
13

Efficient Algorithms for Large-Scale Local
Triangle Counting

LUCA BECCHETTI
“Sapienza” Università di Roma
PAOLO BOLDI
Università degli Studi di Milano
and
CARLOS CASTILLO and ARISTIDES GIONIS
Yahoo! Research, Spain

In this article, we study the problem of approximate local triangle counting in large graphs.
Namely, given a large graph G = (V, E) we want to estimate as accurately as possible the number
of triangles incident to every node v ∈ V in the graph. We consider the question both for undirected
and directed graphs. The problem of computing the global number of triangles in a graph has been
considered before, but to our knowledge this is the first contribution that addresses the problem of
approximate local triangle counting with a focus on the efficiency issues arising in massive graphs
and that also considers the directed case. The distribution of the local number of triangles and the
related local clustering coefficient can be used in many interesting applications. For example, we
show that the measures we compute can help detect the presence of spamming activity in large-
scale Web graphs, as well as to provide useful features for content quality assessment in social
networks.

For computing the local number of triangles (undirected and directed), we propose two approx-
imation algorithms, which are based on the idea of min-wise independent permutations [Broder
et al. 1998]. Our algorithms operate in a semi-streaming fashion, using O(|V |) space in main
memory and performing O(log |V |) sequential scans over the edges of the graph. The first algo-
rithm we describe in this article also uses O(|E|) space of external memory during computation,
while the second algorithm uses only main memory. We present the theoretical analysis as well as
experimental results on large graphs, demonstrating the practical efficiency of our approach.

L. Becchetti was partially supported by EU Integrated Project AEOLUS, by MIUR FIRB project
N. RBIN047MH9, and by PRIN 2008 research Project COGENT. P. Boldi was partially supported
by the MIUR PRIN projects “Mathematical aspects and forthcoming applications of automata and
formal languages”, by the EU Integrated Project DELIS, and by a Yahoo! Faculty Grant.
Authors’ address: L. Becchetti, “Sapienza” Università di Roma, Rome, Italy; email: Luca.Becchetti@
dis.uniroma1.it; P. Boldi, Università degli Studi di Milano, Milan, Italy; email: boldi@dsi.unimi.it;
C. Castillo and A. Gionis, Yahoo! Research, Barcelona Spain; email: chato@chato.cl; gionis@
yahoo-inc.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2010 ACM 1556-4681/2010/10-ART13 $10.00
DOI 10.1145/1839490.1839494 http://doi.acm.org/10.1145/1839490.1839494

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:2 • L. Becchetti et al.

Categories and Subject Descriptors: G.1 [Mathematics of Computing]: Numerical Analysis;
G.3 [Mathematics of Computing]: Probability and Statistics; H.3 [Information Systems]:
Information Storage and Retrieval; I.5 [Computing Methodologies]: Pattern Recognition

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Clustering coefficient, massive-graph computing, Web com-
puting, social networks

ACM Reference Format:
Becchetti, L., Boldi, P., Castillo, C., and Gionis, A. 2010. Efficient algorithms for large-scale local
triangle counting. ACM Trans. Knowl. Discov. Data. 4, 3, Article 13 (October 2010), 28 pages. DOI
= 10.1145/1839490.1839494 http://doi.acm.org/10.1145/1839490.1839494

1. INTRODUCTION

Graphs are a ubiquitous data representation that is used to model complex
relations in a wide variety of applications, including biochemistry, neurobiol-
ogy, ecology, social sciences, and information systems. Defining new measures
of interest on graph data and designing novel algorithms that compute or ap-
proximate such measures on large graphs is an important task for analyzing
graph structures, and may reveal their underlying properties.

In this article, we study the problem of counting the local number of tri-
angles in large graphs, both directed and undirected. In the undirected case,
we consider graphs G = (V, E), in which V is the set of nodes and E is the
set of edges. For a node u we define S (u) to be the set of neighbors of u, that
is, S (u) = {v ∈ V : euv ∈ E}, and let the degree of u be du = |S (u)|. We are
interested in computing, for every node u, the number of triangles incident to
u, defined as:

T (u) = 1
2

|{evw ∈ E : euv ∈ E, euw ∈ E}| .

Extending this definition to directed graphs is slightly more complicated, the
first difficulty being the different possible ways of defining a directed triangle,
which we defer to a further section of this article.

The problem of counting triangles in undirected graphs also translates into
computing the local clustering coefficient (also known as transitivity coeffi-
cient). For a node u, the local clustering coefficient is defined as

C(u) = 2T (u)
du(du − 1)

,

that is, the ratio between the number of triangles and the largest possible
number of triangles in which the node could participate. Figure 1 depicts an
example.

Note that the problem of estimating the global number of triangles in a
graph or other structures such as other minors and bipartite cliques has been
studied already, see for example, Bordino et al. [2008], Bar-Yossef et al. [2002],
and Buriol et al. [2006, 2007]; here we deal with the problem of estimating
simultaneously the local number of triangles of all the individual nodes in the
graph.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:3

u

du = 4

T (u) = 2

C(u) =
2 · 2
4 · 3 =

1

3

Fig. 1. Example number of triangles and clustering coefficient for a node.

Applications. We motivate our problem definition by showing how the local
triangle computation can be used in a number of interesting applications. Our
first application involves spam detection: we show that the distribution of the
local clustering coefficient can be an effective feature for automatic Web-spam
detection. In particular, we study the distribution of the local clustering coef-
ficient and the number of triangles in large samples of the Web. Results show
that these metrics, in particular the former, exhibit statistical differences be-
tween normal and spam pages and are thus suitable features for the automatic
detection of spam activity in the Web.

Next we apply our techniques to the characterization of content quality
in a social network, in our case the Yahoo! Answers community. Following a
suggestion from the study of social networks in Welser et al. [2007] (that the
type and quality of content provided by the agents is related to the degree
of clustering of their local neighborhoods), we perform a statistical analysis
of answers provided by users, studying the correlation between the quality of
answers and the local clustering of users in the social network.

In addition to the ones we consider, estimating the local number of triangles
and local clustering coefficient can have a larger variety of other potential ap-
plications, ranging from the analysis of social or biological networks [Newman
2003] to the uncovering of thematic relationships in the Web [Eckmann and
Moses 2002].

Algorithms. For computing the local number of triangles we propose two
approximation algorithms, which rely on well-established probabilistic tech-
niques to estimate the size of the intersection of two sets and the related
Jaccard coefficient [Broder 1998; Broder et al. 1998, 1997]. Our algorithms use
an amount of main memory in the order of the number of nodes O(|V |) and
make O(log |V |) sequential scans over the edges in the graph.

Our first algorithm is based on the approach proposed in Broder [2000] and
Broder et al. [1998, 1997], which uses min-wise independent hash functions
to compute a random permutation of an ordered set. In our case, this is the
(labeled) set of nodes in the graph. In practice, to increase efficiency, instead
of hash functions we simply use a random number generator to assign binary
labels to nodes. Doing this can in principle lead to collisions (i.e., we might have
subsets of nodes with the same label). We provide a quantitative analysis of
this approach, characterizing the quality of the approximation in terms of the
Jaccard coefficient and studying the role of collisions. A similar analysis had
been sketched in Broder [1998].

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:4 • L. Becchetti et al.

We then propose a second algorithm that maintains one counter per node in
main memory—as opposed to the first algorithm, which requires one counter
for each edge. In practice, our second algorithm allows to perform the computa-
tion in main memory, thus achieving a considerable speed-up. In particular, the
processing time is almost halved, while accuracy is still comparable or some-
times even better than the first algorithm. This is achieved by using a new,
simpler, linear function to approximate the Jaccard coefficient of two sets. As
a theoretical contribution, we assess the performance of this second algorithm
in the framework used to analyze the first one.

We support our findings and analysis by experimental results. In particular,
we use our algorithms to estimate the distributions of the number of triangles
and of the clustering coefficient in medium and large samples of the Web graph.
To the best of our knowledge, this is the first time-efficient (semi-streaming)
approximation algorithms for counting triangles are described.

Roadmap. The rest of this article is organized as follows. In the next sec-
tion we review the related work and, in Section 3, we introduce the model of
computation and the notation that we will be using throughout this article.
Section 4 describes how to approximate the intersection of two sets using pair-
wise independent permutations, as described in Broder et al. [1998]. Section 5
presents our first algorithm, and Section 6 the main-memory-only algorithm. In
Section 7, we describe experimental work assessing the effectiveness of the in-
dices we consider in performing important mining tasks in the Web and social
networks. The last section presents our conclusions and outlines future work.

2. RELATED WORK

Computing the clustering coefficient and the distribution of triangles is im-
portant to quantitatively assess the community structure of social networks
[Newman 2003] or the thematic structure of large, hyperlinked document col-
lections, such as the Web [Eckmann and Moses 2002].

There has been work on the exact computation of the number of triangles
incident to each node in a graph [Alon et al. 1997; Batagelj and Mrvar 2001;
Itai and Rodeh 1978]. The brute-force algorithm for computing the number
of triangles simply enumerates all

(|V |
3

)
triples of nodes, and thus it requires

O(|V |3) time. A more efficient solution for the local triangle counting problem
is to reduce the problem to matrix multiplication, yielding an algorithm with
running time O(|V |ω), where currently ω ≤ 2.376 [Coppersmith and Winograd
1990]. The algorithm based on matrix multiplication is currently the fastest
main-memory algorithm for computing the number of triangles incident to
each node. However, the space complexity of this algorithm is O(|V |2), which
make it non practical for large graphs. The algorithm of Itai and Rodeh [1978]
runs in time O(|E| 3

2) and requires O(|E|) space, thus, it is slower in the gen-
eral case but it has better space utilization, and it is preferable for sparse
graphs.

If in addition to counting one wants to list all triangles incident to each node
in the graph, variants of the “node iterator” and “edge-iterator” algorithms can

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:5

be used. A description and an experimental evaluation of “iterator” algorithms
can be found in Schank and Wagner [2005]; however, their running time is
O(|V |d2

max) and O(
∑

v∈V d2
v), respectively. An excellent survey of main-memory

algorithms for exact counting and triangle listing is provided by Lapaty [2008].
In addition, Lapaty presents an improved analysis of exact triangle counting
algorithms in the case that the input graph has a power-law degree distribution.
However, the running time remains superlinear for all values of the power-law
exponent α.

In summary, for large scale-free networks—having a very large number
of nodes and high-degree nodes due to skewed degree distributions—exact
computations are not scalable. Thus, in this article, we resort to approximation
algorithms.

Coppersmith and Kumar [2004] propose a streaming algorithm that esti-
mates the global number of triangles with high accuracy, using an amount
of memory that decreases as the number of triangles increases. This result
has been improved in Buriol et al. [2006]. We remark that, differently from
Coppersmith and Kumar [2004] and Buriol et al. [2006], in this article we
are interested in estimating the local clustering coefficient (and the number of
triangles) for all vertices at the same time.

Min-wise independent permutations have been proposed by Broder et al.
as a way to estimate the size of the intersection of two sets and the related
Jaccard coefficient. Together with the technique of shingles they provide a
powerful tool to detect near duplicates in large document collections and the
Web in particular [Broder et al. 1997; Broder 1998, 2000]. Implementing min-
wise independent permutations is infeasible in practice, since it would require
exponential space [Broder et al. 1998]. In recent years, families of linear hash
functions have been proposed that implement min-wise independent permuta-
tions approximately [Indyk 1999; Bohman et al. 2000]. As explained further in
this article, in order to save computational time we do not use hash functions
directly, but rather a pseudo-random generator. This can lead to collisions, but
we show that their impact is negligible in practice.

The probabilistic estimation techniques we use have been considered in
the past to solve related problems. In Gibson et al. [2005] use the techniques
of shingles and linear hashing to discover groups of Web pages that share
significant subsets of their outlinks, thus extending and making the discovery
of cyber-communities in the Web computationally more efficient, in the spirit of
Kumar et al. [1999]. Finally, Fogaras and Rácz [2005] apply similar techniques
to produce indices of page similarity that extend SimRank [Jeh and Widom
2002].

In a preliminary version of this article [Becchetti et al. 2008] we considered
only undirected graphs, and we only sketched the theoretical analysis of our
method. More recently, Tsourakakis [2008] described a completely different
algorithm, based on computing the largest eigenvalues of the adjacency matrix
of an undirected graph to approximate both the total as well as the local number
of triangles in the graph; Tsourakis’ method exploits an interesting property:
the total number of triangles in an undirected graph is 1/6 of the sum of the
cubes of the eigenvalues of its adjacency matrix.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:6 • L. Becchetti et al.

3. PRELIMINARIES

3.1 Semi-Streaming Graph Algorithms

Given the very large size of the data sets used in Web Information Retrieval,
efficiency considerations are very important. For concreteness, the total number
of nodes N = |V | in the Web that is indexable by search engines is in the order
of 1010 [Gulli and Signorini 2005], and the typical number of links per Web
page is between 20 and 30.

This fact imposes severe restrictions on the computational complexity of
feasible algorithmic solutions. A first approach to modeling these restric-
tions might be the streaming model of computation [Henzinger et al. 1999],
which however imposes limitations that are too severe for the problem at
hand. Instead, we focus on building algorithmic solutions whose space and
time requirements are compatible with the semi-streaming model of compu-
tation [Feigenbaum et al. 2004; Demetrescu et al. 2006]. This implies a semi-
external memory constraint [Vitter 2001] and thus reflects many significant
limitations arising in practice. In this model, the graph is stored on disk as an
adjacency list and no random access is possible, that is, we only allow sequen-
tial access. Every computation involves a limited number of sequential scans
of the data stored in secondary memory [Haveliwala 1999].

Our algorithms also use an amount of main memory in the order of the num-
ber of nodes, whereas an amount of memory in the order of the number of edges
may not be feasible. We assume that we have O(N log N) bits of main (random
access) memory, that is, in general, there is enough memory to store some
limited amount of data about each vertex, but not to store the links of the graph
in main memory. We impose as a further constraint that the algorithm should
perform at most O(log N) passes over the data stored on secondary storage.

For comparison, suppose we want to compute the number of triangles in
a graph in a naı̈ve way. This would imply loading the lists of neighbors of
each node in the graph in main memory to be able to count the number of
triangles directly. This would need O(|E| log |V |) bits of main memory which is
impractical in general. The number of edges found in large scale-free graphs
is typically small. However, despite the fact that |E| is small compared to |V |2,
there is evidence that it may be ω(|V |) [Holme et al. 2004; Latapy and Magnien
2006; Leskovec et al. 2005].

3.2 Counting Triangles in the Undirected Case

Considered an undirected graph (possibly a symmetrized version of a Web
graph) and a vertex u, denote by S (u) the set of u’s immediate neighbors. Now
notice that, for every edge euv ∈ E, the number of triangles to which both u
and v belong is |S (u) ∩ S (v)|. So, the overall number of triangles u ∈ V is
participating in is

∑
v∈S (u) |S (u) ∩ S (v)|. As a result, the basic building block

of our approach is an algorithm to estimate the size of the intersection of two
sets.

In the next section, we revisit the general technique [Broder et al. 1998,
1997; Broder 1998, 2000] to estimate the Jaccard coefficient and thus the size

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:7

of the intersection of two sets A and B, defined over the same universe which
we assume, without loss of generality, to be [n] = {0, . . . , n − 1}, where n = 2k

for some suitable k.

3.3 Counting Directed Triangles

Even though the analysis we provide in the rest of this article is referred to
undirected graphs, the techniques we discuss may be applied (directly, or with
minor modifications) to directed graphs. In this section we briefly discuss the
issues that arise in the directed case.

The first problem is the very definition of directed triangles. Consider a
directed graph D = (N, A), and for every arc1 a = (x, y) ∈ A, let i(a) = {x, y} be
the set of nodes on which the arc is incident. Three arcs a1, a2, a3 are said to
form a (directed) triangle [de Graaf et al. 1992] iff any two of them share a single
endpoint (i.e., |i(a1) ∩ i(a2)| = |i(a2) ∩ i(a3)| = |i(a1) ∩ i(a3)| = 1). In particular,
all 3-cycles are directed triangles; a directed triangle that is not a 3-cycle is
sometimes called a transitive triangle. Clearly, every directed triangle of D is a
triangle in the undirected version of D, but the same undirected triangle may
actually correspond to more than one directed triangle in D; for this reason,
the definition in the directed case is given using arcs instead of nodes.

Since transitive triangles are rigid subgraphs, the three nodes involved can-
not be interchanged (differently from 3-cycles, where all nodes are exchanged
by some automorphism). As a result, a node u can be involved in a triangle in
four possible ways; more precisely, given a triangle T = {a1, a2, a3} and a node
u ∈ i(a1) ∪ i(a2) ∪ i(a3), we say that (see Figure 2)

—T is an out-triangle for u iff T is transitive and u has two outgoing arcs in T ;
—T is an in-triangle for u iff T is transitive and u has zero outgoing arcs in T ;
—T is an through-triangle for u iff T is transitive and u has one outgoing arc

in T ;
—T is an cycle-triangle for u iff T is a 3-cycle.

We write T o(u) (T i(u), T t(u), T c(u), respectively) for the number of out- (in-,
through-, cycle-, respectively) triangles involving u.

Figure 2 shows how the number of triangles of each type can be computed,
based on the sets of out-neighbors S(u) = {v | (u, v) ∈ A} and in-neighbors
ST (u) = {v | (v, u) ∈ A} of u in the directed graph. Even if in the rest of the
article we will mainly be dealing with undirected graphs, we will get back to
these formulas from time to time to explain how our algorithms can be modified
to work in the directed case.

3.4 Datasets

We ran most of our experiments on three medium-sized crawls gathered by the
Laboratory of Web Algorithmics, University of Milan (http://law.dsi.unimi.it/).

1Following the standard terminology, we use the words “node” and “arc” for directed graphs, and
reserve “vertex” and “edge” for undirected graphs. All the directed graphs we consider are loopless
(i.e., for all nodes x ∈ N we have (x, x) �∈ A).

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:8 • L. Becchetti et al.

out-triangle

u

T o(u) =
v∈S(u)

|S(u) ∩ S(v)|

in-triangle

u

T i(u) =
v∈ST (u)

|ST (u) ∩ ST (v)|

through-triangle

u

T t(u) =
v∈S(u)

|ST (u) ∩ ST (v)|

cycle-triangle

u

T c(u) =
v∈S(u)

|ST (u) ∩ S(v)|

Fig. 2. Directed triangles involving u.

Table I. Datasets Used in the Experiments

Collection Domain Year Nodes Edges

WEBBASE-2001 various 2001 118M 1737M
IT-2004 .it 2004 41M 2069M
EU-2005 .eu.int 2005 862K 33M
UK-2006-05 .uk 2006 77M 5294M
Answers social net 2007 6M 277M

Loops were not considered, and we ran our experiments both on the original
directed graphs, as well as on symmetrized versions of them when testing our
algorithms for the undirected case. We used the WebGraph framework [Boldi
and Vigna 2004] to manipulate the graphs in compressed form. The particular
collections we used are listed in Table I. Note that, at least for some of the
collections we consider, |E| is expected to grow as �(|V | log |V |). Furthermore,
consistently with the empirical observations in Leskovec et al. [2005], the aver-
age number of edges per node increases over the years. The dataset UK-2006-05
is the crawl that was labeled by a team of volunteers for creating a Web-spam
collection [Castillo et al. 2006] so we have labels of nonspam/spam for a large
set of hosts in that collection. The distribution of the exact number of triangles
per node in the smaller graph EU-2005 is shown in Figure 3 and follows a power
law.

In addition to the graphs from web crawls, we also used a subgraph from
Yahoo! Answers (http://answers.yahoo.com/), a question-answering portal. In
the graph, each node represents a user, and a link between two nodes indicates
that one of the users has answered a question asked by the other user. In the
system, users can choose among the answers received which one is the best
answer, and in the graph we have identified the users who provide a high

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:9

100

101

102

103

104

105

106

100 101 102 103 104 105 106 107

F
re

qu
en

cy

Number of Triangles

Fig. 3. Distribution of the number of triangles per node in the EU-2005 graph.

proportion of “best answers” to the questions they answer. In other words, we
know a set of users who contribute high-quality content to Yahoo! Answers.

4. ESTIMATING SET INTERSECTION

Without loss of generality, we consider subsets of the universe [n] = {0, . . . ,

n − 1}. We measure the overlap of two sets using the Jaccard coefficient:
J(A, B) = |A∩B|

|A∪B| .
A very simple and elegant technique to estimate the Jaccard coefficient

has been proposed in several equivalent forms by Broder et al. [Broder 1998,
2000; Broder et al. 1998, 1997]. Assume we are able to choose uniformly at
random a permutation π (·) mapping [n] onto itself. For every X ⊆ [n], denote
by π (X) the set of the images of elements in X when π (·) is applied and let
min(π (X)) denote its minimum. Then it can be shown [Broder 2000] that (i)
for every a ∈ A ⊆ [n], Pr[a = arg min(π (A))] = 1/|A|; (ii) for every A, B ⊆
[n]: Pr[min(π (A)) = min(π (B))] = J(A, B). This property immediately yields a
technique to estimate J(A, B) . The algorithm consists in performing m passes
over the data. At each pass, one permutation π (·) among the n! possible ones is
picked uniformly at random and then min(A) is computed and compared with
min(B). Whenever they match, a counter is updated. Let Cm be the counter’s
value after m passes. Our estimation of J(A, B) is Cm/m.

Unfortunately, generating permutations uniformly at random requires ex-
ponential space [Broder et al. 1998]. In practice, suitable families of linear hash
functions are used (e.g., see Indyk [1999] and Bohman et al. [2000]).

In this article, in order to increase the speed of computation, we adopt a
slight modification of this approach, using a pseudorandom number generator
to assign labels to the graph’s vertices. In particular, we show that as long
as the pseudo-random number generator reproduces a uniform distribution
closely enough, collisions are not too frequent and it is possible to approximate
the Jaccard coefficient satisfactorily. Very efficient pseudorandom generator
algorithms have been proposed in the literature, exhibiting excellent statis-
tical properties. In practice, we used the Mersenne Twister, which is a fast
generation algorithm for obtaining high-quality pseudorandom numbers.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:10 • L. Becchetti et al.

Fig. 4. Basic algorithm for estimating the size of the intersection of two sets.

Figure 4 describes the algorithm’s pseudocode, which is exactly the standard
one given for example in Broder [2000], except for the use of random labels. As
for the notation used in the pseudo-code, l(j) is a k-bit integer label for every
item j ∈ [n] while, for A ⊆ [n], L(A) = min j∈A l(j).

Define the following variables: Wi = 1 if and only if, in the ith iteration,
L(A) = L(B) and set W = ∑m

i=1 Wi. Set X = |A ∩ B|. Our estimator of X is
X̂ = W/(W +m)(|A|+ |B|). In fact, the labeling step might assign the same label
to multiple vertices. This means that, in each iteration of the algorithm above,
the probability that L(A) = L(B) is not exactly equal to J(A, B), as would be the
case if we used min-wise independent permutations [Broder et al. 1998]. For the
sake of completeness, we show that, as long as labels are reasonably random,
the trivial labeling scheme we use allows us to estimate J(A, B) with good
accuracy, collisions having a negligible impact. This is stated in the next result,
whose proof follows the lines of those given in Broder et al. [1997] and Broder
[1998, 2000]. We present this result here for the sake of completeness, since it
considers the role of collisions (an aspect only sketched in Broder [1998]).

THEOREM 4.1. For every ε > 0 and for every number m of iterations:

Pr[|X̂ − X| > εX] ≤ 2e− ε2
3 mJ(A,B) + m|A∪ B|

2k − 1
.

In practice, this result states that our estimation of |A∩ B| differs from the
true value by more than a constant factor with a probability that exponentially
decays with m and J(A, B), while the worst-case impact of collisions is sum-
marized in the second term, which is o(1) as long as k = �(log n + log m), m
typically being in the order of a few tenths. In Section 5, we will describe how
to apply the same techniques for estimating the number of triangles.

4.1 Proof of Theorem 4.1

In order to prove Theorem 4.1, let [n] = {0, . . . , n− 1}, and define a semipermu-
tation of [n] as a map h : [n] → [n]. Notice that we do not require injectivity:
there might exist i �= j such that h(i) = h(j).

For every A ⊆ [n] and i = 1, . . . , m, denote by Li(A) the minimum value of
labels assigned to elements in A during the ith iteration of the algorithm and
by Mi(A) the set of elements achieving Li(A). We have the following:

LEMMA 4.2. Assume that during the ith iteration each element in the set
[n] receives a label drawn uniformly at random between 0 and 2k − 1. For all

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:11

A, B ⊆ [n] we have

Pr[Li(A) = Li(B) | |Mi(A∪ B)| = 1] = J(A, B).

PROOF. Notice that, if |Mi(A ∪ B)| = 1, then (Li(A) = Li(B)) if and only if
the minimum is achieved by some element in A∩ B. Assuming an initial order
{a1, . . . , a|A∪B|} for elements in A ∪ B and recalling that labeling is described
by a map h, every semipermutation is described by a vector of size |A∪ B|, its
ith element being h(ai). For every element in aj ∈ A ∪ B, define by �(aj) the
set of semi-permutations such that (i) aj ∈ Mi(A∪ B) and ii) |Mi(A∪ B)| = 1.
For every aj, al ∈ A ∪ B, j �= l, we have |�(aj)| = |�(al)| = P for some value
P, by symmetry.2 Also, note that �(aj) ∩ �(al) = ∅, for every aj, al ∈ A ∪ B,
j �= l. Hence, the overall number of semipermutations such that there is one
minimum and this minimum is achieved by an element in A ∩ B is |A ∩ B|P.
By the same argument, |A∪ B|P is the number of semipermutations, such that
(|Mi(A ∪ B)| = 1). Finally, since semipermutations are chosen uniformly at
random:

Pr[Li(A) = Li(B) | |Mi(A∪ B)| = 1] = |A∩ B|P
|A∪ B|P = J(A, B).

In the sequel, we will use the following, well-known fact:

FACT 4.3. For every integer n > 1:(
1 − 1

n

)n

<
1
e

<

(
1 − 1

n + 1

)n

.

Recall that Wi = 1 if and only if, in the i-th iteration, Li(A) = Li(B) and W =∑m
i=1 Wi. Define Ei = 1 if (|Mi(A∪ B)| > 1), 0 otherwise, and let E = ∑m

i=1 Ei.

LEMMA 4.4

E
[
W | E = 0

] = mJ(A, B).

PROOF. We have:

E
[
W | E = 0

] = E
[
W | ∩m

j=1 Ej = 0
]

=
m∑

i=1

Pr[Wi = 1 | ∩m
j=1 Ej = 0]

=
m∑

i=1

Pr[Wi = 1 | Ei = 0] = mJ(A, B),

where the second equality follows since Wi is independent of what happens in
iterations different from the ith one.

LEMMA 4.5

Pr[E > 0] <
m|A∪ B|

2k − 1
.

2The exact value of P is irrelevant to the analysis.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:12 • L. Becchetti et al.

PROOF. We set s = |A∪ B| for the rest of this proof. Consider the generic ith
iteration. We have:

Pr[Ei = 0] = Pr[|Mi(A∪ B)| = 1]

= |A∪ B|
2k−1∑
x=0

1
2k

(
1 − x + 1

2k

)s−1

.

In deriving the expression above, for every element aj ∈ A ∪ B and for every
possible value x, we computed the probability that aj receives the value x and
all other elements receive higher labels. We further have:

2k−1∑
x=0

(
1 − x + 1

2k

)s−1

≥
∫ 2k−1

0

(
1 − x + 1

2k

)s−1

dx

= 2k

s

(
1 − 1

2k

)s

> e− s
2k−1 .

Here, the last inequality follows from Fact 4.3 after simple manipulations,
observing that 2k ≥ s. Hence, we have:

Pr[Ei = 1] = 1 − Pr[|Mi(A∪ B)| = 1] < 1 − e− s
2k−1

<
s

2k − 1
,

where the last inequality follows since e−x > 1− x. This implies the lemma.

Remark. Note that in accordance with Lemma 4.5, we can make the proba-
bility of collisions occurring arbitrarily small by choosing k sufficiently large.
More precisely, if A and B belong to a universe of size n, it is enough to choose
k = �(log n + log m). In particular, when estimating the number of triangles in
a graph, A and B will be the neighborhoods of any two vertices of the graph,
while n will be the number of vertices in the graph.

Next, set X = |A∩ B|. Our estimator of X is X̂ = W/(W + m)(|A| + |B|). The
next result states that, up to collisions, our estimation of |A ∩ B| differs from
the true value by more than a constant with a probability that exponentially
decays with m and J(A, B).

Now observe that, by definition of the Jaccard coefficient, we have J(A, B) =
X/|A∪ B| = X/(|A| + |B| − X), which implies:

X = J(A, B)
J(A, B) + 1

(|A| + |B|).

Furthermore, we have:

Pr[|X̂ − X| > εX]

= Pr[(|X̂ − X| > εX) | (E = 0)]Pr[E = 0]

+ Pr[(|X̂ − X| > εX) | (E > 0)]Pr[E > 0]

≤ Pr[(|X̂ − X| > εX) | (E = 0)] + Pr[E > 0]

< Pr[(|X̂ − X| > εX) | (E = 0)] + m|A∪ B|
2k − 1

,

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:13

where the last inequality follows from Lemma 4.5. Now, for i = 1, . . . , m, set
W(i) = (Wi | E = 0) and W = ∑m

i=1 W(i). Also observe that, by Lemma 4.4,

E
[
W

]
= mJ(A, B). Then, for a given realization W , our “ideal” estimator X of

X is:

X = (X̂ | E = 0) = W

W + m
(|A| + |B|).

Remark. Note that by their definitions, W (i), W and X are no longer defined
over the original probability space, but over the restricted probability space
that is conditioned to the event (E = 0).

Set J = ∑m
i=1 W (i)/m = W/m. By the expression of X derived previously and

by the definition of X, we have that X > (1 + ε)X implies

J

J + 1
> (1 + ε)

J(A, B)
J(A, B) + 1

,

which in turn implies

J >
(1 + ε)J(A, B)
1 − εJ(A, B)

> (1 + ε)J(A, B),

that is:

W > (1 + ε)mJ(A, B) = (1 + ε)E
[
W

]
.

Analogously, X < (1 − ε)X implies:

J <
(1 − ε)J(A, B)
1 + εJ(A, B)

< (1 − ε)J(A, B),

and this in turn implies

W < (1 − ε)mJ(A, B) = (1 − ε)E
[
W

]
.

So we have:

Pr[|X − X| > εX] ≤ Pr[|W − E
[
W

]
| > εE

[
W

]
].

Finally, the W (i)’s are statistically independent. This clearly follows since
W(i) only depends on Ei and not on Ej , for j �= i. Hence, applying Chernoff
bound [Mitzenmacher and Upfal 2005] to W , we have:

Pr[|W − E
[
W

]
| > εE

[
W

]
] ≤ 2e− ε2

3 mJ(A,B).

5. ESTIMATING TRIANGLE COUNT

In this section, we describe an approximating algorithm for counting the num-
ber of triangles for each node in the graph. The idea is to compute an approxi-
mation T̂ (u) of the number of triangles T (u) for all vertices in the graph.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:14 • L. Becchetti et al.

Fig. 5. Algorithm for estimating the number of triangles of each node. The counters Z·,· are kept
on external memory and updated sequentially.

5.1 An Algorithm for Undirected Graphs

The algorithm for computing the number of triangles is written in pseudocode
in Figure 5 and explained in the next paragraphs. The notation used in the
pseudocode is as follows: G = (V, E) is an undirected graph, S (u) is the set of
neighbors of vertex u, hp(u) denotes the random k-bit label assigned to node u
at the pth pass.

The algorithm performs m passes. At the beginning of each pass p, a new
random vector hp(·) is created. Each pass consists of two reads of the graph. In
the first read of the graph, at each node we store the minimum label among
those of the neighbors of that node. In the second read of the graph, we check,
for each edge, if the two minima at the endpoints of the edge are equal; in such
a case, one counter Z·,· for each edge is increased.

After the m passes, an estimation of the number of triangles of each node is
computed as:

T̂ (u) = 1
2

∑
v∈S (u)

Zuv

Zuv + m
(|S (u)| + |S (v)|) .

The algorithm is feasible because the counters Zuv, which make most of
the memory usage, are accessed sequentially and can be kept on secondary
memory. The time complexity of the algorithm is O(m|E|). The main memory
usage is O(k|V |) bits, basically for storing the node labels and the minima; a
natural choice for k is log(|V |). The secondary memory usage is O(|E| log m) bits
of temporary space, which is less than the space required to store the graph
in uncompressed form. The space required in secondary memory is read and
written sequentially once for each pass.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:15

The quality of the approximation only depends on local properties of the
graph, and does not vary as the graph grows in size. In particular, every term
in the sum above has an accuracy that is described by Theorem 4.1, where
A = S (u) and B = S (v). So, as stated in the previous section, the approximation
improves with the number of passes, and it depends on the Jaccard coefficient,
so that for pairs with higher Jaccard coefficient the error is smaller.

Remark. The value of m depends on the desired per-node accuracy. As
Theorem 4.1 shows, a value of m in the order of a few tenths suffices to sat-
isfactorily estimate the size of the intersection of any two neighborhoods that
overlap significantly.

5.2 Experimental Results

We first computed the exact number of triangles for a large sample of nodes
in main memory. To do this, we proceeded blockwise, keeping in main memory
the neighbors of a set of vertices, counting triangles, and then moving to the
next block of nodes. We did this for a sample of 4M nodes in each graph (except
in the small one EU-2005 in which we were able to sample all the 800K nodes).

We use two similarity measures: Pearson’s correlation coefficient (r) and
Spearman’s rank correlation coefficient (ρ) between the approximation and the
real value. We also measured the average relative error:

1
|V |

∑
u

|T (u) − T̂ (u)|
T (u)

.

As a baseline approximation, we assume a constant clustering coefficient C
in the graph, known in advance, and estimate the number of triangles of a node
u as C |S (u)|(|S (u)−1|)

2 . For two of the metrics, we use for measuring the quality
of the approximation below, the value of C is not relevant: Pearson’s correla-
tion coefficient assumes a linear relationship and Spearman’s rank correlation
coefficient is not affected by multiplicative factors.

Next we computed the distribution using our algorithm. For a fixed number
of bits k, the accuracy of the approximation increases with the number of
passes. This behavior is summarized in Figure 6, where the error of these
approximations is shown for all Web graphs of Table I.

Already at 20 passes, involving only 40 sequential reads of the graph, the
approximation has r ≥ 0.90 and ρ ≥ 0.90.

Looking at Spearman’s rank correlation, which is ≥ 0.85 with 50 iterations
for our algorithm, we can see that the baseline algorithm provides a better
approximation of the ordering of the nodes by number of triangles in IT-2004,
EU-2005 and UK-2006-05. This fact indicates that the overall ordering is dom-
inated by the degree of the nodes involved. However, the correlation coefficient
of the baseline approximation is very low (below 0.5, and below 0.1 in UK
and WebBase) while the correlation coefficient of the proposed algorithms is
above 0.9.

Remark. For the sake of brevity, we only mention here that our algorithms
show that the distribution of the number of triangles in the Web samples

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:16 • L. Becchetti et al.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 10 20 30 40 50 60 70

P
ea

rs
on

’s
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

Number of Passes

WEBBASE-2001

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2
0.88

0.90

0.92

0.94

0.96

0.98

1.00

 10 20 30 40 50 60 70

S
pe

ar
m

an
’s

 R
an

k
C

or
re

la
tio

n

Number of Passes

WEBBASE-2001

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

 10 20 30 40 50 60 70

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Number of Passes

WEBBASE-2001

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 10 20 30 40 50 60 70

P
ea

rs
on

’s
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

Number of Passes

IT-2004

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 10 20 30 40 50 60 70

S
pe

ar
m

an
’s

 R
an

k
C

or
re

la
tio

n

Number of Passes

IT-2004

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

 10 20 30 40 50 60 70

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Number of Passes

IT-2004

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 10 20 30 40 50 60 70

P
ea

rs
on

’s
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

Number of Passes

EU-2005

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2
0.88

0.90

0.92

0.94

0.96

0.98

1.00

 10 20 30 40 50 60 70

S
pe

ar
m

an
’s

 R
an

k
C

or
re

la
tio

n

Number of Passes

EU-2005

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2
0.55

0.60

0.65

0.70

0.75

0.80

0.85

 10 20 30 40 50 60 70
A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
Number of Passes

EU-2005

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

 10 20 30 40 50 60 70

P
ea

rs
on

’s
 C

or
re

la
tio

n
C

oe
ffi

ci
en

t

Number of Passes

UK-2006-05

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

 10 20 30 40 50 60 70

S
pe

ar
m

an
’s

 R
an

k
C

or
re

la
tio

n

Number of Passes

UK-2006-05

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Naive approximation (d(d-1))/2
0.80

0.85

0.90

0.95

1.00

1.05

1.10

 10 20 30 40 50 60 70

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

Number of Passes

UK-2006-05

Algorithm 1 (ext. mem.)
Algorithm 2 (main mem.)

Fig. 6. Accuracy of the approximation of the number of triangles using the two algorithms de-
scribed in the paper (external memory and main memory). Left: Pearson’s correlation coefficient.
Center: Spearman’s rank correlation coefficient. Right: average relative error.

considered follows a power law, as shown in Figure 3. A similar observation
was also made in Eckmann and Moses [2002], although for Web samples of
smaller size.

5.3 The Case of Directed Graphs

As we have seen, the correctness of the algorithm in Figure 5 depends on the
fact that

T (v) = 1
2

∑
v∈S (u)

|S(u) ∩ S(v)|

that is further approximated as

T̂ (u) = 1
2

∑
v∈S (u)

Zuv

Zuv + m
(|S (u)| + |S (v)|),

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:17

Fig. 7. Algorithm for estimating the number of triangles of each node, in the case of directed
graphs; some parts of the algorithm depend on the kind of triangles you want to compute (see
Figure 8). The counters Z·,· are kept on external memory and updated sequentially.

where Zuv is the number of times the minimum label for S (u) coincided with the
minimum label for S (v): the latter approximation step is actually an application
of the algorithm in Figure 4.

Looking at the formulas in Figure 2, we can immediately see how the al-
gorithm can be applied to the directed case with minor modifications. The
modified algorithm is presented in Figures 7 and 8, and depends on the type of
triangles one wants to count. In all cases, we need to estimate the intersection
of two sets: either |S (u) ∩ S (v)|, or |ST (u) ∩ ST (v)|, or |ST (u) ∩ S (v)|:
—in the first case, we need to determine how often the label assigned to out-

neighbors of u and v coincide (and the minimum label of the out-neighbors of
every node x is computed in min+(x));

—in the second case, instead, we need to see how often the label assigned to
in-neighbors of u and v coincide (and the minimum label of in-neighbors of x
is computed in min−(x));

—in the last case, we need to compare the minimum label of in-neighbors of
u with the minimum label of out-neighbors of v, so we will have to compute
both min+(x) and min−(x) for every node x.

Note that the last case (i.e., when computing T c(−)) is the only one requiring
extra memory (we need to store two arrays of minima, instead of one). Moreover,
except when computing T o(−), one always needs to know the in-degrees of
nodes (|ST (x)|, for every node x); depending on the way the graph is stored, we
may have this information available at no cost, or we may need to precompute
it at the beginning of the algorithm, with a single linear pass on the graph (and
using O(|V | log |V |) extra bits of memory).

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:18 • L. Becchetti et al.

Fig. 8. Variant parts of the algorithm in Figure 7, depending on the kind of triangles you want to
compute.

Accuracy. Note that the results of Theorem 4.1 apply in this case as well,
where now A (B) can be either S (u) or ST (u) (respectively, S (v) or ST (v)).

6. ESTIMATING TRIANGLE COUNT IN MAIN MEMORY

This section describes a modification of previous algorithm that does not make
use of external memory for the computation. To this aim, observe that, in the
final step of the algorithm presented in Section 5, we computed an estimation
of the number of triangles of a node as:

T̂ (u) = 1
2

∑
v∈S (u)

Zuv

Zuv + m
(|S(u)| + |S(v)|)

in which Zuv is the number of minima that were the same between u and v

during the m passes, so 0 ≤ Zuv ≤ m.
To avoid the use of external memory, instead of keeping one counter for each

edge, we can use one counter for each node, by approximating the number of
triangles incident to a vertex u as:

̂̂T (u) = 1
2

∑
v∈S (u)

Zuv

3
2 m

(|S(u)| + |S(v)|).

The algorithm that uses this approximation is given in Figure 9 and it is
explained in the next paragraphs. The proof that it estimates the triangle count
with good accuracy is given in the next section.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:19

Fig. 9. Algorithm for estimating the number of triangles of each node in main memory.

This algorithm is similar in spirit to the one shown in Figure 5, but removing
Zuv from the denominator in the expression of ̂̂T (u) allows to maintain one
counter per node instead of one counter per edge. The algorithm does mpasses,
each pass consisting of two reads of the graph. In the first read of the graph,
at each node we store the minimum hash value of the neighbors of that node.
In the second read of the graph, we check, for each edge, if the two minima at
the endpoints of the edge (src, dest) are equal, and if so a per-node counter Zsrc

is increased by |S (src)| + |S (dest)|.
After the m passes, an estimation of the number of triangles of each node is

computed as:

̂̂T (u) = 1
2

Zu
3
2 m

= 1
3m

Zu.

The time complexity of the algorithm is O(m|E|). The main memory usage is
O(k|V |) bits, basically for storing the hash functions, minima, and the per-node
counters. Secondary memory is accessed only to read the graph.

6.1 Analysis

We can give a result similar to that of Theorem 4.1. Namely, for u, v ∈ V , set
X = |S (u) ∩ S (v)| and define W as in Section 4. In particular, W = ∑m

i=1 Wi,
with Wi = 1 if, during the ith iteration of the algorithm, the if at line 11 of the
algorithm of Figure 9 is true for nodes u and v. Finally, define

X̂ = W
1.5m

(|S (u)| + |S (v)|).

We have

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:20 • L. Becchetti et al.

THEOREM 6.1

Pr[
(

X̂ >
4
3

(1 + ε)X
)⋃ (

X̂ <
2
3

(1 − ε)X
)

]

≤ 2e− ε2
3 mJ(S (u),S (v)) + m|S (u) ∪ S (v)|

2k − 1
.

PROOF. For i = 1, . . . , m, let Ei = 1 if at the ith iteration there is more than
one element achieving the minimum, 0 otherwise and let E = ∑m

i=1 Ei. Also,
set W(i) = (Wi | E = 0) and W = ∑m

i=1 W (i). We have:

X = |S (u) ∩ S (v)| =
E

[
W

]
E

[
W

]
+ m

(|S (u)| + |S (v)|).

Set X = (X̂ | E = 0).3 By the definitions of X̂ and X, we have E
[
X
]

=
E
[
W

]
1.5m (|S (u)| + |S (v)|). Furthermore, since 0 ≤ E

[
W

]
≤ m, we can conclude

that we have:
2
3

X ≤ E
[
X
]

≤ 4
3

X.

We have:

Pr[
(

X̂ >
4
3

(1 + ε)X
) ⋃(

X̂ <
2
3

(1 − ε)X
)

]

< Pr[
((

X̂ >
4
3

(1 + ε)X
) ⋃ (

X̂ <
2
3

(1 − ε)X
))

| E = 0]

+ Pr[E > 0]

< Pr[
(

X >
4
3

(1 + ε)X
)

] + Pr[
(

X <
2
3

(1 − ε)X
)

]

+ m|S (u) ∪ S (v)|
2k − 1

,

where the last inequality follows from the definition of X. Now:

Pr[
(

X >
4
3

(1 + ε)X
)

] + Pr[
(

X <
2
3

(1 − ε)X
)

]

≤ Pr[|X − E
[
X
]
| > εE

[
X
]
],

where the inequality follows from the above given bounds on E
[
X
]

in terms of

X. Recalling that, by definition, X = W (|S (u)| + |S (v)|)/(1.5m) we immediately
have:

Pr[|X − E
[
X
]
| > εE

[
X
]
] = Pr[|W − E

[
W

]
| > εE

[
W

]
].

3Note that, like in the proof of Theorem 4.1, the variables W (i), W and X are no longer defined
over the original probability space, but over the restricted probability space that is conditioned to
the event (E = 0).

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:21

The rest of the proof now proceeds exactly as in Theorem 4.1, recalling that
E

[
W

]
= mJ(S (u), S (v)).

Remark. As to the choice of m, considerations analogous to those at the end
of Section 5.1 hold. Moreover, we can adapt also this algorithm to work for
directed graphs, using exactly the same techniques described in Section 5.3.

6.2 Experimental Results

In practice, we observe that the second algorithm saves 40% to 60% of the
running time. We ran the experiments for the large graphs on a quad-processor
Intel Xeon 3 GHz with 16 GB of RAM. The wall-clock times required for m = 50
iterations we observed were:

Algorithm 1 Algorithm 2
Graph Nodes Edges (ext. mem.) (main mem.)

WB-2001 118M 1.7G 10 hr 20 min 3 hr 40 min
IT-2004 41M 2.1G 8 hr 20 min 5 hr 30 min

UK-2006 77M 5.3G 20 hr 30 min 13 hr 10 min

The experimental results obtained show that, surprisingly, in many cases
the accuracy of the main-memory algorithm is even better than the algorithm
that uses secondary memory. Figure 6 depicts the results for the case of IT-2004
(experiments on the other datasets have been omitted, but have essentialy the
same behavior).

In the implementation, the number of bits necessary to store each counter
depends on the number of iterations and on the average degree of the graph.
For instance, for WB-2001, we used a Java int (32-bits including the sign),
but for IT-2004 and UK-2006, a long (64 bits including sign) was necessary. In
practice, we observed that 64 bits were required after 60 passes in IT-2004 and
after 20 passes in UK-2006. We point out that this is independent from the
number of nodes in the graph.

7. APPLICATIONS

An efficient algorithm for local triangle counting is not only interesting as an al-
gorithmic contribution. This section describes two applications of the algorithm
for helping in Information Retrieval tasks in large graphs.

7.1 Detecting Web Spam

Spam and nonspam pages exhibit different statistical properties, and this dif-
ference can be exploited for Web Spam Detection [Fetterly et al. 2004]. In this
section, we test if the number of triangles is a relevant feature for web spam
detection. It has been shown in the past to be relevant for e-mail spam detection
in personal e-mail networks [Boykin and Roychowdhury 2005].

We used the WEBSPAM-UK2006 spam collection [Castillo et al. 2006], a public
Web Spam dataset annotated at the level of hosts. First we computed the
number of triangles for each host in this dataset and plotted the distribution
for the nonspam and spam hosts. This is shown in Figure 10.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:22 • L. Becchetti et al.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Triangles

Nonspam
Spam

(a) Exact

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Triangles

Nonspam
Spam

(b) Bit-based

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Triangles

Nonspam
Spam

(c) Directed-In

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Triangles

Nonspam
Spam

(d) Directed-Out

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Triangles

Nonspam
Spam

(e) Directed-Through

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 10 100 1000 10000 100000

P
ro

ba
bi

lit
y

Triangles

Nonspam
Spam

(f) Directed-Cycle

Fig. 10. Separation of nonspam and spam hosts in the histogram of triangles, measured using
different algorithms. Approximate methods used 50 passes.

The distributions are different for nonspam and spam hosts. A two-tailed
Kolmogorov-Smirnov test indicates that the number of undirected triangles
and the clustering coefficient have distributions that are substantially different
in the two classes: the larger differences in the cumulative distribution function
plot are D = 0.32 and D = 0.34 respectively.

We also compared the number of triangles and clustering coefficient with
a known set of link-based and content-based features for the hosts in this
collection [Castillo et al. 2007]. We sorted all the features by computing the
χ2-statistics of each of them with respect to the class label. Using this ranking,
the approximated number of triangles was ranked as feature number 60 out
of 221, and the approximated clustering coefficient as feature number 14 out

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:23

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 H
os

ts

Triangles

Max. triangles per host

Normal
Spam

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.10
0.11

1 10 100 1000 10000 100000

F
ra

ct
io

n
of

 H
os

ts

Triangles

Avg. triangles per host

Normal
Spam

Fig. 11. Separation of nonspam and spam hosts in the histogram of triangles computed at page
level and maximized/averaged on each host.

of 221; such remarkably high positions make both features well worth being
tested as part of a spam detection system.

To complement these results, we estimated the number of triangles at a page
level, and considered the average and maximum number of triangles in every
host; in all cases we had to use the memory-based approximation algorithm to
obtain the estimation, since an exact counting was in this case out of question.
The results are shown in Figure 11. Also in this case, a two-tailed Kolmogorov-
Smirnov test proved that the spam and nonspam distributions actually differ
from each other: for example, the test in the case of average gave D = 0.09 with
a p-value of 1.54 · 10−7.

7.2 Content Quality in Social Networks

In Welser et al. [2007], it is shown that the amount of triangles in the self-
centered social network of a user is a good indicator of the role of that user in
the community.

Here we perform an exploration trying to verify whether the quality of con-
tent provided by a user in a social network is correlated with the local struc-
ture of the user in the network. For our dataset, we use a social network ex-
tracted from the Yahoo! Answers site. Yahoo! Answers is a community-driven
knowledge sharing system that allows users to (i) ask questions on any sub-
ject and (ii) answer questions of other users. One notable characteristic of the

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:24 • L. Becchetti et al.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.0 0.1 0.2 0.3 0.4 0.5

Fraction of best answers

Average quality
High quality

Fig. 12. Separation of users who have provided questions/answers of high quality with users who
have provided questions/answers of normal quality in terms of fraction of best answers.

system is that one answer for each question is selected as the best answer,
and one of the user attributes is the fraction of the best answers given by that
user.

We consider an undirected graph G = (V, E), where V is a set of users in the
system, and an edge euv ∈ E denotes that the user u has answered a question
posted by user v, or vice versa. For this graph, we apply our counting algorithms
and we obtain an estimate of the number of triangles at each node, as well as
the local clustering coefficient. We focus on a small subset of randomly chosen
questions and answers which have been labeled by human judges as “high
quality” or “normal”. These questions/answers have originated from a subset
of about 9,500 users. Let H ⊆ V be the subset of users who have provided a
question or answer of high quality in our sample, corresponding to roughly 30%
of the users in this case, and let N = V \ H be the rest.

As a proof of concept, we first check if the fraction of best answers for the
users differs between the sets H and N. The two distributions are shown
in Figure 12, in which one sees that users in the high quality set tend to
have higher fractions of best answers. The two-tailed Kolmogorov-Smirnov
difference of the two distributions is 0.26, and the null hypothesis is rejected
with corresponding p-value equal to 1.1 · 10−123.

Next we explore the correlation of local structure in the user graph with
respect to the labeling of users in the classes H and N. In particular, we examine
if the distribution of the number of triangles and the distribution of the local
clustering coefficient differ between the sets H and N. The distributions in
the case of the numbers of triangles are different. The Kolmogorov-Smirnov
test rejects the null hypothesis with difference value equal to 0.12 and p-value
equal to 2.9 · 10−29.

The distributions for the local clustering coefficient are shown in Figure 13.
The separation in this case is better than with the number of triangles. In this
case, the Kolmogorov-Smirnov difference is 0.17 and the p-value for rejecting
the null hypothesis is 7.9 ·10−54. In general, the users in the set of high-quality
questions/answers have larger number of triangles and smaller local clustering
coefficient.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:25

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Clustering coefficient

Average quality
High quality

Fig. 13. Separation of users who have provided questions/answers of high quality with users who
have provided questions/answers of normal quality in terms of local clustering coefficient.

Notice that the partitioning of users into the sets H and N might not be very
accurate since for each user there is usually only one question or answer that
is evaluated. Thus, to obtain additional validation of our results we perform a
second experiment, in which we partition the users into two sets: Hba is the
set of user who have fraction of best answers more than 30%, and Nba is the
set of the rest of the users. Then, as in the previous experiment, we examine
if the distribution of the number of triangles and the distribution of the local
clustering coefficient differ between the sets Hba and Nba. For the number of
triangles, the Kolmogorov-Smirnov test rejects the null hypothesis with differ-
ence value equal to 0.11 and p-value equal to 4.5 ·10−1. The separation is again
more clear for the case of local clustering coefficient. The Kolmogorov-Smirnov
difference is 0.27 and the p-value for rejecting the null hypothesis is 1.8 ·10−59.
We remark that using only the degree of each user in the graph is not sufficient
to distinguish between the two distributions.

8. CONCLUSIONS

We have presented efficient semistreaming algorithms for counting the local
number of triangles in a large graph. To the best of our knowledge, these are the
first such algorithms described in the literature. We believe that there are many
Web-scale problems in which it is known that the local clustering coefficient
plays a role, but that so far have not fully exploited it because of computational
requirements. We have demonstrated that our approximate method can be
useful for two such applications.

For future work, exploring variants of the first algorithm that relax the semi-
streaming constraint but still use a small amount of memory is promising.
Given that the distribution of the number of triangles is very skewed, the
counters Zuv could be compressed. For instance, if the counters follow a power-
law, a suitable coding could be used to store them. Note that each counter will
use a variable number of bits depending on the value being stored. This may
cause a drop in performance if done in external memory, but could be a good
choice if done in main memory.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:26 • L. Becchetti et al.

Data and Code. The data graphs we used in this paper can be freely
downloaded from http://webgraph.dsi.unimi.it/; the graph from Yahoo! An-
swers cannot be released publicly for privacy reasons. The Java code used
for computing all the estimations, implementing the algorithms we have de-
scribed, is freely available under a GPL license at http://law.dsi.unimi.
it/satellite-software/.

ACKNOWLEDGMENTS

We thank Massimo Santini and Sebastiano Vigna for valuable comments and
feedback about a preliminary version of this work.

REFERENCES

ALON, N., YUSTER, R., AND ZWICK, U. 1997. Finding and counting given length cycles. Algorith-
mica 17, 3, 209–223.

BAR-YOSSEF, Z., KUMAR, R., AND SIVAKUMAR, D. 2002. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Mathematics (SODA). 623–632.

BATAGELJ, V. AND MRVAR, A. 2001. A subquadratic triad census algorithm for large sparse net-
works with small maximum degree. Social Netw. 23, 237–243.

BECCHETTI, L., BOLDI, P., CASTILLO, C., AND GIONIS, A. 2008. Efficient semi-streaming algorithms for
local triangle counting in massive graphs. In Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 16–24.

BOHMAN, T., COOPER, C., AND FRIEZE, A. M. 2000. Min-wise independent linear permutations.
Electronic J. Combinat. 7.

BOLDI, P. AND VIGNA, S. 2004. The webgraph framework I: compression techniques. In Proceedings
of the 13th International Conference on World Wide Web. 595–602.

BORDINO, I., DONATO, D., GIONIS, A., AND LEONARDI, S. 2008. Mining large networks with subgraph
counting. In Proceedings of the IEEE International Conference on Data Mining (ICDM). 737–742.

BOYKIN, P. O. AND ROYCHOWDHURY, V. P. 2005. Leveraging social networks to fight spam. Com-
puter 38, 4, 61–68.

BRODER, A. Z. 1998. On the resemblance and containment of documents. In Proceedings of the
Compression and Complexity of Sequences, IEEE Computer Society. 21–29.

BRODER, A. Z. 2000. Identifying and filtering near-duplicate documents. In Proceedings of the
11th Annual Symposium on Combinatorial Pattern Matching (CPM). 1–10.

BRODER, A. Z., CHARIKAR, M., FRIEZE, A. M., AND MITZENMACHER, M. 1998. Min-wise independent
permutations (extended abstract). In Proceedings of the 30th Annual ACM Symposium on Theory
of Computing (STOC). 327–336.

BRODER, A. Z., GLASSMAN, S. C., MANASSE, M. S., AND ZWEIG, G. 1997. Syntactic clustering of the
web. In Proceedings of the 6th International Conference on World Wide Web. Elsevier Science
Publishers Ltd., 1157–1166.

BURIOL, L. S., FRAHLING, G., LEONARDI, S., MARCHETTI-SPACCAMELA, A., AND SOHLER, C. 2006. Count-
ing triangles in data streams. In Proceedings of the 25th ACM Symposium on Principles of
Database Systems (PODS). 253–262.

BURIOL, L. S., FRAHLING, G., LEONARDI, S., AND SOHLER, C. 2007. Estimating clustering indexes in
data streams. In Proceedings of the 15th Annual European Symposium on Algorithms. 618–632.

CASTILLO, C., DONATO, D., BECCHETTI, L., BOLDI, P., LEONARDI, S., SANTINI, M., AND VIGNA, S. 2006. A
reference collection for web spam. SIGIR Forum 40, 2, 11–24.

CASTILLO, C., DONATO, D., GIONIS, A., MURDOCK, V., AND SILVESTRI, F. 2007. Know your neighbors:
Web spam detection using the web topology. In Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval. 423–430.

COPPERSMITH, D. AND KUMAR, R. 2004. An improved data stream algorithm for frequency moments.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

Efficient Algorithms for Large-Scale Local Triangle Counting • 13:27

In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
151–156.

COPPERSMITH, D. AND WINOGRAD, S. 1990. Matrix multiplication via arithmetic progressions. J.
Symb. Computat. 9, 3, 251–280.

DE GRAAF, M., SCHRIJVER, A., AND SEYMOUR, P. D. 1992. Directed triangles in directed graphs. Discr.
Math. 110, 1-3, 279–282.

DEMETRESCU, C., FINOCCHI, I., AND RIBICHINI, A. 2006. Trading off space for passes in graph stream-
ing problems. In Proceedings of the 7th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 714–723.

ECKMANN, J.-P. AND MOSES, E. 2002. Curvature of co-links uncovers hidden thematic layers in the
world wide web. In Proceedings of the National Academy of Sciences (PNAS) 99, 9, 5825–5829.

FEIGENBAUM, J., KANNAN, S., GREGOR, M. A., SURI, S., AND ZHANG, J. 2004. On graph problems
in a semi-streaming model. In Proceedings of the 31st International Colloquium on Automata,
Languages and Programming (ICALP). 207–216.

FETTERLY, D., MANASSE, M., AND NAJORK, M. 2004. Spam, damn spam, and statistics: Using sta-
tistical analysis to locate spam web pages. In Proceedings of the 7th Workshop on the Web and
Databases (WebDB). 1–6.

FOGARAS, D. AND RÁCZ, B. 2005. Scaling link-based similarity search. In Proceedings of the 14th
International Conference on World Wide Web. 641–650.

GIBSON, D., KUMAR, R., AND TOMKINS, A. 2005. Discovering large dense subgraphs in massive
graphs. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB).
721–732.

GULLI, A. AND SIGNORINI, A. 2005. The indexable Web is more than 11.5 billion pages. In Poster
Proceedings of the 14th International Conference on World Wide Web. 902–903.

HAVELIWALA, T. 1999. Efficient computation of pagerank. Tech. Rep., Stanford University.
HENZINGER, M. R., RAGHAVAN, P., AND RAJAGOPALAN, S. 1999. Computing on data streams. Dimacs

Series in Discrete Mathematics and Theoretical Computer Science, 107–118.
HOLME, P., EDLING, C., AND LILJEROS, F. 2004. Structure and time-evolution of an internet dating

community. Soc. Netw. 26, 155.
INDYK, P. 1999. A small approximately min-wise independent family of hash functions. In Pro-

ceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 454–
456.

ITAI, A. AND RODEH, M. 1978. Finding a minimum circuit in a graph. SIAM J. Comput. 7, 4,
413–423.

JEH, G. AND WIDOM, J. 2002. Simrank: A measure of structural-context similarity. In KDD ’02:
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM Press, New York, 538–543.

KUMAR, R., RAGHAVAN, P., RAJAGOPALAN, S., AND TOMKINS, A. 1999. Trawling the Web for emerging
cyber-communities. Comput. Netwo. 31, 11–16, 1481–1493.

LATAPY, M. 2008. Main-memory triangle computations for very large (sparse (power-law)) graphs.
Theoret. Comput. Sci. 407, 1-3, 458–473.

LATAPY, M. AND MAGNIEN, C. 2006. Measuring fundamental properties of real-world complex
networks. arXiv:cs/0609115v2.

LESKOVEC, J., KLEINBERG, J., AND FALOUTSOS, C. 2005. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. In Proceedings of the 11th ACM SIGKDD International
Conference on Knowledge Discovery in Data Mining. 177–187.

MITZENMACHER, M. AND UPFAL, E. 2005. Probability and Computing : Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press.

NEWMAN, M. E. J. 2003. The structure and function of complex networks. SIAM Review 45, 2,
167–256.

SCHANK, T. AND WAGNER, D. 2005. Finding, counting and listing all triangles in large graphs,
an experimental study. In Proceedings of the 4th International Workshop on Experimental and
Efficient Algorithms (WEA).

TSOURAKAKIS, C. E. 2008. Fast counting of triangles in large real networks without counting:
Algorithms and laws. In ICDM ’08: Proceedings of the 2008 8th IEEE International Conference
on Data Mining. IEEE Computer Society, Press, Los Alamitos, CA, 608–617.

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

13:28 • L. Becchetti et al.

VITTER, J. S. 2001. External memory algorithms and data structures. ACM Comput. Sur-
veys 33, 2, 209–271.

WELSER, H. T., GLEAVE, E., FISHER, D., AND SMITH, M. 2007. Visualizing the signatures of social
roles in online discussion groups. J. Soc. Struct. 8, 2.

Received April 2009; revised February 2010; accepted February 2010

ACM Transactions on Knowledge Discovery from Data, Vol. 4, No. 3, Article 13, Pub. date: October 2010.

