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Abstract:

Web crawlers have to deal with a lot of challenges at the same time, and some of them contradict
each other. They must keep fresh copies of Web pages, so they have to re-visit some of them, but
at the same time they must discover new pages. They must use the available resources such as
network bandwidth to the maximum extent, but without overloading Web servers as they visit
them. They must get a lot of “good pages”, but they cannot exactly know in advance which ones
are the good ones. We present a model that tightly integrates crawling with the rest of a search
engine and gives a possible answer about how to deal with these contradicting goals by means of
adjustable parameters. We show how this model generalizes some particular cases, and leads to a
new crawling software architecture.
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1 Introduction

On the dawn of the Web, finding information was done mainly by scanning through lists of links
collected and ordered by humans according to some criteria. Web search engines were unnecessary
with Web pages counting only by thousands. Nowadays, they are counted by thousands of millions
and almost every internet user have to use a search engine when he has a specific information,
navigation, or transaction need.

Search engines have three standard components: crawlers, spiders or robots (input), collection
and index (storage) and query resolver and interface (output). We focus on Web crawler design
issues and its relation to the index.

The main contributions of this paper a model that generalizes many specialized crawlers, where
the crawling process can be parallelized more efficiently, and that the proposed overall architecture
gives a framework that accounts for the different topics present on recent research.

In section 2 we present previous work on this subject. In section 3 we show the typical crawler
model, that has been used since the first search engines. We argue (and show experimental vali-
dation) that the typical model is based on some assumptions that are no longer valid, and that it
does not account for the last advances, specially on the area of Web page ranking. This has been
recognized by newer search engines such as Google [18].

In section 4 we introduce a new model of crawling. This model considers different pieces of
information before taking a decision on what pages to visit next, according to some parameters
that can be adjusted. In section 5 a software architecture that implements this model is outlined,
and it is shown that it has a low level of dependencies and information coupling and hence is very
appropriate for parallelization on multiple machines. Section 6 presents our conclusions.

2 Previous Work

As Web crawlers are mostly used by search engines, their inner components are usually well guarded
secrets and only benchmarks [31] are revealed. Some exceptions (in cronological order) follow:

An early work on the RBSE Spider [17], when the Web was estimated in 100.000 pages, shows
a crawler in which a “spider” manages a database of URLs to visit, and spawns some process of
another program, “mite”, which fetch pages. This spider implements a series of graph walking
algorithms, such as breadth-first or limited depth-first search.

The crawler of the Internet Archive [5] uses a series of queues to avoid overloading target sites,
assigning all pages from a given site to a single crawling process that loops between the sites and
wait if needed to let sites “rest”.

The Mercator crawler [20] consists of an “URL Frontier” that gives URLs to a number of “Pro-
tocol Modules” that fetch pages and pass them to “Processing Modules”. The URL Frontier consist
of a number of queues, as in the Internet Archive. Mercator uses several modular components, as
SPHINX [25] does, and that inspires our modular architecture presented later.

The Google Web crawler, presented in [28], depicts a crawling architecture consisting of an
“URL Server” which gives URLs to a number of “Crawlers”, that fetch pages and send them to a
“Store Server”. In [12], it is shown that ordering URLs by Pagerank [29], the algorithm based on
citation metrics that Google uses, leads to crawl “interesting” pages first.



The parallel crawler introduced in [7], has multiple crawling processes or “C-Procs”, which
exchange messages from time to time. In the proposed static setting, every site is assigned a
unique C-Proc based on a hash function of the site name. A “coordinator” is an optional part of
the architecture, used when a central, dynamic assignment of URLs to crawl is necessary. The high
level crawling architecture of typical crawlers is depicted on Figure 1.

scheduler

Figure 1: Typical high-level crawler architecture.

These papers mention the same problems during the crawling process: duplicate content (mir-
rors [6], URL aliases, session-ids in URLs), crawler traps and DNS lookups as a bottleneck. Other
hardware and operating systems issues are not minor due to the intensive nature of the process.
For a recent survey on the topic of search engines, see [1]; for background information on search
engines, see [3].

The collection must be kept up to date in relation to the objects or Web pages it represent; this
problem is addressed in [8, 13, 11] and requires knowing how Web pages change over time [9, 4, 16].

Finally, with the exponential growth of available Web pages available, Web crawlers cannot visit
every existent page, and the covering of most search engines is very low [19, 30], so usually some
ordering of the Web pages prior to crawling is used to focus on some “important” pages [12, 15, 27].

A related topic is to study how Web robots “behave” [33] and how they “misbehave” by using
a lot of bandwitdh and/or CPU from the servers visited [24].

3 Problems of the Typical Crawling Model

The typical crawling model comes from the early days of the World Wide Web and was first used
on large scale by Webcrawler [23]. The operation of it is given by:

1. Start with a queue @ and some starting URLs uy, ..., u, € Q.

2. Extract some URL u € @ according to some criteria and do an asynchronous network fetch
for u.



3. Process u to extract the text and add it to the local collection that will be indexed. During
this process, find new URLs that are pushed into Q.

4. Go back to (2) unless Q is empty.

This model emphasizes on the words “crawler” and “spider”, and those words suggests walking
through a directed graph. That is very far from what is really going on, because it is just automatic
browsing which does not need to follow Web links: in most cases a breadth-first approach is favored
or something entirely different that has no direct topological representation on the Web graph.

Some important observations follow. The first is that this process adds information to a col-
lection that will be indezed. The indexing process is done in batch, many megabytes of text at a
time, and usually will be very inefficient to do one document at a time, unless you can strike an
exact balance between the incoming stream of documents and the processing speed of the index
[32], and in that case it is common that the index construction becomes the bottleneck. In many
cases, the index is not updated continuously but completely at the same time!; in this case it is
not important which URL was transferred first, just that all the required URL were transferred.

A more strong argument that shows that each page does not need to be available immediatly
to the index is that if the crawler is distributed, then it will have to sent the results back, and
for better performance, it will have to send many URLs at a time, because as shown in [7], the
overhead of an URL exchange is given by the context switches, not for the (relatively small) size of
the URLs. This means that how locally the URLs are ordered is not important for the global order.

Another observation is that if some URL ordering will be done and if this ordering is not based
on text-similarity to a query, then in permanent regime usually a page that we have just seen is
a very unlikely candidate to be downloaded in the near future. This means that “good” pages
are seen early in the crawling process, and hence good URLs to visit are not a scarce resource.
Conversely, if a URL is seen for the first time in a late stage of the crawling process, there is a high
probability that it is not very interesting. This is obviously true if Pagerank [29] is used, because
it models a link-biased random walk through the Web. In that case, pages that are visited very
often are important, also if backlink count or the hubs and authorities score [22] is used.

Notice also that when connectivity metrics are used on the Web (such as the ones mentioned
before), only a very small number of URLs have significant scores, and most pages have only very
small values; mostly because the distribution of links on the Web is very skewed, with a few very
popular pages (in even fewer sites) [2].

Finally, we have noticed that previous work tends to separate two very similar problems and to
mix two very different problems:

The two similar problems are the index freshness and the index quality according to other
metrics (eg. link analysis). It will be better to think in terms of a series of scores associated to
different characteristics of the documents in the collection, weighted accordingly to some priorities
that will vary depending on the usage context of the crawler. As some goals are contradictory, the
software must decide between, for instance, trying to discover new pages or updating existing ones.
In this case, we need some way to tell the crawler how to decide between these alternatives.

The two different problems that are commonly mixed are the problem of short-term efficiency,
that is, maximizing the bandwitdh usage and be polite with servers (probably accounting some

!To the best of our knowledge, this is the case for most large search engines.



stationary variations of the Web servers during the day or the week [14]) and long-term efficiency
(ordering the set to favor some important pages).

Next we present experimental results that validate some of our observations. We present ev-
idence that the intrinsical quality of a Web page is not related to the bandwidth available to
download that page. If that were the case, then the two problems will be tightly coupled and no
separation could be possible.

We designed and run the following experiment to validate this hypothesis. We took two different
Web page samples from the TodoCL [34] Web search engine, one at random and the other one from
the search engine access log?. The first sample can be considered to represent “normal” pages, and
the second sample “important” pages.

We observed that actual access times and effective transfer speed were very similar between
these samples. For comprehensiveness, we include here some of the (slight) differences between
them:

1. The biased sample has lower latency time, probably because they are more popular and so
they are stored on disk pages that are cached in memory (or a proxy cache), or because Web
server process is never swapped to disk.

2. The random sample has slightly higher speeds, probably because as they are less popular,
they use less of their available bandwidth.

3. The random sample reports more hosts that are not found, probably because less popular
servers disappear more often.

4. The selected sample servers use older Web server software, probably because they are older
than the average.

The results show that the differences between the “important” pages and the “normal” pages
are not enough to consider them in the long-term strategy.

The problem of short-term efficiency is an important and difficult one. It can be stated as
follows. There is B (Bytes/Second) bandwidth available to fetch a number of Web pages. If the
total size of all pages is S (Bytes) then the crawler should be able to download all pages in exactly
T = B/S (Seconds), as shown in Figure 2. It cannot be done faster than that, and it seems possible
to achieve this level of efficiency, but usually, it takes longer than that, mainly because Web sites
have variable transfer rates (we have measured a variation around 60% between accesses). Even
worse, latency times are unpredictable (around 120% of variation for the same Web page in two
different times). A more realistic diagram is depicted in Figure 3.

Two extreme solutions are shown in Figure 4. Any crawler will perform between these two. It
cannot have too many processes, but it if has too few, then inefficiency is impossible to avoid.

We propose a new model that accounts for these observations at the same time, and leads to a
new crawler architecture.

2The search engine stores the addresses of the pages that are picked by the user from the search engine result.
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Figure 2: Optimal crawling scenario for five Web pages. The target time 7' = B/S is achieved.

4 Our Crawling Model
The main goals of a crawler are the following:

e The index should contain a large number of Web pages that are interesting to the search
engine’s users.

e Every object on the index should accurately represent a real object on the Web (content
through time).

For the first goal, the definition of what will be interesting for users is a slippery one, and
currently a subject of research. A number of strategies have been proposed [12, 15, 27], usually
relying in some ranking function that is used to order the list of objects found by the search engine.

If the ranking function cannot be determined at crawling time (this is the more common sce-
nario), then at least an approximation should be used. As stated in [12] we cannot know in advance
the interest f(p) that a Web page p will have to users, but we can approximate it using, by example,
f'(p) = Pagerank(p) or other function.

For the second goal, there is more consensus about the rate of change of Web pages [16, 4],
finding that it is in general between a few months to one year, with the most popular objects having
a higher rate of change than the rest.

It must be noticed that these two goals compete between them, because the crawler must decide
between going for a new page, not currently on the index, or refreshing some page that is probably
outdated in the index. There is a trade-off between quantity (more objects) and quality (more
up-to-date objects).
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Figure 3: A more realistic crawling scenario. The crawling takes longer than expected, mainly due
to variation on download speed of every page.

We propose that the value of an index I = o1, 03, ..., 0, will be the sum?® of the values of the
objects o; stored on the index:

V(D) =3 V(o)

=1
For the value of an object in the index, V' (o;), a product function is proposed:
V(i) = ¢ x 1} X pf
where:

e ¢; (intrinsic quality) approximates the importance of the object o; by itself (how interesting
it is?).

e 7; (representation quality) is the quality of the representation of the object, putting aside
its intrinsic quality, considering the space needed and the rendering time of the object. For
example, compression uses less space but increases the rendering time.

o p; (freshness quality) is the probability that this representation coincides with the represented
object.

e a, b and c are adjustable parameters of the crawler, that depend on the objective and policies
of it.

% Another function could be used, but it has to be non-decreasing on every component.
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Figure 4: Two extreme solutions. (a) is impractical: it requires a very large number of processes.
(b) is impossible, because Web sites are usually slower than the bandwidth available for the crawler.

Other functions could be used, as long as they are increasing in ¢;, r; and p; and allow to specify
the relative importance between these values®.
The variable ¢; can be estimated in many ways [12]:

Link analysis (link popularity).

e Similarity to a driven query.

Accesses to that page on the index (usage popularity).

Location-based, by the perceived depth (eg. number of directories on the path to the Web
object), or by domain name, IP address, geography, etc.

On the other hand, r; depends mainly on the quantity and format of the information being
stored for every object. In the case of Web pages, we can order the quantity of the representational
quality from less to more:

e URL.

e URL + Index of text near links to that page.

e URL + Index of text near links to that page + Index of the full text

e URL + Index of text near links to that page + Index of the full text 4+ Text snippet.

e URL + Index of text near links to that page + Index of the full text 4+ Full text.

*Notice that the computing effort to calculate this function can be simplified by using log V (0;)



Rendering time will depend on the format, particularly if it uses compression to give more fine-
grained values. For instance, text or images can be compressed except for those objects in which a
large r; is required, because they are accessed frequently by the search engine.

At this moment, Google [18] uses only two values, either r; = high and the Web page is stored
almost completely, or either »; = low and only the URL and the hyperlink anchor texts to that
URL are analyzed. Note that in this case a page can be in the index without never have been
actually transferred to the search engine: we have the URL and a few words that appeared on the
context of links found towards that page. In the future, the page can be visited and its r; can
increase, with the cost of more storage space used.

The probability that an object is up to date, p; (freshness), as Web updates are common,
decreases with time. Freshness can be estimated quite precisely if the last modification date of the
Web page is informed by the Web server [8]. If H; hours have passed since the last visit, then [4]:

pi = e M
The parameter X is estimated as:
X;
A~ (Xs — 1) ~ Notogi- X7
t S;T;

e N;: number of visits to the page.
e S;: time since first visit.
e X,;: number of times the page has been found to have changed.

e T;: total number of hours with no modification, according to the server, added for all visits.

If the server does not give the last-modified time:

v~ —N;log(1 - X;/N;)
7~ Sz

Keeping a high p;, means using more network resources to transfer the object to the search
engine. But freshness is not always important, for instance, for a project like the Internet Archive
[21] or Cite Seer [26], ¢ ~ 0, because it is not important to update URLs, just getting the pages.
But, for an specialized search engine that seeks news, ¢ must be set high, because we are interested
in having an accurate copy of the news pages.

The proposed model covers many particular cases. In particular, it covers mirroring systems,
focused crawlers and research/archive crawlers, as shown in Figure 5. General, all-purpose search
engine crawlers, are at the center of the graph.

In this way, we are proposing a model that considers the index and the Web as a whole, and
does not focus into separate problems, generalizing the current search engines.
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Figure 5: Different crawlers in our model

5 A Software Architecture

We present a software architecture that comes from the model and from the observations discussed
previously, that seems quite natural.

This architecture involves the use of two schedulers. One is the long-term scheduler, which we
call the “manager”. Its role is to order the URLs and create batchs, that is, collections of URLs of
size K that, when crawled, will increase the value of the index.

The long-term scheduler estimates ¢;, r; and p; for every object in the collection. Note that we
do not have to make an exact estimation, because we are just interested in K pages with high g¢;
and currently low r; or p;.

Note that some objects may “starve” in the repository, namely those with ¢; ~ 0, which are
most of the Web (less than 5% of Web pages have a meaningful Pagerank score [2]). The manager
can then arbitrarily fix a minimum g¢; for every object (a base score) if we are interested in having
a good covering of available Web pages.

The short-term scheduler, which we call “harvester”, receives a list of K URLs to crawl. Its
task is to sort them and control the “fetchers” tasks that do the network I/O. The harvester must
avoid overloading sites and has to keep the network usage on its maximum. Many harvesters can
be running on different machines across the network. They do not communicate back until the
batch of work assigned by the manager is done. This helps to parallelize the process.

After that, a “gatherer” collects all pages fetched, generating the logical views and file formats
according to the r; values dictated by the manager and adds those views to the collection. This
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process also extracts all URLs on Web pages and stores them separately. If some harvester is late,
the gatherer does not need to wait for it, and the harvester output (local copy of ) will be processed
on the next gatherer run.

The “seeder” has the mission of taking the list of URLs that the gatherer produced and add
them to the index if they are new. Also, the seeder must help to keep the link structure for ranking
purposes is needed. The seeder does not have to run on every (manager-harvester-gatherer) cycle.

Figure 6 shows the whole architecture, which is currently under implementation. Each module
is multithreaded. In the case of the manager, the new scores are recalculated in parallel. In the
case of the harvester, multiple fetcher threads are used. For the gatherer, multiple parsers can be
running simultaneously. Finally, the seeder must check every URL seen and that can also be done
in parallel.

We are currently implementing this architecture for a vertical search engine and specialized, site-
specific crawlers. We are using Intel hardware with SuSe Linux and the C programming language.

analyzers u

Manager

long-termn schedulins

by crawler parareters

: ¥
Seeder Harvester
identifiy urls as newisean short-term scheduling
feed link mdex politenessfefficlency

fetchers u
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. Gatherer L
7| parse dowmloaded files [l
feed text index

parsers [

Figure 6: The proposed software architecture has a manager, that generates batchs of URLs to be

downloaded by the harvester. The pages then go to a gatherer that parses them and send discovered
URLs to a seeder.

6 Conclusions

In this paper we have tried to formalize the goals of a key component of any search engine: the
crawler. A crawler has to fulfill different objectives which cannot be all obtained simultaneously. We
refine them in three parameters: object quality, object representation and availability, and object
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freshness. By setting those parameters according to the goals or policies of a specific crawler, we
obtain different data, quality and usage of resources.

Based on this model we propose a software architecture that is currently under implementation.
Preliminary testing have verified our hypotheses and the crawling performance obtained is quite
good. Complete results will be presented in the final version.

Further work is needed to better estimate the intrinsic quality of a page, as current metrics
are all heuristics, and they do not necessarily agree, as was shown for pagerank, authorities, and
hubs in [2]. A better estimation of this parameter implies performance losses. For example, natural
language processing is a perfect tool, but needs more CPU resources and we have presented a
framework in which it could be decided to use it selectively only in some of the stored objects. The
same is valid for multimedia objects.
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