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ABSTRACT

A voting system is a set of rules that a community adopts to take
collective decisions. In this paper we study voting systems for a
particular kind of community: electronically mediated social net-
works. In particular, we focus on delegative democracy (a.k.a. proxy
voting) that has recently received increased interest for its ability to
combine the benefits of direct and representative systems, and that
seems also perfectly suited for electronically mediated social net-
works. In such a context, we consider a voting system in which
users can only express their preference for one among the people
they are explicitly connected with, and this preference can be prop-
agated transitively, using an attenuation factor.

We present this system and we study its properties. We also take
into consideration the problem of missing votes, which is particu-
larly relevant in online networks, as some recent case shows. Our
experiments on real-world networks provide interesting insight into
the significance and stability of the results obtained with the sug-
gested voting system.

Categories and Subject Descriptors H.4.3 [Information Systems
Applications]: Communications Applications

General Terms Algorithms

Keywords Social networks, e-democracy

1. INTRODUCTION

On April 23, 2009, Facebook announced the preliminary results
of a site-governance vote, a ballot in which the users were called to
express themselves on a change in the terms of use of the popular
social networking site. The event was presented as an important
step in the history of social networking1 .

The vote came as the result of a petition by thousands of out-
raged Facebook users, who criticized the social networking site for
claiming too many rights over the user-generated content. In an
attempt to make the social network more democratic, Facebook de-
cided to let the users choose between the current terms of use and
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two new documents it had published regarding site governance. It
was also announced that at least 30% of the roughly 200 millions
active Facebook users would have had to vote for the results to be
binding. The outcome was that the new rules were preferred by
74.4% of the voters. And while only 600,000 users (0.3%) voted—
a turnout far smaller than Facebook had hoped for—the rules were
adopted neverthelessZ. The global privacy watchdog, Privacy Inter-
national, called the Facebook vote a “massive confidence trick”.3

The low voting turnout was largely foreseeable. Obviously, only
a small fraction of Facebook users have the time, patience and ded-
ication, and take the service seriously enough to actively participate
in its governance. Attempting this kind of direct democracy voting
in a large social network turned out not to be a good idea. As we
discuss in the rest of this section, there exist other voting systems
that are more appropriate for online social networks, and that can
raise the voting turnout and the credibility of the whole democratic
process.

1.1 Transitive Proxy Voting System

A voting system [1, 12] is a set of rules that a community adopts
to take collective decisions. It specifies the way the voters express
their preference (sometimes called the ballot), and the algorithm
that determines the final outcome (sometimes called the tally). Vot-
ing is done for basically one of two purposes: to decide on a motion
(e.g., to pick the best among a series of alternatives), or to elect a
representative or set of representatives (e.g., to elect a senate). In
both cases the final goal is that of making decisions which reflect
as much as possible the opinion of the citizens. The difference is
the way in which this is pursued.

The former case, known as direct democracy, is based on the idea
of ensuring maximum equality and fairness by making all citizens
vote directly for the different motions. Direct democracy works
better in practice for small cohesive groups. When public decisions
reach a certain level of complexity, it becomes impractical for every
citizen to become fully informed on every issue.

The latter case, known as representative democracy, involves a
relatively small number of representatives who are elected by the
citizens to take decisions on their behalf. Beyond the issue of which
representation structure is the most appropriate for a given context,
representative democracy presents certain risks in practice. For in-
stance, by concentrating power in the hands of a small political
elite, it creates fertile ground for corruption, entrenchment, conflict
of interest, etc., which may result in bad government.
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A third way, combining the benefits of direct and representative
democracy while avoiding some of their drawbacks, is the so called
delegative democracy which is based on proxy voting [5, 8, 19]. In
this context a citizen can decide either to express directly her opin-
ion on an issue, or to delegate her vote to a proxy, that is, another
citizen that she trusts. If the proxy votes directly on the issue, the
weight of all delegated votes she received are added to her vote.
Proxy delegation may be transitive: one’s vote can be further dele-
gated to her proxy’s proxy.

In this novel kind of democracy, also known as liguid democ-
racy4, citizens vote for local candidates who they know and trust
personally, rather than distant candidates they know only through
reputation, costly mass-media campaigns and televised debates.

This voting system seems well suited for online social networks.
In fact, people’s social connections can be seen as a mixture of
strong ties (family, close friends) and weak ties (distant friends, ac-
quaintances). Electronically-mediated social networks allow peo-
ple to maintain many more weak ties than before. This means that
the number of connections they have is larger than what one could
consider an actual “friendship” network. On the other hand, current
social networks are mostly networks of peers, in which the “super-
stars” (the individuals with the larger number of connections) do
not have the visibility that can be achieved through mass media.
The “super-stars” in a social network may be known by only a tiny
fraction of the network.

Proxy-voting systems encourage people to cooperate to build di-
rect, permanent political and social relationships with each other
and with their individual supporters, forming a web of trust. Ev-
eryone can achieve political influence proportional to their level of
public support.

1.2 Paper contribution and organization

In this paper we study the problem of voting in electronically-
mediated social networks. We focus on delegative voting systems,
in which votes are transferred through a path of voting choices over
the social network, possibly damping the vote by an attenuation
factor that reduces the strength of the mandate as the vote travels
towards farther people. Specifically, we propose a system of dele-
gable proxy voting with exponential damping.

Although the theory of voting systems is a well-studied subject in
social and political sciences, economics and mathematics, there are
some assumptions behind the classical theory that hold true in the
traditional scenarios but may fail in electronically-mediated social
networks. In particular, we study voting systems in which people
can only vote for someone they are explicitly connected to.

In the next section we provide some background and preliminar-
ies for our voting system, bridging some notions of voting theory
in social science and concepts from graph theory. In this paper,
we discuss several design choices in terms of notions from voting
theory, translate each choice in the context of the class of voting
systems under consideration, and select one alternative for analy-
sis. Due to space constraints, we do not explore in detail every
branch of the possible design choices we present in this paper.

In Section 3 we enter in the mathematical characterization of
the proposed voting system. We characterize the delegation graph
and the possible winners and prove several properties of our voting
systems.

In Section 4 we study how to deal with missing votes (absten-
tion), including the limit case in which nobody actually expresses a
preference. The study of this limit situation leads to the definition
of a node centrality measure, dubbed voting centrality. We show
that in this case the voting score of a node can be seen as a spe-
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cial, simpler case of PageRank for which we provide a closed-form
formula.

In Section 5 we tackle some issues that apply specifically to the
case of electing multiple representatives. In Section 6 we present
experimental results from a simulated vote in two social networks.

2. VOTING IN A SOCIAL NETWORK

The class of social networks under examination are the ones hav-
ing mutual (symmetric) friendship relationships, that are modeled
by means of an undirected graph of friendship, say G = (Vg, Eg),
defined by a set of vertices (or nodes) Vi and a symmetric set of
edges Eg C Vg x Vg. We let, for every x € Vg, Ng(x) = {y |
(x,y) € Eg} (the neighbors of x in G). For the sake of presen-
tation, we will assume that G is connected; this is not a limiting
assumption as our results can be easily extended to deal with dis-
connected components.

The key aspect of the voting system that we propose for social
networks is that votes can be delegated transitively along the exist-
ing edges of the social network. That is, any member of the network
can choose a proxy among her contacts. A person can also choose
not to delegate her vote.

Besides the obvious organizational advantages, the assumption

that votes can only be assigned to a direct connection is twofold:
on one hand, voters can base their decision on a direct personal
knowledge of the person they vote for, making propaganda essen-
tially useless and thus decoupling popularity from credibility; on
the other hand, the fact that mandates are attributed through a chain
of direct connections should ensure a stronger sense of responsibil-
ity.
The tally. In the rest of this paper, unless explicitly stated, we
consider voting in general, without distinguishing between voting
for motions and voting for choosing representatives, as both can
be implemented using the same system. In particular, when vot-
ing for motions a weighted count is performed, where each voter
that decides not to delegate and instead expresses her preference is
counted, weighted by the amount of delegation she has received.

In the case of voting for representatives, a distinction worth con-
sidering is that between single-winner and multiple-winner sys-
tems. When a committee having s seats must be selected, we can
simply select the top-s scoring candidates. However, there are other
options, and we defer the discussion of them to Section 5; unless
stated otherwise the remainder of the discussion applies to both the
single-winner and the multiple-winner case.

The ballot. Various possible choices exist for defining the ballot.
“One-vote” voting systems are those in which a voter picks ex-
actly one candidate; in our case, one contact. In a “ranked” voting
system, each voter would rank her contacts in order of preference,
and in a “rated” voting system, voters would give a score to each
contact. In this paper we consider only the one-vote kind of ballot,
leaving the other two cases for future investigation.

Every node x € V chooses exactly one of his neighbors in G and
delegates to her. More formally, the voters’ choices are expressed
by a voting function (or simply “voting”), a function v : Vg — Vg
such that one has v(x) € Ng(x) for all x € V; the set of all voting
functions for G is denoted by Votg. For every v € Votg we let
D(G, v) (the delegation graph) be the directed graph (V, A) where
A = {(x,v(x)) | x € V}. For persons that do not delegate, we
include a self-loop in the delegation graph, implicitly assuming a
self-loop at each node in the friendship graph.

Proposition 1 The delegation graph D = (V, A) is a directed,
out-regular graph with out-degree 1. D is made of weak compo-
nents each formed by a cycle with trees (oriented towards their
roots) attached to every node in the cycle.



Figure 1: An example of delegation graph over a social net-
work. Delegations are represented by solid arcs, the remainder
connections by dashed edges.

Figure 1 illustrates an example of delegation graph.

Interpretation of the ballot. In a delegable proxy voting, given
that the vote is delegable, what a node x votes actually affects all
the nodes that x transitively votes for—all the nodes along the path
to the root or roots of the weakly connected component containing
the node. Hence, a “one-vote” delegable proxy voting system can
be interpreted as a ballot in which a person (implicitly) votes for
several candidates simultaneously. The case of voting for multiple
candidates has three main interpretations in voting theory: cumu-
lative voting (or weighted voting), approval voting, or preferential
voting.

In a cumulative voting interpretation, D (G, v) describes for each
user u an assignment of scores that forms a distribution over the
other users, with a weight of 0 for users that can not be reached
from u following a delegation path in D(G,v). In an approval
voting interpretation, D(G, v) indicates that a user u “approves”
all users reachable through a delegation path. These two cases are
considered in the exponentially damped system of Section 3.

In a preferential voting interpretation, each user u ranks all the
people along the path to a root of the connected components. This
adds a level of complexity to the interpretation, not only because of
the description of the specific rank aggregation method, but because
there is another choice between interpreting the user’s ranking as
giving more preference to nodes close by than farther away (as in
the exponentially damped case), or the exact opposite, which can
not be dismissed out of hand. We thus leave the preferential voting
interpretation for future work.

3. TRANSITIVE PROXY VOTING SYSTEM
WITH EXPONENTIAL DAMPING

In this section, we will present our proposed tally system, the
transitive proxy voting system with exponential damping. This is
similar to standard proxy voting, but with a damping factor that
introduces some reluctance in the way delegated votes are trans-
ferred. This reluctance corresponds intuitively to the idea that in an
electronically mediated social network typically you cannot fully
trust your connections, and you want to refrain from giving them
all of your delegation. We might call this form of proxy voting a
viscous democracy (a form of “liquid democracy”), because of the
way trust decays with the distance.

The situation is not much different from the typical link-based
ranking scheme a la PageRank [14], where every vote transfers by
transitivity to distances larger than one, but with an attenuation fac-
tor; Yamakawa et al. [19] use similar ideas, but aim at fotal vote
estimation by mixing voters and motions in a single matrix: as a
result, their election results are incomparable with ours (see Sec-
tion 7 for a more detailed comparison).

3.1 Transitive proxy voting and PageRank

In PageRank, the arcs of a directed graph represent hyperlinks
between web pages, and a hyperlink is seen as a way to confer au-
thority. More precisely, every time a page x points to a page y, x
is transferring a part of its own authority to y; more precisely, if x
points to k pages, its authority will be equally distributed among
those pages. This process is iterated transitively, with an attenua-
tion factor introduced to limit the risk of forming oligopolies (rank
sinks in the PageRank jargon).

Although there are many equivalent ways to define PageRank
formally, for our purposes it is convenient to introduce it using the
path formula of [10]: given a directed graph D = (Vp, Ep), and
for a fixed a € [0, 1) referred to as the damping factor, we define
the PageRank of node x € Vp as
l—a
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where np = |Vp]| (the number of nodes of D), Pathp(—, x) is the
set of all directed paths of D ending in x and the branching of a
path is defined as follows:
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where Nz)r (z) is the set of out-neighbors of z, i.e., N£ (z) = {w |
(z, w) € Ep}. Intuitively, every node x receives its importance (its
delegations) through incoming paths: every incoming path gives a
contribution that depends on the number of branches the path con-
tains, and that decays exponentially with its length. The PageRank
formula can also be applied to an undirected graph, by looking at
an edge e = {x, y} as if it were a pair of arcs (x, y), (¥, x).

Let us adopt the PageRank method in our context: we define the
(voting) score of node x for the voting function v as rp(G,y)(*).
the PageRank of x in the directed graph D(G, v). Note, however,
that the PageRank formula applied to such simple graphs turns out
to be much easier to analyze. In a graph with out-degree 1, the
branching factor is always 1; so we can write:

_d-9 Ipl
= Z alPl,

pePath(—,i)

This voting system depends on a single parameter a. In the fol-
lowing, we discuss its properties for “small enough” and “large
enough” values of a. It is worth noting that for any reasonable value
of o the ballot has a cumulative interpretation, while the approval
interpretation corresponds to the voting system with no damping
factor (i.e., when o — 1).

3.2 Criteria that hold for this system

In this section, we will collect a number of properties that hold
true for this voting system. For sake of presentation, we assume to
vote for selecting representatives, i.e, the final result of the election
is a non-empty set of winners, that depends on the votes cast by the
nodes and on a parameter a € [0, 1) that determines how “transi-
tive” a vote is (¢ = 0 means that the vote is not transitive at all,
i.e., that it does not propagate). A node x is transient if it votes for
a node that does not transitively vote for x (i.e., iff it is a non-root
node of a tree), non-transient otherwise.

Undelegable mandates. The intuitive desire that a strong mandate
cannot be delegated is satisfied at some extent in our voting system,
as the following proposition shows:



Proposition 2 Suppose that x votes for y, y votes for z, and y, z
do not receive other votes. Then the score of y is larger than the
score of z iff the score of x is larger than the average.

PROOF. The ranks of y and z expressed in terms of the rank of

X are
l—a I+ n
ry = o r
) n l—a "

1—
a(l—i—a—i—az " rx>.
1—a

Hence, the condition ry > r; can be written as

rz

re>14+a

I'x
which is true iff ry > 1/n, the average score. [

In other words, if y receives a mandate that is greater than the
average, she will obtain a score that is greater than the one she can
delegate; the average score is a threshold over which a received
mandate cannot be completely delegated.

Large damping (small o) produces undelegable mandates. Con-
sider the delegation graph among k+2 members shown in Figure 2,
and assume that x votes for herself.

Figure 2: If the damping factor is large enough, y will be the
winner, otherwise x will be the winner.

Intuitively, we should consider that if k is large enough, then
member y is receiving a strong mandate. Should then y repre-
sent the community, independently from her choice of delegating
to member x? Using the same idea as in Proposition 2, y wins over
x iff (1 —a)k/n > 1/n, thatis a < 1/2 — 1/k (because there
is too much attenuation for the delegation to be transferred to x);
of course, larger values of a will make x win, as she would in a
traditional proxy system.

This can be easily explained to voters using this voting system.
The choice of the damping factor can be described as the choice
of the critical number of voters k* that creates an “undelegable”
mandate in this situation (of course other voters can affect the out-
come, but y alone can not). More precisely, if we want that k* or
more voters always make the mandate to y undelegable, we have to
choose a not larger than 1/2 — 1/k™.

Large damping (small o) makes only direct votes count. We
prove the following:

Proposition 3 For sufficiently small o, all winners have the same
maximum number of voters (i.e., the same indegree in the delega-
tion graph).

PROOF. Suppose that x is has a voters, y has b voters and a > b.
Then the score of x is 1 4+ aa + a2A(a) whereas the score of y is
1 + ba + a2 B(a), for suitable polynomials A and B with positive
coefficients. The score of x is smaller than the score of y iff

1 +aa + azA(a) <1+ba+ azB(a)

which implies

(a—ba < az(B(a) — A(a))
a—>b

< B(a)— A(a)

which can never be true when o is sufficiently close to zero (the
left-hand side goes to +o00, whereas the right-hand side is finite). [

As a corollary, we have:

Corollary 1 For sufficiently small o, the vote of every node x can
only influence the victory of its neighbors (i.e., it can add or remove
only one of the neighbors of x from the set of winners).

Small damping (large «) determines winners by size of sub-
trees. Clearly, at least when a is large enough, the nodes that ob-
tain the largest rank are the roots of all trees (we shall prove this
formally in Section 3.2): suppose that a node is the root of a tree
T of height d(T'), with ng(T) = 1 nodes at depth O (just the root),
n1(T) nodes at depth 1 (the root’s children), n,(7) nodes at depth
2 etc. Then the rank of the root node p(7') is proportional to

d(T)—1
p(T)y= > n(T)a'.

t=0

At this point, the leader will be chosen among the nodes that partic-
ipate in the cycles (the roots of trees); suppose that a cycle contains
k nodes, say xg, ..., Xx_1, where x; is the root of a tree 7;. Then
the rank of node i is a combination of the p (7)) obtained by:

k—1
(1—a) al
- ;P(Tift)m'

In the voting system under discussion, we can describe exactly
what happens in the case @ — 1, that is, when no damping is
introduced and the votes transfer transitively. We have that p(T)
ends up being proportional to the number of nodes of 7. Moreover,
we note that

k—1

al (1 —a)
riO(E P(Tz—t) k =
l—a
t=0
k—1 t
a
= T —
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t=0
1k—l
— X ;)p(Ti_,) asa — 1.

Thus, when oo — 1 the winners are (ex-aequo) the nodes on the cy-
cle belonging to the component with the largest average tree size.
In the voting theory jargon this set of nodes is called minimal dom-
inant set. When in a voting system there is a minimal dominant set
of winners, the method is said to be Condorcet-efficient [8]. If no
cycle exists, the winner (i.e., the top-scorer) is precisely the root of
the largest tree (or the roots of the largest trees, if more than one
tree of largest size exists), as prescribed by proxy voting.

Small damping (large o) makes transient nodes lose. We prove
the following:

Proposition 4 For sufficiently large a, all winners are non-transient.



PROOF. Suppose that x is transient and votes for y. The score
of x is (1 — a)S(a)/n, where S is a polynomial with positive coef-
ficients (the coefficient of a¥ being the number of descendants of x
at depth k), whereas the score of y is at least (1 —a)(1+aS(a))/n.
The score of x is smaller than the score of y iff

S(a) < 1+aS(a);

if ¢ is the sum of all the coefficients of S, the left-hand side tends
tor as o« — 1, whereas the right-hand side tends to ¢ + 1, so the
above inequality is ultimately true, hence x cannot be a winner for
sufficiently large a. [

Bolzano-Weierstrass’s theorem for voting. It is worth observing
that the scores produced by our voting system change continuously
with a:

Proposition 5 If ag < ay, x is a winner at ag and y is a winner
at a1, then there is some o. € [0, 0.1] such that both x and y are
winners at o.

PROOF. Since the score r is a rational function of o with no
poles in [0, 1], the statement is trivial by continuity. []

Ultimate sovereignty. The condition that every node can become
a winner is known as surjectivity or sovereignty.

Proposition 6 If the graph G is reflexive (i.e., if everybody can
vote for himself), for sufficiently large o. every node can become a
winner.

PROOF. Due to Proposition 4, it is sufficient to prove that for all
node x there is a » € Votg such that x is the only non-transient
in D(G,v). Consider a spanning tree for G (recall that G is con-
nected), and root it at x; then, make every node vote for his parent
in the tree, and let x vote for itself. [J

The reflexivity condition is needed, as explained in the following
counterexample: consider a graph with n — 2 nodes zy,...,2,-2
attached to a node y, and the latter adjacent to the node x. In every
voting, z; can only vote for y, and so does x; y can choose whether
to vote for x or for some z;, but if we want x to be a winner, y must
vote for x. In this condition, though, the score of x and y are

l+a+(n—2)a?

T n(l+a)
1+ (m—Da
o= n(l+a)

and ry is always smaller than ry, so x can never be a winner.

4. DEALING WITH MISSING VOTES

In a realistic scenario, only a (probably small) fraction of users
actually votes: recall the case discussed in the introduction. We
would like to consider how the election can still be carried out in
the presence of abstentionism.

4.1 Voting without voting

We start by studying the limit situation in which nobody actually
expresses a preference. Our approach is to compute the expected
result of the election if voters were to decide their vote uniformly at
random, of course subjected to the constraint of voting for someone
they are explicitly connected to. As we show in this section, this
induces a novel measure of centrality for nodes on a graph.

Formally, we define the voting centrality of a node x as follows:

Z D(G,0)(X)

veVotg

Fg(x) = Notg |

which can be more explicitly rewritten as

1—a
A - % ||
rG(x) nGIVorg | z z o™,

veVotg m €Pathp (g vy (—.x)

In the rest of this section we produce a closed formula for this
measure. We start by observing that for a voting function v, a path
m € Pathp(g,,)(—, x) is either a simple path of the friendship
graph G ending in x, or a simple path with a simple cycle con-
taining x attached at the end, possibly repeated many times: no
other case is possible, because D(G, v) has out-degree 1 so it can
only contain a cycle at the end, if any.

Definition 1 Given two paths n1, 7, € Pathg(—,x), we write
71 LG, x mp to mean that the following conditions hold:

e 11 is a simple path;

e 1) is a simple path or a simple cycle;

e the starting node (say y) of my appears in 7 y;

e except for x and y, w1 and ) are disjoint.
Under these conditions, we let T1 — mo be the part of the path w{
that appears after 'y, and we define the set

S(zy, mp) = {771(772R(7Tl — )5, k > 0).
Note that this set either contains only my (if |mp| = 0), or it is
infinite.
This definition is illustrated in Fig. 3, where we show two paths

71 and 7y and how they are oriented in S(71, 7).
We have that:

Proposition 7 Let vy LG x 2. Then:
1. S(my, myp) are disjoint for different pairs (1, m3);
2. forevery p € S(x1, my), there are exactly

| Vot(G)| br(z 7 )

elements v € Vot(G) such that p € Pathp(G,p)(—, x);
3. if p € Pathp (G (=, x) for some v, then there are | LG
né such that p € S(n’i, né)
PROOF. From p € S(w, mp) one can deduce 7| and 75 uniquely
as follows: 7 is the first part of p until the first occurrence of x;
nf is the following part of the path until the first repeated node (it
will be a cycle if the first node repeated in p is x itself). This proves
(1) and (3). To prove (2), notice that, for 71 = (xq, ..., x;) and
7y = (¥1, ..., yp) youmustdefine o(x;) = x;41 forall0 <i <k,
and v(y;4+1) = y; forall 0 < i < h; v(—) can be freely defined on
all the remaining nodes. [

The lengths of the paths in S(z{, 7p) are |71 |+k(£+|m3|) where
{ =|my —mp| and k > 0. Now

s U+l +lmo|
S almitkrinD — ¢
—ltlmal”
v 1—a
OQ
o .,"' X X

Figure 3: Two undirected paths 7; L , 77 in the friendship
graph, and with their orientation in S(z{, 77).



where we understand that the right-hand side should evaluate to
altlif |z,] = 0.

As a consequence, we have the following explicit closed formula
for voting centrality:

Theorem 1 The voting centrality of a node x in a graph G is given
by

almi—mal+m[+l7al

Fo(x) = br(zyz3). (1)

l—a
ngG z 1 — glmi—mal+|m2|
”lJ-G,XﬂZ

4.2 Partial abstention

After studying the limit case of total abstention, we return to the
more realistic case of partial abstention. We deal with this case by
considering a partially directed graph that contains both directed
and undirected edges. Essentially we reduce to the previous case
of total abstention, considering the real votes expressed as sort of
constraints. In practice, Equation 1 still holds provided that the
simple paths 7| and nf are chosen respecting the direction on the
directed arcs.

We remark that Equation 1 expresses the voting centrality as a
finite summation (there are only a finite number of pairs 71 LG
7>), and enumerating the pairs diagonally allows one to stop the
evaluation at a desired degree of precision.

4.3 A random surfer interpretation of voting
centrality

Beyond its interpretation as voting score in the case of “total
abstentionism”, voting centrality is a new measure of centrality in
a graph that is worth further analysis.

In the following we provide a random-surfer interpretation of
voting centrality, but we shall state it in a more general way, as an
expected PageRank on a given graph distribution.

Expected PageRank: the general case. Let V be a fixed set of n
elements and ¢ be the set of all directed graphs with node set V.

Let P(—) be a probability distribution on ¢, and for each G € ¢
let v be a distribution on its nodes. Let r be the PageRank vector
for the graph G € ¢ using the preference vector v, that is,

rg =1 —a)vg(I — O(AG)_1

where A indicates the row-normalized adjacency matrix’ of G.
We are interested in the expected PageRank vector 7 = E[rg],
that is

F= > PG)rg.

Ge¥

Consider a random surfer acting as follows. At each time, the
surfer is in some node of some graph of ¢. When the surfer is in
the node x of a graph G, with probability o, he moves to one of
the out-neighbors of x at random; with probability 1 — a he resets,
i.e., he chooses a graph G (according to the probability distribution
P(—)) and a node in G, according to v, and moves there.

Equivalently, one can think of the surfer as surfing on a single
large graph H that is the disjoint union of all the graphs in ¢. For
the sake of simplicity, let V.= {1,...,n}and 4 = {Gy, ..., G},
and let us write v; for v, and P; for P(G;). Then H will have nk

SNull rows are patched in the usual way, substituting them by rows
full of 1/n.

nodes, and its row-normalized adjacency matrix will be as follows:

Ag, 0 0 0

0 Ag, O ... 0

Ag = 0 0 Ag, 0
0 0 0 ... Ag,

where 0 denotes an n x n matrix of zeros. The vector
v = (Pvy, Py, ..., Prug)

describes how the surfer chooses the pair graph/node when he de-
cides to reset. So, the surfer’s behavior is described by the transi-
tion matrix:

oAy + (1 —a)1lv,
whose stationary distribution is given by
(1 —a)w( —aAy)~ L.

Now (I —a PH)f1 can be written as

I —aAg, 0 0
0 I—aAg, ... 0
0 0 - 0
0 0 I —aAg,
(I—aAg,)! 0 0
0 (I-aAg)™ ! ... 0
= 0 0 0
0 0 (I —adg)™!

so(l—a)o(I —aAg) lis equal to

(1 —a)(Pioi(I —aAg) "), Pava(I —adg,) ™!
sy Prop(I — aAGk)_l )
= (Piry, ..., Pery).

Now, given a node x € V, the stationary probability that the surfer
is in x is the probability that he is in one of the k copies of x, that
is, P{(ry)x +--- 4 Pr(rp)x = Fx.
Expected PageRank: the case of voting. In the case of voting, we
can state the surfing activity on the undirected graph G as follows.
Whenever the surfer is in some node x:

e with probability a,

— if x was never visited since the last reset, he moves to
one of the out-neighbors of x at random, and stores this
information in his own memory;

— if x was already visited, he moves to the same neighbor
where he moved the last time he visited x;

e with probability 1 — a it resets, i.e., moves to a random node
and cleans its memory.
It is easy to see that this is just an equivalent restatement of our
previous general surfer, hence the average time spent on x will be
precisely the voting centrality of x.

5. SELECTING MULTIPLE WINNERS

In the case of an election for electing several representatives,
there is an opportunity of selecting a committee that represents the
diversity of users, by ensuring proportionality. The criterion of pro-
portionality states that each group should have a share of the seats
roughly equal to its share of the votes [12].
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ITseat [ 12 8 5 15 seat | 12 13

2 seat | 6 8 5 2 seat | 12 6.5
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Figure 4: Example of proportional voting using D’Hondt rules
and three seats. Numbers in boldface represent elected candi-
dates.

In most existing voting systems, the groups used as a base for
measuring the proportionality of a committee are (i) voting dis-
tricts; (ii) political parties or alliances; or (iii) a mixture of both.
The concept of voting districts can be mapped easily into voting
systems for on-line social networks. For instance, the voting can
use explicit non-overlapping groups to which users belong (in the
case of social networks that support such groups). If these explicit
groups are not available, then as social networks exhibit commu-
nity structure [6], the friendship graph G can be partitioned using a
graph clustering method and then members selected proportionally
to the sizes of each cluster. As in real-world voting districts, this
allocation must be done before the voting takes place, and users
should be able to vote only for their friends belonging to the same
district as themselves. Furthermore, the allocation can be done ac-
cording to the structure of the network. A well connected network
may need fewer representatives and fewer districts than a more dis-
connected network.

The concept of parties or alliances can also be mapped easily
into voting systems for on-line social networks. In this case, the
allocation of users into parties is done after the voting takes place,
as it depends on the voting. When no explicit alliances are declared
beforehand, a voting system for social networks may interpret the
connected components of the delegation graph as alliances, as they
represent communities of like-minded people who delegate to other
members of their community but not to external people.

5.1 Proportionality using the delegation graph

Let us examine the case in which each connected component of
D(G, v) is considered an alliance, and we want to ensure alliances
are represented proportionally. The number of nodes in each com-
ponent corresponds to the number of people that voted for the cor-
responding alliance. Let us assume in D(G, v) there are k weakly
connected components Cy, Cp, ...Cy with sizes my, my, ...my.
Each alliance is considered an open list of candidates, in the sense
that their ordering is not fixed in advance, but determined by the
popular vote, e.g. by using the obtained scores.

The method for allocating the number of seats for each alliance
can be determined by any system for proportional voting. For con-
creteness, we describe here the use of D’Hondt rules [12], which
are a proportional representation system used for the parliament of
several countries, and in the European Parliament elections. Nev-
ertheless we stress that most of the arguments that follow apply to
other proportional voting systems.

Under D’Hondt rules seat allocation is done round-wise. In each
round the new seat is assigned to the party with the highest ratio
m/(s + 1), where m is the number of votes received, and s is the
number of seats that party has been allocated so far. An example
tally is shown in Figure 4(a). In the example m| = 12,mp =
8,m3 = 5 and s = 3, the numbers in the table are the ratios, and
the first group gets two seats, the second group gets one seat, and
the last group gets zero seats.

5.2 Strategic voting due to non-monotonicity

Monotonicity is another desirable property of voting systems6.

It states that if an alternative x loses, and the ballots are changed to
disfavor x, then x must still lose. As in many other multiple-winner
voting systems in our voting system there is no monotonicity’ . As
a counterexample, let us consider the top scoring node 73 of compo-
nent C3 in Fig. 4(a), and let us assume that there are no cycles in the
delegation graph. It would have been better for this node to vote for
the top node #, of C», to create a larger community Co UC3 that can
elect two representatives under these rules. In some circumstances
(e.g. if Co were star-shaped, so that #, is the only one having in-
degree larger than zero in Cy) then #3 would be the 2-nd best node
in the component C» U C3 and it would have been elected, as shown
in Fig. 4(b).

The non-monotonicity is not limited to the case of non-delegation
(or self-delegation). A non-elected node x in community C;, by
defecting to another community, e.g., voting for an elected node y
in community Cj, might under certain circumstances (i.e. given
a large enough damping factor), obtain a score larger than y thus
be elected, possibly displacing y from the committee if the target
community does not have enough seats for both.

In general, in the case of strategic voting, as the vote of x transi-
tively affects all the nodes in the path to the root of the community
of the user receiving her vote, it is in the best interest of x to vote
for someone as close to the root as possible. This minimizes her
contribution to the score of other nodes and thus increases the like-
lihood of being among the top members in her community.

6. EXPERIMENTS

The effectiveness of a voting system in practice depends on qual-
itative factors, such as whether the decisions reached by the com-
munity are in some sense correct and whether the members of the
community accept such decisions. In this experimental section, we
focus instead on measurable aspects of the exponentially damped
voting system, such as its stability with respect to the choice of a
damping factor, and its correlation with simpler measurements on
social networks.

For these experiments, we picked two different social networks,
one of scientists (the DBLP co-authorship network) and one of pho-
tographers (the Flickr social network).

6.1 The DBLP collaboration network

DBLPS is a bibliography service from which a scientific collab-
oration network can be extracted. In this network each node rep-
resents a scientist and we interpret the co-authorship relation as a
social tie, indicating that two scientists are connected if they have
worked together on an article. The strength of the connection is the
number of articles they have co-authored. We refer to this graph as
the DBLP social network: as of now, it contains 326 186 scientists
and 1615400 co-authorship relations. This particular social net-
work has been studied in the past e.g. in [4], and it has been shown
that it shares many properties of a typical social network, including
the small-world property.

We simulated a voting process in the DBLP social network, in
which the community elects a committee of top scientists. This
is done by each person delegating his/her vote in one of his/her

6Some political scientists, however, doubt the value of monotonic-
ity as a property of voting systems: “monotonicity in electoral sys-
tems is a non-issue: depending on the behavioral model governing
individual decision making, either everything is monotonic or noth-
ing is monotonic.” [2]

TArrow’s impossibility theorem, or Arrow’s paradox, demonstrates
that no voting system can have all the desirable properties [1].

8http://www.informatik.uni-trier.de/~ley/db/
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Figure 5: DBLP dataset: (a) Kendall’s 7, and (b) Jaccard coefficient of the top-100 set.

connections (co-authors). We will assume there are two factors that
influence how this delegation is done: productivity (we use number
of papers written as a proxy for productivity), and strength of the
co-authorship relation (i.e., number of papers co-authored).

More precisely, we ran a number of elections that all use the
above criteria in different combinations:

e Election A (productivity only). x votes for the most prolific
among her co-authors; ties are broken using strength of co-
authorship.

e Election B (strength of co-authorship only). x votes for her
main co-author (the one with which x wrote most papers);
ties are broken using productivity.

e Election C (adjusted co-authorship). x considers her co-
authors in decreasing order of strength of co-authorship, and
votes for the first one that has been more productive than x
(i.e., that has written more papers than x); if no such co-
author exists, x votes for herself.

e Election D (mixture). In this case, we use a probabilistic
procedure; a parameter y € [0, 1] is fixed, and for every au-
thor x we establish a distribution among the co-authors of x,
that is the convex combination of normalized co-authorship
strength (with weight y ) and normalized productivity (with
weight 1—7y ). Then, x votes for one of her co-authors chosen
according to the distribution.

We performed six elections (D was run three times, with y
0.25, 0.5, 0.75, respectively), and obtained six score vectors that
we shall denote with rA, rB, rC, rD’0‘25, rD’O‘SO, 7D,075, Here,
and in the following, unless otherwise specified we used the stan-

dard damping factor a = 0.85.

Comparison with link-based metrics. Our first set of experiments
aims at determining how much the result of the election depends on
the voters’ choice, and whether and how it can be determined by
the underlying social network instead. For this purpose, we com-
puted four more static scorings based on the DBLP social network:
the degree DEG (where the score is the number of co-authors), the
PageRank PR, the productivity PROD (where the score is the num-
ber of papers written), and the voting centrality CEN introduced in
Sec. 4. We compared the ten scoring vectors using Kendall’s 7 and
the Jaccard coefficient of the top 10, 100 and 1 000 authors: since
these measures substantially agree, we report only the top 100 case
in Fig. 5.

Although all scores are positively correlated, they markedly dif-
fer. The static measures are more highly correlated among them
(in particular, as expected, degree and PageRank), but they are not
well correlated with the results of voting, except very mildly for
PageRank. On the other hand, the results of the six elections are
different, and their Kendall’s 7 never exceeds 0.84, and it is often
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Figure 6: Stability of the voting results in DBLP (left) and
Flickr (right). Stability is studied with respect to: noisy prefer-
ences, changes in o reflected by Kendall’s 7, and changes in o
measured by Jaccard at 100.

around 0.50; as for the Jaccard coefficient, it is at most 0.37, and
often under 0.1.

We can conclude that the outcome of the voting system strongly
depends on the voters’ choices and not only (or too strongly) on the
graph structure or on the position of the node in the graph, both be-
ing desirable properties in a democratic voting system for an online
social-network.

Stability with respect to preferences. There is a second, some-
what dual question about the stability of the proposed voting system
with respect to small changes in the preferences of the community.
How does a small change in the voters’ choice affect the outcome
of the election? To answer this question, we randomized the vote
according to a noise parameter. With probability p, a voter simply
votes for one of her connections at random, and with probability
1 — p she makes her choice as established. We then compare the
resulting score vectors with the one obtained without noise.

1
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Figure 7: Flickr dataset: (a) Kendall’s 7, and (b) Jaccard coef-
ficient of the top-100 set.

In Fig. 6 (top left), we present the results for the election C
above. As the graph shows, even altering 10% of the votes leaves
the scores substantially unaltered (z is above 0.90). Beyond that,
the decay is very smooth, apparently linear, and there is a good pos-
itive correlation even at high noise levels, proving that the system
is stable and reasonably robust against noise.

Stability with respect to the damping factor. Finally, we con-
sider how the score depends on the damping factor. For a fixed
election, we computed the voting scores for different values of o
and compared them with the voting score obtained with o = 0.85.
The comparison was performed using Kendall’s 7 and looking at
the Jaccard coefficient at 10, 100 and 1 000. In Figure 6 (middle
and bottom) we show Kendall’s 7 and Jaccard at 100 for election C
above. As expected there is a dependency, and the results change
smoothly as o moves away from its starting value of 0.85. In par-
ticular, Kendall’s 7 is always above 0.95 for all values of a larger
than 0.65 (Jaccard is over 75% in the same region). It is curious
to observe that 7 has an abrupt change around a = 0.5; interest-
ingly enough, this happens on all the examples we considered, and
more generally on all tree-shaped directed graphs. Our conjecture
is that this phase transition is related to the undelegable mandates
described on Sec. 3.1, the phenomenon still requires further analy-
sis.

6.2 The Flickr social network

Flickr? is an online community were users can share photographs
and videos. The interaction mechanism in Flickr is rich. For in-
stance, users can comment on each other photos and maintain a
collection of their favorite photos. In Flickr the notion of acquain-
tance is modeled through contacts. Differently from other social
networks, in Flickr contacts requests do not need to be confirmed
and are thus directed, but we used them disregarding their direction
for the purpose of building the friendship graph. We sampled 25
million users from Flickr and restricted our attention to the largest
connected component of contacts (526 606 users).

We simulated a voting process on this friendship network as fol-
lows: every user x votes for his contact y that has the most pho-
tographs selected by x as “favorites” (with ties broken arbitrarily).
This voting process produces a voting score vector r.

As for the DBLP graph, for comparison we considered other
metrics: the number of incoming or outgoing contacts DEG, the
number of incoming contacts DEG™T, the PageRank PR (computed
on the contact graph), the voting centrality CEN and the overall

9http: //www.flickr.com/

users’ favorites FAVES. The latter contains, for every user, the
number of times one of her pictures was selected as a “favorite”
by anyone in the network (not necessarily by one of her contacts).

The correlation between such measures are shown in Fig. 7, and
once more we observe that the results of the voting are not deter-
mined by any of the static metrics. Also the measures of stability
shown in Fig. 6 (right) exhibit the same behavior as in the DBLP
dataset.

Finally, we can look at a more fine-grained measure on the top
100 users: the number FAVES of their photos selected as “favorites”
by other users, weighted by the scores assigned by them by the
different ranking functions. We normalized the scores so that they
add up to 1 when considering the top 100 users. The results, in
order of similarity to FAVES, are r = 27K, PR= 22K, DEG= 21K,
CEN= 18K, and DEGT = 8K. The results of the voting outperform
the other metrics when compared with FAVES.

7. RELATED WORK

Before the conclusions section, we summarize here the previous
work in link-based methods for aggregating the preferences of in-
dividuals.

Ranking by some kind of eigenvalue-related technique had its
origin with the work of Seeley [16]. In modern language, given a
square matrix M expressing preferences between individuals, See-
ley proposes to compute the dominant eigenvector of M after row
normalization (in other words, PageRank with « = 1). Indepen-
dently, a few years later Katz [11] considered for the same purpose
the power sum 1M > o™ M" (in other words, PageRank without
row normalization—see [3]) for suitable values of o. Many vari-
ants of these two basic ideas have appeared in the following litera-
ture, and by now spectral ranking is a standard tool in many fields.
It should be noted, however, that the same technique is used to es-
timate different concepts such as authority, power, influence and
centrality.

A spectral-ranking technique for delegated voting was proposed
by Yamakawa et al. [19]. Assuming not all voters might want
to choose an option out of a given set, they propose computing
PageRank (therein called the Bonacich index) on a stochastic ma-
trix containing both voters and motion. The results of this method
are incomparable to ours: if motions are just a copy of the voters,
the resulting graph has a completely different structure, as at least
half of the nodes will be without successors. In case nobody votes,
they propose to use the scores obtained (which are now identical to
our ranks) to select powerful voters and force them to express their
opinion: however, at each selection the matrix is altered by delet-
ing all delegations of the selected voter, so their order in choos-
ing representatives does not coincide with ours. Finally, they do
not consider the interplay between an underlying social network of
acquaintance and the votes, which for example would make it im-
possible to account for missing votes (in their terminology, missing
delegation).

Reference [18] deals with a decentralized voting system for ob-
ject reputation, but there is no collective decision, that is, every peer
decides how much to trust on the votes of others.

Our work is also related to the general issue of developing decision-
support systems for social networks [15], to the study of trust [9, 7]
and influence propagation [13] in social networks.

8. CONCLUSIONS

In this paper we wore hat and glasses: we wore the political
scientist’s hat by concretely proposing a practical voting system
for a social network, whose properties we studied through the lens
of the computer scientist’s glasses.



The main problems of voting in social networks are the exis-
tence of many weak links, the fact that even the most well-known
users are not known by many, and the low voter turnout in general.
We are convinced that a transitive proxy voting is the best choice
in such a setting. The design of a transitive proxy voting system
for social networks includes many steps, including the choice of a
ballot and a ballot interpretation (e.g.: one vote or many votes, cu-
mulative or approval voting, etc.), and the choice of an appropriate
system for counting the votes. The latter includes issues such as
delegable vs. undelegable mandates, and the choice of the scoring
method.

We propose a system of transitive proxy voting with exponen-
tial damping, that allows us to frame these questions properly by
means of a single parameter. We expect a voting system to be ro-
bust to small differences in the choice of the damping factor, or
small variations in the users’ preferences. We also expect the sys-
tem to produce an output that depends on the users’ choices and not
only (or too strongly) on the graph itself. Our experimental results
are positive in these aspects.

Future work. We have mentioned but left unexplored a number of
paths that can be fruitful to study as future work. First, we did not
consider users delegating a varying fraction of their vote; for in-
stance, some users may decide to delegate their whole vote, while
others may prefer to delegate only half of their vote and keep the
other half for themselves. Second, the choice of limiting the ballot
to one vote per person may be appropriate in some circumstances
but not in others, and one may want to extend our system to the case
of multiple votes, possibly with different weights (as in cumulative
voting). Third, the choice of considering only symmetric friend-
ship networks is a restriction that in some cases does not hold (as in
Flickr where contacts are directed); although it is easy to re-cast the
proposal for this scenario, some of the properties we proved do not
hold or need to be reformulated. Fourth, dealing with sybil attacks
[17], as well as strategic/untruthful voting in social-network vot-
ing systems can by itself be a challenging and interesting research
topic. Finally, in a scenario with repeated elections, it may be in-
teresting to understand whether the voting relationship is learnable;
under this condition, and assuming a certain accuracy, we may use
such an information as an alternative and more precise way to as-
sign the missing votes.
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