described next.

ACM Journal on Computing and Cultural Heritage, Vol. 13, No. 3, Article 23. Publication date: August 2020.
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4.2.2 Heritage vs. Not-Heritage Annotation. This annotation task aims to identify whether an image contains
a heritage site or not. The lead author of this article (a domain expert) labeled 13,333 images as heritage (which
depicts a heritage site) and not-heritage (which does not depict a heritage site) using separate folders on a shared
drive. The first row in Table 1 shows the results of the filtering and the heritage annotation tasks for images that
were collected without damage queries.

4.2.3 Damaged Heritage vs. Not-Heritage Annotation. This annotation task aims to determine whether an
image having a heritage site shows any sign of damage to the site or not. This task was also carried out by the
lead author of this article using separate folders on a shared drive. The quantification of the scale of damage
is a subjective task; hence, we follow the annotation scheme described in the literature [69], which defines the
damage concept in three categories: (i) SEVERE damage, (ii) MILD damage, (iii) NO damage. However, in this
work, we merged the SEVERE and MILD classes to a single class named “Damage.” Table 1 shows the results
of the filtering and the damage heritage annotation tasks for images that were collected with damage queries.
Images collected from Google using the damage queries contain both heritage sites showing some damage and
sites without any damage. The number of heritage sites with some damage are shown in parentheses in the
second row of Table 1.

5 EXPERIMENTAL RESULTS OF AUTOMATIC CLASSIFICATION

In this section, we describe our experiments and present our results.

5.1 Classification Approach

We considered various alternative approaches ranging from more traditional techniques such as bag-of-visual-
word models to more advanced deep learning techniques such as convolutional neural networks. Eventually, we
decided to use a deep learning-based solution since the state-of-the-art performance in many computer vision
tasks are achieved by deep learning models [37, 54, 77, 79, 84] that leverage on large-scale datasets such as
ImageNet [75] and Places [99].

In a nutshell, deep learning models, convolutional neural networks (CNNs) in particular, learn low-, medium-,
and high-level features and classifiers in an end-to-end fashion to optimize on the target prediction task directly
from raw data [97]. For example, the lower layers of deep CNN architectures correspond to a representation
suitable for low-level vision tasks while the higher layers represent more domain-specific information [32],
and, hence, eliminate the need for hand-crafted features like Scale Invariant Feature Transform (SIFT) [59] or
Histogram of Oriented Gradients (HOG) [22].

More importantly, the features learned in deep convolutional networks have been shown to be transferable
and quite effective when used in other visual recognition tasks [30, 96], particularly when training samples
are limited and learning a successful deep model is not feasible due to over-fitting. For instance, Nguyen et al.
show the success of this transfer learning approach for damage assessment tasks performed on disaster images
collected from social media [69]. Considering that we also have limited training examples, we adopt a transfer
learning approach for the heritage classification problem.

Our heritage classification system is composed of two stages: (i) deep feature extraction and (ii) training a
heritage/not-heritage classification model, as illustrated in Figure 5. In the deep feature extraction stage, each
image from the training set is simply fed as input to a deep convolutional neural network (CNN) that is pre-
trained on the ImageNet dataset, which has over 1.2M images and 1,000 categories [75]. The features extracted
from the penultimate layer of the network are then used to represent the input image. Then, in the second stage,
these deep features are used to construct the desired heritage classification model.

In this study, we experiment with a number of well-known CNN architectures in combination with a variety
of classification algorithms. The CNN architectures used in the experiments include VGG16 [79], ResNet50 [37],
DenseNet121 [42], InceptionResNetV2 [83], Xception [17], and NASNetLarge [100], whereas the classification
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Fig. 5. Overview of the heritage classification system.

Table 2. Training/Test Set Split by Site (80:20 Ratio)

Training Set-1 Training Set-2 Test Set
Sites Images Sites Images Sites Images

Heritage 69 5,376 73 6,075 19 1,373
Not-heritage 25 1,869 25 2,380 7 453
Total 94 7,245 98 8,455 26 1,826

algorithms employed in the experiments comprise Logistic Regression [20], Support Vector Machines [19], Ran-
dom Forests [88], and AdaBoost [28]. All the experimental results achieved by different network architectures
and classification algorithms are presented in Tables 12–15 in Appendix Section C. Overall, DenseNet121 and
NASNetLarge features seem to yield slightly better results than other feature types. And, in terms of algorithms,
Logistic Regression and Support Vector Machines seem to perform better than Random Forests and AdaBoost.

For brevity, we hereinafter discuss only the results achieved by the model trained using the Logistic Regression
algorithm on DenseNet121 features, as this is the best performing method in most of the experiments for our
problem setup—although, in other settings, a different method may perform better.3

5.2 Heritage/Not-Heritage Classifier Training

In our dataset, we have 7,448 images from 92 heritage sites and 2,833 images from 32 not-heritage sites. In order
to create disjoint training and test sets, we follow a site-based data split approach. That is, 80% of the heritage
sites (i.e., 73 out of 92) are chosen at random and all images (i.e., 6,075) belonging to these sites are assigned to
the training set (i.e., Training Set-2 in Table 2). Then, all images (i.e., 1,373) belonging to the remaining 20% of the
heritage sites (i.e., 19 out of 92) are assigned to the test set (i.e., Test Set in Table 2). We follow the same approach
to distribute images from not-heritage sites into the training and test sets.

To investigate the benefits of having images with damage context while training our heritage classifier, we
create another training set (i.e., Training Set-1 in Table 2) where we ablate from Training Set-2 those images
collected by heritage-sites-with-damage queries. In other words, Training Set-1 is a subset of Training Set-2 where
images in Training Set-1 do not show any damage content. The resulting data split is summarized in Table 2.
It is important to note that we opt for site-based data split rather than image-based data split to obtain models
with better generalization capability on new images from previously-unseen sites.

Heritage Model-1. In this first scenario, we train a heritage classifier using only the images collected by heritage
site queries with no damage keywords (i.e., Training Set-1 in Table 2).

3The DenseNet121 network consists of 121 layers and around 8 million weight parameters [42]. We choose the penultimate layer as our

1,024-dimensional deep feature extractor.
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Table 3. Confusion Matrices of the Heritage Classifiers

Classified as
Heritage Not-heritage

Heritage Model-1 Actual label
Heritage 1,193 180
Not-heritage 113 340

Heritage Model-2 Actual label
Heritage 1,174 199
Not-heritage 74 379

Table 4. Performance Comparison of the Heritage Classifiers

Precision Recall F1-score
Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

Heritage Model-1 0.91 0.65 0.87 0.75 0.89 0.70
Heritage Model-2 0.94 0.66 0.86 0.84 0.90 0.74

Heritage Model-2. In the second scenario, we train a heritage classifier using all of the images collected by
heritage sites queries both with and without damage keywords (i.e., Training Set-2 in Table 2).

In addition to a confusion matrix, which displays the number of correctly and incorrectly categorized instances
on each class, we use three standard performance metrics for classification tasks. Precision (positive predictive
value) is the probability that an item classified automatically into a class actually belongs to that class. Recall
(or sensitivity) is the probability that an item that actually belongs to a class is classified automatically as such.
The F1-score is the harmonic mean of precision and recall, and is one of several metrics that can be used to
summarize them into a single number.

Results are shown in Tables 3 and 4. Confusion matrices (Table 3) for both models are dominated by the
diagonal, meaning that heritage sites are more likely to be classified as such than as not-heritage. Performance
in terms of precision and recall (Table 4) shows precision above 0.9 and recall above 0.8 for the heritage class. In
practice, this means that an image automatically detected as a heritage will be, indeed, heritage at least 9 out of
10 times; and that images of heritage will be found by the classifier at least 8 out of 10 times. Overall, we do not
observe much performance difference between the two heritage models on the Google images test set.

5.3 Case Study: 2015 Nepal Earthquake (SMERP Workshop Dataset)

We now present the results of our case study in a real-world scenario where we evaluate the performance of both
of our heritage classifiers as well as an off-the-shelf damage assessment model of Alam et al. [2] on a Twitter
dataset collected during the 2015 Nepal earthquake (i.e., Exploitation of Social Media for Emergency Relief and
Preparedness (SMERP) Workshop Dataset [66]). As an alternative baseline, we also consider a lexicon-based
model to analyze Twitter text messages for the heritage classification task. Figure 6 illustrates our case study
design.

5.3.1 Data Filtering and Annotation. A dataset containing images of damaged heritage sites, extracted from
social media, is essential to evaluate the proposed approach. We use images posted on Twitter during the 2015
Nepal earthquake, an event that damaged a large number of heritage sites in this country. Specifically, we use
the SMERP Workshop Dataset [66], which contains 6,529 images collected after the Nepal Earthquake in 2015.
The tweets in this dataset were collected using the keywords “Nepal earthquake” and “Nepal quake.” It is evident
from the keywords that this dataset was not curated for heritage purposes. Nevertheless, the dataset consists of
information regarding heritage damaged due to the disaster. These 6,529 images are annotated manually using
Nvivo, a qualitative data-analysis software by our expert for heritage and damage severity classification tasks. At
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Fig. 6. Case study design and testing.

Table 5. Heritage and Damage Annotation Results

for the SMERP Dataset

Heritage Not-heritage Total
Damage 377 1,445 1,822
No-damage 110 4,388 4,498
Total 487 5,833 6,320

the end of this manual annotation process, there are 6,320 images labeled with heritage and damage categories,
excluding the images labeled as “maybe_heritage” or “dont_know” as well as the images with multiple heritage
or damage labels. All of these 6,320 images are treated as test images in our case study. Table 5 summarizes the
results of both heritage and damage annotation tasks. Figure 7 shows a few images with and without damage.
Moreover, the textual content associated with these 6,320 images (i.e., tweet text) is used to test our lexicon-based
classifier, which we describe next in detail.

5.3.2 Baseline Construction. To set a baseline, we developed a lexicon consisting of 176 terms covering
heritage-related concepts such as museum, temple, monuments. As a domain expert, the lead author of this study
manually curated the lexicon. The full lexicon is provided in Appendix Section B. The lexicon terms were then
used to categorize tweets from our case study event (i.e., 2015 Nepal earthquake), as shown in Figure 6. Specifi-
cally, we first extract uni-grams and bi-grams features from a tweet content. We then find if any of those extracted
features are present in the lexicon. A tweet having at least one of the lexicon terms was categorized as heritage
and not-heritage, otherwise. The categorized tweets were evaluated using the ground-truth labels. The resulting
confusion matrix is presented in Table 6 and the performance reported in the first row of Table 7. Not surpris-
ingly, the lexicon-based classifier misses many of the true heritage cases (i.e., 388 out of 487 instances), which
results in a fairly low Recall= 0.20 for the heritage class. In practice, this means that only 1 out of 5 images of
the heritage will be identified correctly by the lexicon-based classifier.

5.3.3 Heritage/Not-heritage Classification. First, we apply our heritage models on the SMERP dataset and
compare their predictions with the ground-truth annotations.4 Table 6 shows the resulting confusion matrices

4The results discussed in this section are obtained by the heritage models trained by Logistic Regression algorithm using DenseNet121
features. To examine the performance of other models obtained by different combinations of CNN features and classification algorithms, we

suggest that the reader inspects Tables 16–19 in Appendix Section D.
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Fig. 7. Examples of annotated images from the SMERP dataset, showing heritage with damage (top left), not-heritage with

damage (top right), heritage with no damage (bottom left), and not-heritage with no damage (bottom right).

Table 6. Confusion Matrices of the Heritage Classifiers on the SMERP Dataset

Classified as
Heritage Not-heritage

Lexicon-based

Model
Actual label

Heritage 99 388
Not-heritage 80 5,753

Heritage Model-1 Actual label
Heritage 423 64
Not-heritage 3,869 1,964

Heritage Model-2 Actual label
Heritage 369 118
Not-heritage 1,039 4,794

Table 7. Performance Comparison of the Heritage Classifiers on the SMERP Dataset

Precision Recall F1-score
Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

Lexicon-based Model 0.55 0.94 0.20 0.99 0.30 0.96
Heritage Model-1 0.10 0.97 0.87 0.34 0.18 0.50
Heritage Model-2 0.26 0.98 0.76 0.82 0.39 0.89
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Fig. 8. Examples of images classified with Heritage Model 2.

between the predicted and ground-truth labels for both heritage models. Figure 8 illustrates the confusion ma-
trices between the predicted and ground-truth with examples of images classified with the Heritage Model-2. It
was found that the images that were particularly difficult to accurately classify included edited or altered images,
aerial images, and satellite images. Images with overlapping architectural elements between the “heritage” and
“not-heritage” categories were also difficult to classify. Lastly, images in which heritage was not the main subject
of the image (refer top-right of Figure 8) tend to be difficult to classify. Further, Figures 10 and 11 in Appendix
Section E provide examples of images classified with Heritage Model-1 and Lexicon-based Model. Moreover,
Table 7 summarizes the performance of the heritage classifiers in terms of precision, recall, and F1-score. Ideally,
the confusion matrix for a perfect model would have non-zero values only in the diagonal entries and zeros else-
where (i.e., no incorrect predictions). However, this is rarely the case in real-world systems. Likewise, Heritage
Model-2 does a decent job in classifying heritage images as heritage (i.e., 369 out of 487), which corresponds to
a Recall= 0.76, and not-heritage images as not-heritage (i.e., 4,794 out of 5,833), which corresponds to a Recall=
0.82. However, the model makes some errors and classifies many not-heritage images also as heritage (i.e., 1,039),
which results in a low score of Precision= 0.26; although, in the other direction, the model makes less errors and
classifies fewer not-heritage images as heritage (i.e., 118), which leads to a high score of Precision= 0.98.

Another important observation to note is the significant difference in performance between the two heritage
models on our case study dataset, although they seemed to perform on par on our Google images test set (as pre-
sented earlier in Section 5.2). First, there is a big difference in precision scores where Heritage Model-2 achieves
a score of Precision= 0.26 while the Heritage Model-1 achieves only a score of Precision= 0.10. As Heritage
Model-1 was not trained on sample images with damage context, it tends to classify many not-heritage images
as heritage (i.e., 3,869 to be specific), which corresponds to a false positive rate of FPR= 0.66 based on Table 6.
On the other hand, Heritage Model-2 makes a lower number of the Type-I errors (i.e., 1,039 to be specific), which
brings the false positive rate down to FPR= 0.18 according to Table 6.

However, this increase in precision for Heritage Model-2 comes at the expense of a slight decrease in recall
since Heritage Model-2 makes more Type-II errors than Heritage Model-1. Specifically, Heritage Model-2 predicts
118 heritage images as not-heritage (which corresponds to a false negative rate of FNR= 0.24), whereas Heritage
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Table 8. Confusion Matrix for the Damage Classification

Classified as
Damage No-damage

Actual label
Damage 1,580 242
No-damage 368 4,130

Fig. 9. Examples of damage classification images.

Model-1 predicts 64 heritage images as not-heritage (which corresponds to a false negative rate of FNR= 0.13).
When we compare the F1-scores of both models, which is the harmonic mean of the precision and recall scores,
we see that the overall performance of Heritage Model-2 with a score of F1= 0.39 is much better than that of
Heritage Model-1 with a score of F1= 0.18. In other words, Heritage Model-2 presents better generalization
capabilities.

Although the lexicon-based model achieves the highest precision score (i.e., Precision= 0.55), its overall perfor-
mance in terms of F1-score remains at F1= 0.30 due to its poor recall rate (i.e., Recall= 0.20) for the heritage class.
Therefore, we conclude that Heritage Model-2 provides the best compromise for the heritage image classification
task in practice.

5.3.4 Damage/No-Damage Classification. Then, we apply the damage assessment model of Alam et al. [2] on
the SMERP dataset and compare the model’s predictions with expert labels. As shown by the confusion matrix in
Table 8, the model classifies most of the damage images correctly and misses only 242 damage images. Similarly,
it misclassifies only 368 no-damage images. This yields a classification accuracy of 0.90. Figure 9 shows examples
of damage classification images. Moreover, Table 9 summarizes the performance of the damage assessment model
in terms of precision, recall, and F1-score. Based on these class-specific assessments, the model seems to perform
relatively better on no-damage images than on damage images. The weighted average of these precision and
recall scores tends to be closer to those for the no-damage class because of the imbalance distribution of damage
and no-damage images in the SMERP dataset.
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Table 9. Performance of the Damage Classifier

on the SMERP Dataset

Precision Recall F1-score
Damage 0.81 0.87 0.84
No-damage 0.94 0.92 0.93

5.4 Discussion

The results from our experiments suggest that the proposed methodology to classify images from social media
is helpful to understand damage to heritage sites during disasters. Its application can contribute toward a better
understanding of the impact of disasters on cultural heritage and prepare a coordinated response.

We performed a comparative analysis of the precision and recall of each model to understand their relative
performance in our case study. Table 7 summarizes the performances achieved by the three models. Even though
the lexicon-based model yields the highest precision in our case study, its applicability can not be generalized
for various reasons. First, the manually-curated lexicon contains only English terms. However, people often
refer to terms in the local language when describing a heritage site. For instance, a temple is often referred to
as a mandir in some countries. Second, the words in a lexicon can be used in a different context. For instance,
heritage has been used to refer to lineage in many instances. Third, the lexicon-based model can result in data
from undamaged or unaffected areas. We found that the term temple was also used to refer to an unaffected
temple in an unaffected region. Fourth, the low recall of the lexicon-based model implies that only 20% of images
from heritage sites will be found by this model. While low precision results in more manual work for the heritage
professionals, low recall implies that many images simply go undetected. In a real-world scenario, it means that
the overall assessment of damaged heritage may be quite incomplete with this model.

In comparison, Heritage Model-2’s lower precision implies more manual labor for heritage professionals in
sorting the relevant images, but its higher recall suggests that the chances of relevant images being undetected is
substantially lower. Therefore, compared to the lexicon-based model, Heritage Model-2 is more likely to provide
a better overall picture of the affected areas. On the other hand, Heritage Model-1’s lowest precision and higher
recall suggest that the manual labor of professionals is more than doubled, even though the overall picture of
the affected areas may not be significantly better than the Heritage Model-2. More manual work for heritage
professionals in this case would result in a delayed assessment in a real-world scenario. Therefore, we conclude
that, among the three models, Heritage Model-2 is the most suitable model for heritage image classification
as it will result in better assessment in less amount of time and require less manual work from the heritage
professionals.

This is a challenging image classification task, as high performance would require visual features that can
characterize heritage sites in an unambiguous manner. Overlapping spatial qualities, building form, architectural
elements, and material of construction in heritage and not-heritage categories means this problem is inherently
ambiguous. In addition, the fact that we try to identify heritage images in a disaster context makes the problem
even more challenging. Our case study results revealed that a subtle difference in data curation and training (i.e.,
including damaged heritage and not-heritage images in the training of Heritage Model-2) can lead to significant
differences in generalization capabilities and robustness of the trained models, especially when tested in a real-
world scenario. To this end, our results highlight that the automatic classification of heritage images in disaster
context is not an impossible task.

Many of the images depicting damaged heritage did not contain contextual information. This complicates
the task further, even for a professional. However, our damage assessment model gave a high accuracy. Given
the precision is above 80% for damaged heritage, a heritage professional examining the output would find false
positives (images the system says are damaged heritage, but are not) of up to 20%. Given the recall is above 80%
for the same class, 4 out of 5 images of damaged heritage can be found using these methods.
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The automated method can significantly reduce the effort by the cultural heritage professional who would
have to scan potentially hundreds of images just to find one heritage image. We are greatly reducing this effort
by quickly processing and filtering thousands of images and presenting candidates, even if now the professional
needs to look at four images on average to find one relevant image (i.e., precision of 26%, Table 7). Even with
this level of precision, we believe these methods will substantially improve post-disaster heritage management
practices. Since culture (or heritage) may not be an immediate need or priority in disaster-struck societies, the
rescue of cultural heritage is rarely well-integrated with disaster management practices [34, 86]. In fact, post-
disaster damage assessment in many cases is not completed until several months after the disaster [12], thereby
making heritage vulnerable to further damage/decay. Further, in some cases, damage assessments are ineffective
or incomplete due to lack of inventories, well-established processes, or expertise [86]. Our model, on the other
hand, will give heritage professionals a tool to complete the rapid damage assessment soon after the disaster,
and, therefore, the time-lag between disaster and action can be significantly reduced.

In our case study, we used a single type of disaster, i.e., an earthquake, a type of geophysical disaster. There-
fore, a discussion on the classifiers’ applicability in different subgroups of disasters is necessary at this point. The
training of Heritage Model-2 using sample images with varied damage context increases the chances of correct
predictions in different types of disasters such as geophysical, and miscellaneous accidents, as defined by EM-
DAT [27]. It is also likely to detect damage in case of deliberate destruction of heritage during wars. However, the
Heritage Model-2 will not perform in other scenarios such as hydrological disasters (e.g., floods), as the training
dataset included only the above-mentioned sub-groups of disasters. Indeed, the characteristics of images pro-
duced in different types of disasters may vary in various aspects. Further, the characteristics of images produced
on social media during two similar events may also vary in attributes. Therefore, further training of Heritage
Model-2 with larger datasets from different scenarios will increase the wider applicability of the classifier.

Moreover, we have used a single data source, Twitter. The model may not work in different social media plat-
forms (e.g., Instagram or Facebook), in which users may post other types of photos. Indeed, different platforms
might be used by different users for different purposes [70]. Further training of Heritage Model-2 with datasets
from different platforms can increase its applicability across platforms.

The results from our extensive experiments using various network architectures as feature extractors together
with several classification algorithms showed that there can be variations in performance across different con-
figurations. Although these variations are usually not dramatic, it is possible to obtain further performance
improvements in precision and recall via some further engineering and parameter fine-tuning efforts. However,
such engineered configurations may not translate from one setup to another, and should be part of the work
done when deploying and maintaining these systems in practice.

6 CONCLUSIONS

The process we have described requires many elements: a careful delimitation of the images to be processed,
a comprehensive data collection strategy that ensures diversity, a careful annotation of data points that can
avoid ambiguities in the training set, a state-of-the-art deep learning method to learn to classify images, and an
in-depth evaluation to understand the performance of different classifiers.

The results, however, are, in our opinion, worth the effort. Social media provides a nearly instantaneous view
of cultural heritage sites affected by a disaster, including many ground-level photos that cannot be replaced by
the bird’s-eye perspective provided by UAVs and satellite images. However, photos of heritage sites are a tiny
minority of all the images that are posted, and images depicting a damaged heritage site as the main subject are
rare. Finding them manually in an avalanche of unrelated images from social media is simply impractical. Our
methods can greatly reduce the number of images to be examined by a cultural heritage professional.

Future work. The quality of our classifier can be improved by a larger, more diverse training set. However,
annotating images selected at random from a social media stream during a disaster is impractical considering
the relatively low frequency of damaged heritage photos. Hence, we envision using the classifier we have created
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to find candidate images for further annotation. Moreover, we can maximize our utilization of multimedia content
on social media platforms by formulating the heritage classification problem in a more sophisticated way as a
multimodal learning problem where the goal would be to combine features extracted from various modalities
(e.g., text, image, video) to train a heritage classification model. That being said, unlike Twitter, such aligned
multimodal data are not prominent on most other social media platforms (e.g., Instagram and Flickr). Therefore,
a technology based only on images would still be desirable in such cases. An additional area for further work is the
identification of different types of damage, such as mild and severe damage, which may help in the prioritization
of efforts. Dealing with images from an earthquake may be easier than dealing with images from a more localized
disaster, such as an explosion (intentional or accidental), because after an earthquake, there is a large number of
people distributed over a large area who can directly witness the consequences of the event. It might also be the
case that during natural disasters, there is less misleading information than during a human-made disaster such
as a war; in any case, further experimentation with other types of disasters would help improve and fine-tune
these methods. Ultimately, joint modeling of heritage classification and damage assessment tasks in a unified
framework bears great potential to provide better understanding of heritage images in a disaster context.

APPENDICES

A LIST OF HERITAGE AND NOT-HERITAGE SITES

Table 10. List of Heritage Sites

Class Name of the Site Location Country

Architectural Hagia Sophia Istanbul Turkey
Jaisalmer Fort Jailsalmer India
City of Bath Bath UK
Historic City of Ahmedabad Ahmedabad India
Roskilde Cathedral Roskilde Denmark
Tamshing Monastery Bumthang Bhutan
Notre-Dame Cathedral Paris France
Santa Maria Novella Florence Italy
Alhambra, Generalife, and Albayzín Granada Spain
Red Fort New Delhi India
Sydney Opera House Sydney Australia
Summer Palace Beijing China
Borobudur Temple Jawa Tengah Indonesia
Chinque Terre Chinque Terre Italy
Edinburgh Castle Edinburgh UK
Capitol Complex Chandigarh India
Ellora Caves Aurangabad India
Wellington Arch London UK
Taj Mahal Agra India
Kings Cross St. Pancras Station London UK
Trafalgar Square London UK
Chhatrapati Shivaji Terminus Mumbai India
India Gate Delhi India
The Taj Mahal Palace Mumbai India
Adalaj ni Vav Ahmedabad India
Fatehpur Sikri Agra India
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Sarnath Stupa Sarnath India
Sun Temple Modhera Ahmedabad India
Gadisar Lake Jaisalmer India
Mehrangarh Fort Jodhpur India
US Capitol Building Washington, D.C. USA
Notre-Dame Cathedral Basilica Saigon Vietnam
Parthenon Nashville USA
Colosseum Rome Italy
Jama Masjid Delhi India
Dochula Temple Hungtso Bhutan
Punakha Dzong Punakha Bhutan
Tiger Nest Monastery Taktsang trail Bhutan
Arc de Triomphe du Carrousel Paris France
Pyathatgyi Temple Minnanthu Region Myanmar
Bamiyan Buddha Bamyan Afghanistan
Palmyra Tadmur Syria
Aleppo’s Umayyad Mosque Aleppo Syria
Sanaa Old City Sanaa Yemen
Windsor Castle Windsor UK

Gallery/Library/Museum Kensington Palace Museum London UK
British Museum London UK
Victoria and Albert Museum London UK
The Louvre Paris France
Uffizi Gallery Florence Italy
British Library London UK
Museum Orsay Paris France
Solomon R. Guggenheim Museum New York USA
Rijksmuseum Amsterdam Netherlands
National Museum of Cinema Turin Italy
Camposanto Pisa Italy
The São Paulo Museum of Art São Paulo Brazil
National War Museum Malta Valletta Malta
Library of Parliament Ottawa Ottawa Canada
Metropolitan Museum of Art New York USA
National Museum Paro Bhutan

Archaeological Machu Pichu Urubamba River Valley Peru
Stonehenge Salisbury UK
Mohenjo Daro Sindh Pakistan
Teotihuacan Teotihuacan Mexico
Hagar Qim Qrendi Malta
Palmyra Palmyra Syria
Ajanta Caves Aurangabad India
Pyramids of giza Giza Egypt
Golden Temple of Dambulla Dambulla Sri Lanka
Rani ki vav Ahmedabad India
Petra Petra Jordan
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Pompeii Campania Italy
Delphi Phocis Greece
Parthenon Athens Greece
Angkor Wat Siem Reap Cambodia

Artifact in Urban Space Christ the Redeemer Rio de Janeiro Brazil
Terracotta Warriors of Shaanxi Shaanxi China
Statue of Liberty New York USA
The Little Mermaid Statue Copenhagen Denmark
Telephone Booth London London UK
Stroke Fountain Copenhagen Denmark
Lincoln Memorial Washington, D.C. USA
Gateway of India Mumbai India
The Porcellino Florence Italy
Statue of Hans Christian Andersen Copenhagen Denmark
Open Hand Monument Chandigarh India
Flaminio Obelisk Rome Italy
Christopher Columbus Statue New York USA
Dandi March Sculpture New Delhi India
Statue of Mahatma Gandhi London UK
Marble Arch London UK
Sphinx Giza Egypt

Table 11. List of Not-heritage Sites

Class Name of the Site Location Country

Architectural India Habitat Center New Delhi India
The Shard London UK
IIM Ahmadabad India
Walkie Talkie London London UK
Kanchanganga Apartment Mumbai India
Dharavi Mumbai India
New Delhi Railway Station New Delhi India
Lucca Railway Station Lucca Italy
IT University of Copenhagen Copenhagen Denmark
Pittsburgh Airport Pittsburgh USA
Northlake Mall Charlotte USA
Wembley Stadium London UK
Radisson Blu Hotel Copenhagen Denmark
Tiaa Cref Office Charlotte Charlotte USA
University College Hospital London UK
Danish Opera House Copenhagen Denmark
Hall of Nations New Delhi India
Turning Torso Malmo Sweden
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Tata Steel Industry Building Jamshedpur India
Volkswagen Factory Building Salzgitter Germany
Bella Sky Hotel Copenhagen Copenhagen Denmark
CSV Building Wardha Wardha India
Railway Office Bilaspur Bilaspur India
Navi Mumbai Railway Station Mumbai India
Belapur Housing Building Mumbai India
8 House Copenhagen Denmark
Munich Airport Munich Germany
Gherkin Building London UK
UNCC Charlotte USA
Fisketorvet Copenhagen Denmark
Great India Place Mall Noida India

Gallery Library Museum Copenhagen Main Library Copenhagen Denmark
Lalit Kala Akademi Delhi India
Husain Doshi Gufa Ahmadabad India
Crafts Museum Delhi New Delhi India
The Blue Planet Copenhagen Denmark
The Black Diamond Copenhagen Denmark
Wax Museum London Building London UK
Sanskriti Kendra Delhi India
Jawahar Kala Kendra Jaipur India
World Trade Center Museum New York USA
New Jewish Museum Berlin Germany
5 Pointz New York USA
Niterói Contemporary Art Museum Rio de Janeiro Brazil
Petrie Museum building London UK
UNCC Library Charlotte USA

Artifact in Urban Space Tilted Arc by Richard Serra New York USA
Penis Christmas Tree Paris France
Brown Nosing Sculpture Prague Czech
Milan Stock Exchange Sculpture Milan Italy
Anish Kapoor Versailles Versailles France
Les Deux Plateaux, Colonnes de Buren Paris France
The Vigeland Park Oslo Norway
Sun Dial New Delhi Barahpulla New Delhi India
Sunbather Sculpture Long Island USA
Fearless Girl New York USA
MGR Memorial Chennai India
Rooster National Gallery London UK
Calgary Sculpture Controversy Calgary Canada
Chicago and Milwaukee Eyeball Chicago USA
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B LEXICON

All terms are case-insensitive. For presentation purposes, we divide them into five groups of comma-separated
terms; we do not make any difference between the groups for the purposes of matching within a text.
1. Generic words: heritage, heritages, cultural, culturally, culture, cultured, cultures, historically, historic, his-
torical, ancient, ancients, architecture, architectural, architecturally, architectures, archaeology, archaeological,
archaeologically, civilizations, civilization.
2. Bi-grams: traditional building, traditional architecture, cultural center, cultural complex, cultural ensemble,
cultural landscape, cultural masterpiece, historic building, historic town, historic city, historic site, historic archi-
tecture, historic center, historic settlement, historic settings, historic civilization, historic ensemble, historic built,
historic settlement, historic environment, old city, old town, old buildings, sacred building, ancient architecture,
ancient building, ancient settlement, heritage building, heritage city, heritage property, heritage site, ceremonial
architecture, ceremonial buildings, landmark building, iconic site, iconic building.
3. Site types: churches, church, palaces, palace, temple, temples, monuments, monumental, monumentality,
monastery, monasteries, towers, tower, towered, towering, castles, castle, cathedral, cathedrals, tombs, tomb,
caves, cave, mosque, mosques, fortresses, fortress, fortified, fortify, fortifying, chapels, chapel, fortifications, for-
tification, forts, fort, forte, museum, museums, basilicas, basilica, sculptures, sculptural, sculpture, sculptured,
sculpturing, monastic, citadels, citadel, mausoleum, mausoleums, abbey, abbeys, pyramids, pyramid, pyramidal,
memorial, memorials, memories, memory.
4. Styles and periods: romans, roman, romane, romanization, romanized, medieval, empires, empire, dynasty
dynasties, kingdom, kingdoms, gothicized, gothic, gothicism, gothicizing, baroque, renaissance, imperial, impe-
rialism, classical, classic, classically, classicism, classics, buddhist, buddhists, byzantine, byzantines, romanesque,
prehistoric, prehistorical, neolithic, ottoman, ottomans, hellenistic, neoclassical, 1st century, 2nd century,
3rd century, 4th century, 5th century, 6th century, 7th century, 8th century, 9th century, 10th century, 11th
century, 12th century, 13th century, 14th century, 15th century, 16th century, 17th century, 18th century, 19th
century.
5. Organization: unesco, #unesco, @unesco.

C ALL EXPERIMENTAL RESULTS ON GOOGLE IMAGES

Table 12. Performance Comparison of Various CNN Features with Logistic Regression Classifier

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er

it
ag

e
M

o
d

el
-1 VGG16 0.93 0.64 0.85 0.81 0.89 0.72

ResNet50 0.94 0.65 0.86 0.82 0.89 0.73
DenseNet121 0.91 0.65 0.87 0.75 0.89 0.70
InceptionResNetV2 0.91 0.63 0.86 0.75 0.88 0.69
Xception 0.92 0.66 0.87 0.78 0.89 0.72
NASNetLarge 0.92 0.71 0.90 0.78 0.91 0.75

H
er

it
ag

e
M

o
d

el
-2 VGG16 0.94 0.63 0.84 0.84 0.88 0.72

ResNet50 0.93 0.63 0.84 0.81 0.88 0.71
DenseNet121 0.94 0.66 0.86 0.84 0.90 0.74
InceptionResNetV2 0.93 0.62 0.84 0.81 0.88 0.70
Xception 0.94 0.62 0.83 0.84 0.88 0.72
NASNetLarge 0.94 0.67 0.86 0.84 0.90 0.74
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Table 13. Performance Comparison of Various CNN Features with Support Vector Machine Classifier

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er

it
ag

e
M

o
d

el
-1 VGG16 0.93 0.63 0.84 0.82 0.88 0.71

ResNet50 0.93 0.64 0.85 0.81 0.89 0.72
DenseNet121 0.92 0.63 0.86 0.76 0.88 0.69
InceptionResNetV2 0.91 0.61 0.84 0.74 0.88 0.67
Xception 0.92 0.64 0.86 0.77 0.89 0.70
NASNetLarge 0.92 0.70 0.89 0.76 0.90 0.73

H
er

it
ag

e
M

o
d

el
-2 VGG16 0.93 0.62 0.83 0.82 0.88 0.71

ResNet50 0.93 0.62 0.84 0.81 0.88 0.70
DenseNet121 0.94 0.66 0.86 0.83 0.90 0.73
InceptionResNetV2 0.93 0.59 0.81 0.80 0.87 0.68
Xception 0.93 0.58 0.80 0.82 0.86 0.68
NASNetLarge 0.93 0.64 0.85 0.82 0.89 0.72

Table 14. Performance Comparison of Various CNN Features with Random Forest Classifier

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er

it
ag

e
M

o
d

el
-1 VGG16 0.89 0.72 0.91 0.66 0.90 0.69

ResNet50 0.90 0.71 0.91 0.69 0.90 0.70
DenseNet121 0.89 0.72 0.92 0.67 0.90 0.70
InceptionResNetV2 0.90 0.68 0.89 0.69 0.90 0.69
Xception 0.88 0.66 0.89 0.64 0.89 0.65
NASNetLarge 0.91 0.73 0.91 0.71 0.91 0.72

H
er

it
ag

e
M

o
d

el
-2 VGG16 0.91 0.72 0.90 0.74 0.91 0.73

ResNet50 0.93 0.73 0.90 0.78 0.91 0.75
DenseNet121 0.91 0.71 0.90 0.74 0.91 0.73
InceptionResNetV2 0.92 0.68 0.88 0.75 0.90 0.71
Xception 0.90 0.67 0.89 0.70 0.89 0.69
NASNetLarge 0.93 0.72 0.90 0.81 0.92 0.76
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Table 15. Performance Comparison of Various CNN Features with AdaBoost Classifier

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er

it
ag

e
M

o
d

el
-1 VGG16 0.91 0.64 0.87 0.74 0.89 0.69

ResNet50 0.92 0.62 0.85 0.77 0.88 0.69
DenseNet121 0.93 0.67 0.87 0.79 0.90 0.72
InceptionResNetV2 0.91 0.65 0.87 0.72 0.89 0.68
Xception 0.90 0.60 0.84 0.73 0.87 0.66
NASNetLarge 0.91 0.70 0.90 0.74 0.90 0.72

H
er

it
ag

e
M

o
d

el
-2 VGG16 0.92 0.63 0.85 0.78 0.88 0.70

ResNet50 0.94 0.65 0.86 0.82 0.89 0.73
DenseNet121 0.93 0.63 0.84 0.81 0.88 0.71
InceptionResNetV2 0.92 0.61 0.84 0.77 0.88 0.68
Xception 0.91 0.62 0.85 0.74 0.88 0.68
NASNetLarge 0.93 0.64 0.85 0.81 0.89 0.72

D ALL EXPERIMENTAL RESULTS ON SMERP IMAGES

Table 16. Performance Comparison of Various CNN Features with Logistic Regression Classifier

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er

it
ag

e
M

o
d

el
-1 VGG16 0.11 0.97 0.81 0.46 0.20 0.63

ResNet50 0.10 0.96 0.85 0.34 0.17 0.50
DenseNet121 0.10 0.97 0.87 0.34 0.18 0.50
InceptionResNetV2 0.12 0.98 0.85 0.50 0.22 0.66
Xception 0.10 0.97 0.85 0.38 0.18 0.55
NASNetLarge 0.10 0.97 0.91 0.28 0.17 0.44

H
er

it
ag

e
M

o
d

el
-2 VGG16 0.24 0.97 0.73 0.81 0.36 0.88

ResNet50 0.24 0.97 0.74 0.81 0.37 0.88
DenseNet121 0.26 0.98 0.76 0.82 0.39 0.89
InceptionResNetV2 0.24 0.97 0.74 0.81 0.37 0.88
Xception 0.23 0.97 0.76 0.79 0.35 0.87
NASNetLarge 0.25 0.98 0.79 0.81 0.38 0.88
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Table 17. Performance Comparison of Various CNN Features with Support Vector Machine Classifier

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er

it
ag

e
M

o
d

el
-1 VGG16 0.11 0.97 0.81 0.48 0.20 0.64

ResNet50 0.10 0.96 0.83 0.35 0.17 0.51
DenseNet121 0.09 0.97 0.87 0.31 0.17 0.47
InceptionResNetV2 0.12 0.97 0.84 0.48 0.21 0.64
Xception 0.10 0.97 0.85 0.38 0.18 0.54
NASNetLarge 0.10 0.98 0.91 0.32 0.18 0.48

H
er

it
ag

e
M

o
d

el
-2 VGG16 0.22 0.97 0.72 0.79 0.34 0.87

ResNet50 0.23 0.97 0.73 0.79 0.35 0.87
DenseNet121 0.25 0.97 0.74 0.82 0.38 0.89
InceptionResNetV2 0.23 0.98 0.77 0.78 0.35 0.87
Xception 0.20 0.97 0.73 0.76 0.32 0.85
NASNetLarge 0.22 0.98 0.77 0.77 0.34 0.86

Table 18. Performance Comparison of Various CNN Features with Random Forest Classifier

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er

it
ag

e
M

o
d

el
-1 VGG16 0.10 0.98 0.94 0.26 0.17 0.41

ResNet50 0.09 0.98 0.96 0.15 0.16 0.26
DenseNet121 0.09 0.98 0.97 0.13 0.16 0.24
InceptionResNetV2 0.09 0.97 0.93 0.23 0.17 0.38
Xception 0.09 0.97 0.93 0.18 0.16 0.30
NASNetLarge 0.09 0.97 0.95 0.15 0.16 0.27

H
er

it
ag

e
M

o
d

el
-2 VGG16 0.19 0.98 0.86 0.69 0.31 0.81

ResNet50 0.17 0.99 0.90 0.64 0.29 0.78
DenseNet121 0.19 0.99 0.89 0.69 0.32 0.81
InceptionResNetV2 0.20 0.98 0.85 0.72 0.33 0.83
Xception 0.16 0.98 0.84 0.62 0.26 0.76
NASNetLarge 0.18 0.99 0.88 0.67 0.30 0.80
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Table 19. Performance Comparison of Various CNN Features with AdaBoost Classifier

Architecture
Precision Recall F1-score

Heritage Not-heritage Heritage Not-heritage Heritage Not-heritage

H
er

it
ag

e
M

o
d

el
-1 VGG16 0.10 0.97 0.86 0.35 0.18 0.52

ResNet50 0.11 0.97 0.86 0.41 0.19 0.58
DenseNet121 0.10 0.97 0.88 0.30 0.17 0.46
InceptionResNetV2 0.10 0.97 0.88 0.31 0.17 0.47
Xception 0.09 0.97 0.89 0.28 0.17 0.43
NASNetLarge 0.10 0.97 0.86 0.38 0.19 0.55

H
er

it
ag

e
M

o
d

el
-2 VGG16 0.20 0.98 0.78 0.74 0.32 0.84

ResNet50 0.24 0.98 0.78 0.80 0.37 0.88
DenseNet121 0.24 0.98 0.76 0.80 0.37 0.88
InceptionResNetV2 0.20 0.98 0.80 0.73 0.32 0.84
Xception 0.20 0.98 0.81 0.73 0.32 0.84
NASNetLarge 0.20 0.98 0.82 0.73 0.32 0.84

E IMAGES

Fig. 10. Examples of images classified with Lexicon-based Model.

ACM Journal on Computing and Cultural Heritage, Vol. 13, No. 3, Article 23. Publication date: August 2020.



Detection of Disaster-Affected Cultural Heritage Sites from Social Media Images • 23:27

Fig. 11. Examples of images classified with Heritage Model 1.
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