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ABSTRACT
Defining a measure of similarity between queries is an in-
teresting and difficult problem. A reliable query-similarity
measure can be used in a variety of applications such as
query recommendation, query expansion, and advertising.

In this paper, we exploit the information present in query
logs in order to develop a measure of semantic similarity
between queries. Our approach relies on the concept of the
query-flow graph, a graph-based representation of a query
log. The query-flow graph aggregates query reformulations
from many users: nodes in the graph represent queries, and
two queries are connected if they are likely to appear as part
of the same search goal. Our query-similarity measure is
obtained by projecting the graph (or appropriate subgraphs
extracted from it) on a low-dimensional Euclidean space.
Our experiments show that the measure we obtain captures
a notion of semantic similarity between queries and it is
useful for diversifying query recommendations.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

1. INTRODUCTION
Finding a measure of similarity between queries can be

very useful to improve the services provided by a search en-
gine. First, the ability to identify similar queries is in the
core of any query-recommendation system. Second, query
similarity can be used for expanding query expansion and
enhancing search results. Additionally, a reliable notion of
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query-similarity can be used for broad matching of advertise-
ments to queries, or even for suggesting keywords to adver-
tisers. However, defining a query-similarity measure is not
an easy task as it strongly depends on user intent: syntacti-
cally similar queries may originate from completely different
intents. Issues such as polysemy, synonymy, high levels of
noise, and the very small amount of available information
make the problem challenging.

In such a complex setting, information extracted from
query logs has shown to be effective. The information on
how users interact with search engines has often been used
to improve the user search experience. In particular, query-
log analysis is used to obtain insights on how users refine
their queries, and what kind of search strategies they are
using to locate the information they need.

In this paper we describe a method of obtaining a query-
similarity measure, based on query-log analysis. Our method
relies on an aggregated representation of a query log by
the means of a reformulation graph, which is known as the
query-flow graph [6]. In this graph, nodes represent queries
and two queries are connected if they are likely to appear as
part of the same search goal [16].

Our main intuition is that related queries will tend to clus-
ter in local neighborhoods of the query-flow graph. Graph-
projection methods are known to map graph nodes into ge-
ometric spaces so that the distance distortion is minimized.
Thus, we suggest projecting the query-flow graph (or appro-
priately defined subgraphs of it) and then measure query
similarity on the resulting geometric space. The technique
is general and it can be applied to other graphs obtained
from query-logs, for example, the click graph [5, 11, 22].

We use the resulting query-similarity measure for a con-
crete application, namely for diversifying query recommen-
dations. Query-recommendation systems are provided by
all major search engines and they aim at helping users to
find more easily what they are searching for. The idea is
that a diversification algorithm requires a notion of query
similarity, for which we use the proposed measure. We show
that the resulting system provides diverse yet relevant rec-
ommendations.

Our main contributions are summarized as follows:

• we describe a method for measuring similarity between
queries by projecting a query reformulation graph;

• we show that our similarity measure captures the hu-
man notion of related queries better than other mea-
sures on the original graph;



• we apply this method to the task of producing diverse
and useful recommendations;

• we show how to improve its efficiency further, by pro-
jecting only the neighborhood of the input query.

Roadmap. The rest of this paper is organized as follows:
Section 2 introduces related work about this topic, Sections 3
and 4 describe the framework we use to define our measures
of query similarity, and Section 5 explores different variants
for optimizing our measures. Section 6 describes our appli-
cation for diversifying query recommendations and Section 7
offers our concluding remarks.

2. RELATED WORK
Query graphs. Graphs might be used to provide a navi-
gable, compact representation of the query-related informa-
tion extracted by query-logs. Query graphs of different types
have been extensively studied in literature [2, 5, 3, 22, 6]. In
most of these studies query-logs are represented by query-
query graphs, where queries form the set of vertex and edges
among queries capture various types of query-information.
Baeza-Yates [2] articulates a first query-graph taxonomy, in-
troducing five types of graphs where arcs connect queries ac-
cording to different criteria (e.g., common words, common
clicked URLs). Tiberi et al. [3] show how to infer semantic
relations between queries from the cover graph and describe
an application to the task of detecting multi-topical URLs.

Query-document graphs, also known as click graphs [5,
22] are bipartite graphs G = {Q, D, E} where Q is the set of
queries and D is the set of documents. A query is connected
to documents that were clicked in the associated result list.

The query-flow graph [6] aggregates different sources of
information in order to capture the latent query behavior
of users. Each link is labeled with the probability that its
endpoints are related. Leven and Loizou [20] introduce a
concept similar to the query-flow graph, but their work is
focused on browsing behavior inside a Web site. Borges
and Levene propose an improved method for measuring the
ability of a variable-length Markov model to summarize user
Web navigation sessions up to a given length [8].

Query recommendations. Most query-recommendation
methods use similarity measures obtained by mining (i) the
query terms, (ii) the clicked documents, and/or (iii) the
user sessions containing the queries. Typical methods use a
combination of these factors.

Query recommendation based on clicked documents.
Baeza-Yates et al. [4] find, given a query, related queries is-
sued by other users and build query expansion methods to
construct artificial queries. Their technique is based on a
term-weight vector representation of queries, obtained from
the aggregation of the term-weight vectors of the URLs
clicked after the query. Wen et al. [30] also present a clus-
tering method for query recommendation that is centered
around various notions of query distance.

Craswell and Szummer [11] describe a method based on
random walks on the query-click graph [5], and they test
it for an application of image search. Fuxman et al. [13]
use the query-click graph to find related keywords for ad-
vertising. Antonellis et al. [1] also use the query-click graph,
and exploit the idea of co-citation through its generalization
known as SimRank [15]. Mei, Zhou and Church [22] use a
computation of hitting time for ranking related queries.

Query recommendation based on query reformula-
tions. Many effective approaches focus on the analysis of
user query sessions [12, 33, 17]. Fonseca et al. [12] propose a
query recommendation system based on association rules ap-
plied to query logs. Zhang and Nasraoui [33] represent each
user session by a complete graph where consecutive queries
are connected with an edge of a predefined weight d. Not
consecutive queries are connected by an edge weighted with
the product of the weights on the walk connecting them.
Recent works have shown that not only the previous query,
but also the long-term interests of users, are important for
understanding their information needs [21, 26].

In [17], the notion of query substitution is introduced: for
each query, a set of similar queries is obtained by replacing
the whole query or only its sub-phrases. White et al. [31, 32]
use the query rewrites observed in a query log to generate
query recommendations. Sadikov et al. [27] have recently
proposed to cluster the refinements of a user query by per-
forming a random walk on a query-document graph that
incorporates both session and click information.

3. PRELIMINARIES

3.1 The query-flow graph
A query-flow graph, as defined by Boldi et al. [6], is a

directed graph G = (V, E, w) where:
• V = Q∪{s, t} is the set of distinct queries Q submitted

to the search engine plus two special nodes s and t,
representing a starting state and a terminal state of
any user search task;

• E ⊆ V × V is the set of directed edges;
• w : E → (0..1] is a weighting function that assigns to

every pair of queries (q, q′) ∈ E a weight w(q, q′).
In the query-flow graph, two queries q and q′ are connected

by an edge if there is at least one session of the query log
in which q′ follows q. The weight w may depend on the
application; in the following we simply consider the weight
to be the frequency of the transition in the query log.

The edge probabilities along with other data associated to
each transition, are used to segment physical sessions into
missions [16] or chains [25]. Here, physical sessions are de-
fined as sequences of the activities of a single user before a
timeout of 30 minutes, while missions/chains are defined as
sequences of activities that are topically related. This step
is important for applications aimed at improving the user
search experience.

3.2 Spectral projection
The query-flow graph captures implicit similarity between

queries: queries connected by a heavy edge are similar in the
sense that they are motivated by the same user information
need. Query logs collected over a few months are rich in in-
formation, but they also contain a lot of noise. Our approach
is motivated by the idea of defining a similarity measure be-
tween queries that takes into account the global structure
of the query-flow graph, instead of taking into account only
pairs of queries.

Measuring distances of nodes on large graphs is a well-
studied problem, and many approaches have been proposed,
including the shortest-path distance and the commute time.
A drawback of those measures is that they are very expen-
sive to compute, as their complexity is at least linear to the
number of the nodes in the graph, while one would like to



have measures whose complexity depends only on the nodes
under consideration (and possibly features of the nodes) but
not on the whole dataset.

One of the key methods for measuring distances in a graph,
which has been used extensively for visualizing graph data,
is the idea of graph projection. The idea is to project the
original graph into a low-dimensional Euclidean space and
then measure distances between graph nodes by considering
the distances of the corresponding projected points. There
are many techniques that can be used to obtain such projec-
tions, including multidimensional scaling [19], spectral pro-
jections [10, 18, 24], IsoMap [29], maximum-variance unfold-
ing [28], and many more. In this paper we use the spectral
projection, which we briefly describe below:

1. Given a graph G with adjacency matrix A, the Lapla-
cian matrix LG = D − A is computed using the diag-
onal matrix D, whose entry dii equal to the degree of
the i-th node of G.

2. An embedding φ : V → R
m is computed by finding

the (m + 1) eigenvectors of LG that correspond to the
smallest eigenvalues. Only m of these are used as the
one corresponding to the smallest eigenvalue is the vec-
tor of all 1′s.

This spectral embedding, known as Fiedler embedding, has
the property of preserving the distances in the projected
space. For “near-by” nodes u and v in the graph G, the Eu-
clidean distance between the vectors φ(u) and φ(v) is small.
Details on the properties of spectral embeddings of graphs
and spectral algorithms can be found in [10, 18, 24].

For spectral projection, the notion of “near-by” nodes in
the graph is related to the expected time of coming across
node v in a random walk starting from node u. Hence, we
expect that queries that are similar are projected to points
that are relatively close in the embedding. Regarding the
property of maintaining distances, the spectral projection
optimizes a global objective function that can be interpreted
as the overall distortion of the graph projection.

On the projected space, various distance metrics can be
used, for example the Euclidean distance or the cosine dis-
tance. In our experiments, we observed that cosine simi-
larity outperforms Euclidean distance, hence, in the rest of
the paper we focus on cosine similarity. Note, that since the
projected vectors may contain negative numbers, the cosine
between two vectors can be negative. In order to obtain a
measure in [0, 1] we rescale the cosine as follows:

Sim(q, q′) =
1 + cos(q, q′)

2
.

Recently the notion of directed Laplacian was introduced
and analyzed by Fan Chung [9]. Since the query-flow graph
is a directed graph, using the directed Laplacian is more ap-
propriate for our application scenarios. However, our evalua-
tion showed that the projection based on the directed Lapla-
cian does not yield any improvement.

In the next two sections we describe our experiments with
projections of the query-flow graph. Our objective is to ex-
plore systematically the space of possible parameters and
alternatives on defining appropriate subgraphs to project,
in order to optimize the quality of query similarities.

We note that we have not tried to explore the possibility
of improving our empirical results using different graph em-
bedding algorithms. Any graph embedding algorithm can
be used as a black-box in our method, instead, our main fo-

Table 1: Example of manually-built clusters
Query Clusters
sun 1. the sun newspaper, mirror, times

2. earth, mars, mercury
3. sun java, sun microsystems

stone 1. stone weight, stone measurement
2. rock, granite
3. stone brick, stone masonry

spoiler 1. movie spoiler, tv show spoiler
2. car spoiler, custom car spoiler

cus has been to leverage the idea that graph projections can
yield meaningful notions of query similarity, and we have
also experimented extensively with finding the best sub-
graphs to project.

4. FRAMEWORK FOR STUDYING QUERY
SIMILARITY

4.1 Dataset
The query-flow graph was built using a set of sessions

extracted from a query log from the Yahoo! search engine.
We improve the graph by estimating the probability that

both the queries q and q′ in a transition belong to the same
“search mission”[16] (also known as“query chain”[25]). This
modification prunes out transitions to frequent navigational
queries such as popular web portals.

Motivated by the results of some preliminary assessments,
we apply a number of filters on the graph, such as removing
the transitions that have frequency less than 5. We also
remove s and t and prune all the nodes that remain isolated:
these correspond to sessions composed by singleton queries.
Altogether, starting from a graph with 58 312 610 nodes and
131 836 560 edges, we obtain a graph with 4 152 773 nodes
and 7 788 232 edges. This is the graph G that we consider
in the rest of the paper.

4.2 Evaluation method
Our evaluation method is summarized as follows: We se-

lect 140 queries from the log, sampling queries that are nei-
ther too frequent nor too infrequent (torso queries), as head
queries tend to be of a particular type (e.g., navigational),
while tail queries give information that is too sparse. We fo-
cus on single-term queries that are likely to have more than
one interpretation. For each of these queries, we build a test
set of related queries by selecting a small set of their most
frequent successors in the query-flow graph. Each test set
is then clustered into 2 to 5 clusters by human editors; the
editors decided the number of clusters for each set.1 The
clustering of a test set represents the ground truth for that
set. Table 1 shows examples of clustered test sets. We then
apply our graph projection method, and we obtain a similar-
ity measure for queries, for which we evaluate its agreement
with the human-defined clustering. We compare different

1The clustering of the query test sets were done by four edi-
tors. We tested whether our results depend on the subjective
perception of the editors about clustering, by repeating our
analysis for the queries labeled by each editor separately.
We found that in all cases we obtain similar results. We
omit the details for lack of space.



variants of graph projections by testing which variants yields
similarities that agree better with the golden truth.

Note that to apply our methodology we need to mea-
sure agreement between a clustering and a similarity func-
tion. We use the following measure: let V be a set and
C = {C1, . . . , Ck}, with V =

S

i
Ci, be a clustering of V .

For a similarity function Sim(q, q′), we introduce two scores:
intra-cluster similarity of cluster Ci:

InSim(Ci) =
X

qh,qj∈Ci,h6=j

2 · Sim(qh, qj)

|Ci||Ci − 1|

inter-cluster similarity of cluster Ci:

OutSim(Ci) =
X

l=1...k,l6=i

2

4

X

qh∈Ci

X

qj∈Cl

2 · Sim(qh, qj)

|Ci||Cl|

3

5

The intuition is that a similarity measure agrees with clus-
tering C if the InSim score is large compared to the OutSim
score. Thus, we capture the quality of a similarity measure,
with respect to the clustering C, using the ratio

MĈ(Sim) =
E[InSim(C)]C∈Ĉ

E[OutSim(C)]C∈Ĉ

.

Given two different similarity measures, the best one is the
one that maximizes the measure MĈ(Sim).

4.3 Sub-graph construction method
We experiment with two alternatives for extracting sub-

graphs from the query-flow graph: query-dependent and
query-independent method.

Query-dependent subgraphs. Given a query q we ex-
tract a subgraph around q by a breadth-first search from q.
For a graph G = (V, E) and two nodes q, q′, let d(q, q′) be
the length of the shortest path from q to q′ following directed
edges in E. Let Vd(q) = {q′ ∈ V : d(q, q′) ≤ d ∨ d(q′, q) ≤
d}. For instance, V0(q) = {q} and V1(q) contains the in-
neighbors and out-neighbors of q. We define the sets:

• Ed(q) = {(q1, q2) ∈ E : q1 ∈ Vd(q) ∧ q2 ∈ Vd(q)}
• Od(q) = {(q1, q2) ∈ E : q1 ∈ Vd−1(q) ∧ q2 ∈ Vd(q)}
• Id(q) = {(q1, q2) ∈ E : q1 ∈ Vd(q) ∧ q2 ∈ Vd−1(q)}.

We experimented with the following subgraphs of q:
• Fd(q) = (Vd(q), Ed(q))
• Sd(q) = (Vd(q), Ed−1(q) ∪ Od(q) ∪ Id(q))

Figure 1: Example F1(q) and S1(q).

Figure 1 shows an example. The sizes of the obtained sub-
graphs vary widely, with |V2(d)| ranging from 31 to 20 702
queries (median: 2 320 queries).

Query-independent subgraphs by partitioning. Query-
dependent subgraphs may be expensive to compute at query
time, so we also experimented with query-independent sub-
graphs obtained by partitioning the filtered graph. The par-
titioning was done using metis [23] and varying the number
of clusters that metis takes as a parameter.

5. OPTIMIZING THE SIMILARITY
MEASURE

The objective of our study is twofold: (i) to demonstrate
the effectiveness of the query-flow graph projections in order
to define a measure able to capture the human notion of
similarity between queries, and (ii) to optimize such a query-
similarity measure.

To address the first objective we define a baseline measure
that relies on the query-flow graph but does not use projec-
tions. To obtain more refined graphs, and thus similarities
of better quality, we apply the projection method locally, on
the neighborhood of a given query. This approach is based
on constructing query-dependent subgraphs as we discuss
in detail in Section 4. Applying projections locally yield a
better similarity measure, but unfortunately, the method is
computationally more expensive since it requires to build a
different subgraph for each query. Thus we propose a “hy-
brid” approach, which builds query-independent subgraphs
by using partitions of the query-flow graph obtained with
the metis graph-clustering algorithm.

Overall, we perform a large number of experiments to as-
sess the following parameters: (i) the number of dimensions
of the spectral embedding, (ii) the choice of the weight-
ing scheme, (iii) the method to be used in the construction
of the query-dependent subgraphs, and (iv) the number of
partitions to be considered in the computation of query-
independent subgraphs.

5.1 Similarity without graph projections
Our first similarity measure is purely based on the query-

flow graph: the similarity between two queries is given by
the cosine similarity of their vectors of neighbors. Given a
query q, we denote by N(q) its vector of neighbors in the
query-flow graph.

For our test sets, the average value of MĈ for this base-
line similarity measure is 1.03 with a variance of 0.03. Fig-
ure 4(a) reports the results obtained for the query watch; we
observe little separation between queries in different clus-
ters. These results suggest that the metric based on the
cosine similarity of the neighborhoods of two queries does
not capture well the similarity of queries. We stress here
the fact that methods based on random walks [11] or hit-
ting time [22] are not able to capture the notion of semantic
similarity we aim to. In the example of Figure 4(a), the
probability to end up in frequent queries like “rolex watch”
or “watch free movies online”, starting from the query
“watch”, might be quite similar even if such queries are not
semantically related.

5.2 Similarity with graph projections
A quite natural objection to the use of the Fiedler em-

bedding of the query-flow graph is that this projection is
intended to be applied on undirected graphs. Surprisingly
preliminary experiments, which we do not present for lack
of space, showed that using the directed Laplacian does not
yield any improvement. Hence, we retained the standard
method. We assume that similar queries are projected onto
points that are close in the embedded Euclidean space. We
then measure the distance between two queries in terms of
cosine distance between the corresponding vectors.

The extensive set of experiments we performed confirms
that the distance measure defined by means of the spectral
projection of the query-flow graph into a lower-dimensional



Table 2: Average MĈ for different projections with
different number of dimensions

Dimensions p-value
Method 3 5 7 (3 vs 7)

S2 1.9 ± 1.5 1.8 ± 1.2 1.3 ± 0.8 0.14
S3 3.3 ± 6.5 2.2 ± 2.5 1.8 ± 1.3 0.12
G 3.2 ± 9.1 1.3 ± 0.9 1.3 ± 0.9 0.19

Table 3: Average MĈ obtained for S2(q), S3(q) using
different weighting schemes.

Weighting Significant differences
bin. log raw 0.1 ∗ 0.05 ∗∗ 0.01 ∗∗∗

S2 1.9 1.8 1.3 bin.>raw *** log>raw ***

S3 2.2 1.9 1.7 bin.>raw ** bin.>log *

space captures the notion of similarity among queries better
than the one relying on the original graph.

Choice of dimensions. In order to investigate how varying
the number of dimensions of the spectral projection affects
performance, we build three embeddings of G, which respec-
tively have m = 3, m = 5 and m = 7 dimensions. To get
a more complete picture, we do the same for two types of
query dependent subgraphs, S2 and S3. For each of these
cases, we use the projections to compute the similarity be-
tween all the pairs of queries in every test set collected, and
then we compute the measure MĈ to evaluate agreement
with the clusters created by hand. We also perform t-tests
to figure out whether the differences among the various cases
are statistically significant or not.

Our results, reported in Table 2, show that increasing
the number of dimensions does not determine a consider-
able gain in terms of quality. A slight improvement in terms
of less variance is observed, but the differences between the
various cases are not statistically significant. For this reason
we fix m = 5 in the remainder of our experimentation.

Choice of weighting scheme. In the query-flow graph,
every edge connecting two queries is weighted with the fre-
quency of the transition in the original query log, and the
transition probabilities of the edges can be used to identify
queries that represent similar information needs. We per-
form a number of tests to investigate whether taking the
edge weights into account during the computation of the
spectral embeddings improves our method.

We experiment with three different weighting functions:
• binary: w : E → {0, 1} s.t. w(q, q′) = 1. This case

corresponds to the baseline (unweighted graph).
• raw-count: w : E → N s.t. w(q, q′) = c(q, q′) ( c(q, q′)

is the occurrence count of the transition in the log).
• log(count): w : E → R s.t. w(q, q′) = log(c(q, q′)).

When an edge between two queries exists in both direc-
tions, we symmetrize the weights choosing the maximum of
the two. This step is needed for the computation of the pro-
jection. We also tried with minimum, average or sum of the
two weights, but we observed no substantial changes.

We compare the above weighting schemes for two types of
query dependent subgraphs: S2(q) and S3(q). Table 3 shows
the results. Binary and log weights yield the best results,
whereas the usage of raw counts hurts performance, and the
difference between this weighting scheme and the other two
is statistically significant. For this reason we discard the

Table 4: MĈ for query-dependent subgraphs.

Average Significant differences
Method ± st.dev 0.1 ∗ 0.05 ∗∗ 0.01 ∗∗∗

N 1.02 ± 0.17
G 1.22 ± 0.74 > N ***

F1 1.49 ± 2.07 > N **

S2 1.63 ± 0.88 > N *** > G ***

S3 1.68 ± 1.45 > N *** > G ***

N F1 S2 S3 G
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Figure 2: Comparison among local projections, projec-

tion of the full graph and direct use of the query-flow

graph

raw counts, and we focus on the simplest of the two schemes
that exhibit the best behavior, which is the one using binary
weights. We consider projections of unweighted graphs in
the remainder of this section.

5.3 Query-dependent subgraphs
We now study if projecting the neighborhood of a given

query improves performance. We consider three types of
query-dependent subgraphs: F1(q), S2(q), S3(q). The first
is the subgraph induced by the neighbors of the input query,
while the other two graphs are obtained by applying two or
three steps of a breadth-first search on the query-flow graph,
starting from the input query.

We compare the embeddings of the query-dependent sub-
graphs against the methods discussed before, i.e., projecting
the whole graph or using the query-flow graph directly. The
results of this study are presented in Figure 2 and Table 4:
N is the baseline, while the other cases represent the meth-
ods that project either the full graph G or the corresponding
query-dependent subgraphs. Local projections introduce a
relative improvement in the average MĈ in the range of the
16%−39%. Even if the variances of local projections are also
increasing we can observe that the lower bound for both S2

and S3 match the upper bound of N . Also, the differences
between the query-dependent subgraphs and the other two
approaches are statistically significant (see Table 4).

Figure 5 reports a qualitative comparison of the above
methods for the query watch.

5.4 Query-independent sub-graphs
Using local projections of small query-dependent subgraphs

allows to define a metric that captures better the similar-
ity between queries. However, this method has the clear
drawback of requiring query-time computational process-
ing, which may be expensive. For this reason we investigate



Table 5: MĈ for varying numbers of clusters; none
of the pair-wise differences is statistically significant

Expansion Number of Average
Method distance clusters ± st. dev

Full graph - - 1.2 ± 0.2
Clustering 1 100 1.0 ± 0.1
Clustering 2 100 1.2 ± 0.5
Clustering 2 200 2.0 ± 10.3
Clustering 2 1 000 4.2 ± 25.8
Clustering 2 5 000 3.9 ± 27.0
Clustering 2 20 000 6.3 ± 46.7

whether projecting larger, query-independent subgraphs al-
lows to trade-off performance and computational costs.

We generate sets of query-independent subgraphs using
the metis algorithm, which partitions the nodes of a graph
into balanced clusters minimizing the number of edges in
the cut. The number of clusters to be created is chosen
by the user. In the following, we briefly describe how we
use a partition of the nodes in the query-flow graph created
with metis to derive query-independent subgraphs. We then
compute the spectral embeddings of these subgraphs.

Cluster expansion. We first partition the graph into 100
and 200 clusters. We choose these values because they yield
cluster sizes comparable to the size of query-dependent sub-
graphs for which our method obtains the best performance.

As first attempt, we directly project the partition created
by metis. This solution performs very poorly (results are
omitted due to lack of space), because the raw clusters do
not typically include a significant fraction of the neighbor-
hood of each node. To overcome this limitation, we study
how to make the partitions include (a significant fraction of)
the neighborhood of each node assigned to them. We test
two methods. The first strategy consists of enlarging each
partition with the in/out-neighbors of every node originally
included in it – so that clusters may overlap. We found that
this method does not improve performance.

We then experiment with a more expensive strategy, which
consists of adding to each partition the two-step neighbor-
hood of every node originally assigned to it. This solution
creates larger clusters, and experimental evaluation shows
that it provides results comparable to those obtained by
projecting the full graph (see Table 5). Hence, we retain
this approach as our cluster expansion method.

Choice of number of clusters. The expansion step is
necessary to make the clusters include many neighbors of
a given node, i.e., queries that are likely to be related to
the input query. However, this operation creates clusters of
very large size: we believe that this can be a reason for not
having a significant improvement in performance. Hence,
we perform more extensive experiments, using metis to di-
vide the query-flow graph into a larger number of partitions
and applying the expansion step to the sets of nodes ob-
tained. Table 5 shows how the method behaves with 1 000,
5 000 and 20 000 clusters. Starting from 5 000 we get a little
improvement in performance, but the differences are not sig-
nificant at p < 0.1. Although the method performs at least
as well as the projection of the full graph, our intuition is
that it would be worth exploring other approaches to extract
query-independent subgraphs from the query-flow graph.
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Figure 3: Summary of performance of some systems

5.5 Summary
Figure 3 summarizes the tested methods, which can be

divided into three groups:
• Using query-flow graph without projection (N): this

performs close to random;
• Projecting the whole graph (G) or query independent

clusters (MK): good performance, with a possible ad-
vantage to systems based on clustering;

• Projecting query-dependent sub-graphs (Fd or Sd): per-
forms the best, with a small advantage for the systems
that expand the neighborhood at 2 or 3 steps over the
subgraph induced by the direct neighbors.

With respect to effectiveness, a positive result is that for
all the projection-based methods we tested, in at least 75%
of the cases the system gave a larger similarity to queries
in the same user-defined clusters than to queries in different
user-defined clusters.

6. APPLICATION TO QUERY
RECOMMENDATIONS

In this section we describe how we apply the proposed
method for producing diverse query recommendations. Di-
versification of search results or query recommendations is
a strategy adopted by search engines to improve the user
experience and minimize the risk that the information need
of the user will not be satisfied.

For our experiment we use a random sample of 100 queries.
For each query, we generated a set of baseline query recom-
mendations using a method suggested in [7]. This method
(QueryFlow-SP) associates a query q with a set Q of rec-
ommendations obtained by selecting the most frequent refor-
mulations from q. Each query q′ ∈ Q is assigned a ranking
score given by the frequency of the transition (q, q′). This
method was shown to perform as well as more sophisticated
recommendation algorithms. In the following, we refer to it
as the baseline.

Next, we use the diversification method described by Gio-
nis et al. [14]. The idea is to apply a greedy search that
maximizes diversity while maintaining high relevance. The
algorithm takes as input the set Q and builds a diverse set A
of queries. First, the query q0 ∈ Q with the highest relevance
score is selected, removed from Q, and inserted into A. Ob-
serve that this ensures that the most popular query related
to the input query is always selected for recommendation.
Next, the algorithm starts an iterative phase: at each step
the query q ∈ Q with maximum score s(q) is removed from



Query: watch rolex watch citizen watch seiko watch watch free watch

movie online movies.net

rolex watch - 0.052 0.044 0.003 0.002

citizen watch 0.052 - 0.087 0.004 0.002

seiko watch 0.044 0.087 - 0.004 0.003

watch free movie online 0.003 0.004 0.004 - 0.04

watch movies.net 0.002 0.002 0.003 0.04 -

(a) Method: N , i.e., cosine similarity between vectors of neighbors in the QFG

Query: watch rolex watch citizen watch seiko watch watch free watch

movie online movies.net

rolex watch - 0.99 0.99 0.12 0.12

citizen watch 0.99 - 1.00 0.09 0.08

seiko watch 0.99 1.00 - 0.12 0.11

watch free movie online 0.12 0.09 0.12 - 1.00

watch movies.net 0.12 0.08 0.11 1.00 -

(b) Method: spectral embedding of G

Figure 4: Example: query similarities using cosine similarity of neighbors (no projection) and projection of
the full graph for the query watch . Lines separate manually-assigned clusters for these queries.

Query: watch rolex watch citizen watch seiko watch watch free watch

movie online movies.net

rolex watch - 1.00 1.00 -0.57 -0.58

citizen watch 1.00 - 1.00 -0.56 -0.57

seiko watch 1.00 1.00 - -0.57 -0.57

watch free movie online -0.57 -0.56 -0.57 - 1.00

watch movies.net -0.58 -0.57 -0.57 1.00 -

Figure 5: Example query similarities using projection of the subgraph S2(q) for the query watch

Q and inserted into A. The score s(q) is a combination
function of the relevance of q with the distance d(q,A) of
query q from the set A of queries that have already been
selected. The algorithm balances diversity with relevance.
Given that the two measures, distance from other queries
and relevance, are not comparable, the algorithm tries to
maximize the product of the two, picking up queries that
have a high ranking score while being not too similar to the
queries that have already been selected. We omit the details
of the diversity algorithm since it is not the focus of this
paper. We derive the distance metric that we use for diver-
sification from our projection method. We experiment with
three schemes: N , G and S2(q). These methods measure
similarity between queries in terms of cosine similarity be-
tween (a) their vectors of neighbors in the query-flow graph;
(b) the vectors associated with the queries in the projection
of the full graph; (c) the vectors obtained projecting the
subgraph S2(q). In the case of N , we define the distance of
a query q from the set A as the minimum distance between
q and a query in A:

d(q,A) = mint∈A{d(v(q),v(t))}.

In the case of G and S2(q) the distance of q from A is defined
as the distance between q and the centroid c(A) of the set A.

d(q,A) = d(v(q), c(A)).

Perceived diversity. The task is highly subjective, and
when measuring the agreement of the assessors on a subset
of questions in which they overlap, we observe a moderate
level of agreement (Cohen’s κ = 0.49).

In Table 6 we show the results of this evaluation. The re-
sults are expected given the results from previous sections, as
S2(q) is the best method (in 51% of the cases it is perceived
as more diverse than the baseline, in 14% of the cases as less

Table 6: Result of user test for assessing diversity
of recommendations

Prob. B is more/less diverse than A
N G S2

Baseline 0.30/0.13 * 0.39/0.25 * 0.51/0.14 ***

N - 0.42/0.25 ** 0.49/0.15 ***

G - - 0.46/0.25 **

Significance: 0.1 ∗ 0.05 ∗∗ 0.01 ∗∗∗

diverse), followed by G (projecting the full graph), followed
by N (using the graph without applying projection).

Perceived relevance. We examine 100 queries and take
the union of the top-3 recommendations from all the systems
that are compared. This yields 460 distinct query pairs. The
assessment is to measure if the recommendation is relevant
to the original query. In this case, the inter-assessor agree-
ment is κ = 0.53.

The accuracy of relevant queries that the baseline algo-
rithm recommends is 97%. When using the projection on the
full graph, this figure drops to 90%, and to 92% when using
the S2 method. Instead, when using N there was basically
no drop in relevance, measuring a 97% of recommendations
relevant to the original query. These results suggest that (i)
N does only a small change in the recommendations, and
(ii) S2 and the method that projects the full graph change
the recommendations but still keep the fraction of recom-
mended queries that are relevant to the original query at
90% or more.

7. CONCLUSIONS
We have shown that projecting the reformulation graphs

in a low-dimensional space allowed us to define a similarity
measure between queries. To the best of our knowledge,



this is the first attempt to apply spectral methods to query-
reformulation analysis.

After methodically exploring several design choices, we
found two methods that perform well: one for off-line pro-
cessing and one for on-line processing. The method for off-
line processing basically works by storing 3-5 spectral co-
ordinates per query and then using them at query time at
constant cost. The method for on-line processing requires
computing a small subgraph at query time and then project-
ing this graph to obtain the coordinates. Our experiments
suggest that the on-line method is a more effective similarity
measure, but of course it has a higher computational cost.

To demonstrate the practical impact of our method, we
tested our measure as a component of a system for produc-
ing diverse query recommendations. Our experiments show
that our method can be used to produce diverse recommen-
dations at small cost of relevance.

As future work, we would like to seek more effective off-
line methods than the projection on the full graph. We also
plan to investigate alternative projection methods, as well
as the use of other query graphs, such as the click graph.

Key references: [6, 10].
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