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ABSTRACT
A recent query-log mining approach for query recommenda-
tion is based on Query Flow Graphs, a markov-chain rep-
resentation of the query reformulation process followed by
users of Web Search Engines trying to satisfy their informa-
tion needs. In this paper we aim at extending this model
by providing methods for dealing with evolving data. In
fact, users’ interests change over time, and the knowledge
extracted from query logs may suffer an aging effect as new
interesting topics appear. Starting from this observation val-
idated experimentally, we introduce a novel algorithm for
updating an existing query flow graph. The proposed so-
lution allows the recommendation model to be kept always
updated without reconstructing it from scratch every time,
by incrementally merging efficiently the past and present
data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
- Data Mining ; H.4.3 [Information Systems Applica-
tions]: Communications Applications

General Terms
Algorithms

Keywords
Query Flow Graph, Query Suggestion, Topic Drift, Aging
Effects, Effectiveness in Query Recommendations

1. INTRODUCTION
Web search engines are one of today’s most used online

applications. According to Nielsen Online, in October 2008
Google and Yahoo! answered more than 6 billion user searches
in the US alone.

One of the main challenges for Web search engine com-
panies is gaining user fidelity by improving their experience
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in the interaction with the search service. In order to pur-
sue this goal, search engines have to figure out what users
are willing to find, starting from a very terse specification
of users’ information need, as typical queries consists of 2 to
3 words. The vast amount of literature discussing methods
for enhancing the effectiveness of search is a proof that this
is far from being an easy problem.

All popular web search engines provide users with query
suggestions to help them to formulate better queries and to
quickly satisfy their information needs. Query recommenda-
tion techniques are typically based on the behavior of past
users of the search engine, recorded in query logs. As a com-
mon practice, in fact, web search services collect detailed
information about the queries of users and the URLs they
click. Query suggestions take different forms: query recom-
mendations, query expansion, query spelling correction, etc.
In this paper we are interested particularly in query recom-
mendation: the automatic generation of interesting queries
that are related in some non trivial way to the current user
information need.

A successfully query-log mining approach for generating
useful query recommendation based on Query Flow Graphs
(QFGs) [4], was recently proposed in [5]. The QFG model
aggregates information in a query log by providing a markov-
chain representation of the query reformulation process fol-
lowed by users trying to satisfy the same information need.
This paper aims at extending the QFG model by provid-
ing a methodology for dealing efficiently with evolving data.
The interests of search engine users change in fact over time.
New topics may suddenly become popular (this is described
as a“query burst”), while others that attracted for some time
the attention of users can lose importance. The knowledge
extracted from query logs can thus suffer an aging effect,
and the models used for recommendation rapidly becoming
unable to generate useful and interesting queries. Unfortu-
nately, building a new fresh QFG from scratch as soon as we
discover the effect of aging is very expensive. We thus deal
with this problem by introducing an incremental algorithm
for updating an existing QFG. The solution proposed allows
the recommendation model to be kept always updated by
incrementally adding fresh knowledge and deleting the aged
one.

In order to validate our claims and assess our methodol-
ogy, we build different query flow graphs from the queries
found on a large query log of a real-world search engine, and
we analyze the quality of the recommendation model devised
from these graphs to show that it inexorably ages. Then, we



show that our algorithm for merging QFGs allows the rec-
ommendation model to be kept updated and we propose
a general methodology for dealing with aging QFG mod-
els. Finally, we show that the computational time needed
to merge QFGs is remarkably lower than the time required
for building it from scratch, and we propose a distributed
solution allowing to shorten further the time for the QFG
creation/update.

In a previous paper it has been shown that the model built
over a QFG inexorably ages over time [2]. The results we
present here, are related to assess the aging effect and also
to find effective anti-aging strategies to combat time effects
over QFG-based models.

The paper is organized as follows. Section 2 discusses re-
lated works, while Section 3 introduces the concept of query
flow graph, and provides readers with some useful notations.
The data used for the experiments are described in Section 4,
while their analysis finalized to the evaluation of aging effects
on the recommendation models is discussed in Section 5.
The incremental algorithm for updating query flow graphs
with fresh data is described in Section 6. Section 7 discusses
its parallel implementation. Finally, Section 8 draws some
conclusions and outlines future work.

2. RELATED WORK
Different approaches have been proposed in recent years

that use query logs to mine wisdom of the crowds for query
suggestion.

Bruno et al. in [9] use an association rule mining algo-
rithm to devise query patterns frequently co-occurring in
user sessions, and a query relations graph including all the
extracted patterns is built. A click-through bipartite graph
is then used to identify the concepts (synonym, specializa-
tion, generalization, etc.) used to expand the original query.

Jones et al. in [11] introduce the notion of query substitu-
tion or query rewriting, and propose a solution for sponsored
search. Such solution relies on the fact that in about half ses-
sions the user modifies a query with another which is closely
related. Such pairs of reformulated queries are mined from
the log and used for query suggestion.

Baeza-Yates et al. [1] use a k-means algorithm to clus-
ter queries by considering both topics and text from clicked
URLs. Then the cluster most similar to user query is identi-
fied, and the queries in the cluster with the highest similarity
and attractiveness (i.e. how much the answers of the query
have attracted the attention of past users) are suggested.
The solution is evaluated by using a query log containing
only 6,042 unique queries.

Beeferman and Berger [3] apply a hierarchical agglomera-
tive clustering technique to click-through data to find clus-
ters of similar queries and similar URLs in a Lycos log. A
bipartite graph is created from queries and related URLs
which is iteratively clustered by choosing at each iteration
the two pairs of most similar queries and URLs.

QFGs were introduced by Boldi et al. [4]. A QFG is an
aggregated representation of the interesting information con-
tained in query logs. Authors define a QFG as a directed
graph in which nodes are queries, and edges are weighted
by the probability of being traversed. Authors propose two
weighting schemes. The first one represents the probability
that two queries are part of the same search mission given
that they appear in the same session, and the other one rep-
resents the probability that query qj follows query qi. Au-

thors show the utility of the model in two concrete applica-
tions, namely, finding logical sessions and query recommen-
dation. Boldi et al. in [5], [6] refine the previous study and
propose a query suggestion scheme based on a random walk
with restart model. The query recommendation process is
based on reformulations of search mission. Each reformu-
lation is classified into query reformulation types. Authors
use four main reformulations: generalization, specialization,
error correction, and parallel move. An automatic classifier
was trained on manually human-labeled query log data to
automatically classify reformulations. Authors showed im-
provements on the recommendations based on QFG mod-
els.

3. THE QUERY FLOW GRAPH
A Query Flow Graph is a compact representation of the

information contained in a query log. It has been applied
successfully to model user interactions with a web search
engine and for a number of practical applications as seg-
menting physical sessions into logical sessions [4] or query
recommendation [4], [5].

As presented in [4] a Query Flow Graph is a directed graph
G = (V,E,w) where:

• V = Q ∪ {s, t}, is the set of distinct queries Q sub-
mitted to the search engine enriched with two special
nodes s and t, representing a starting state and a ter-
minal state which can be seen as the begin and the
end of all the chains;

• E ⊆ V × V is the set of directed edges;

• w : E → (0..1] is a weighting function that assigns to
every pair of queries (q, q′) ∈ E a weight w(q, q′).

Each distinct query is represented by a single node in-
dependently of its frequency, and the number of users who
issued it. In order to build the QFG representing a given
query log, we need to preprocess the data, sorting the queries
by userid and by timestamp, and splitting them into phys-
ical sessions using a fixed time interval. In a second step
we connect two queries q, q′ with an edge if there is at least
one session of the query log in which q and q′ are consec-
utive. The third step of the QFG construction consists in
weighting directed edges (q, q′) on the basis of a function
w : E → (0..1] that measures the probability of transition
from query q to query q′. In [4], two weighting schemes are
proposed. A first one based on chaining probability and the
second one based on relative frequencies. For edge weight-
ing we adopted the chaining probability scheme. To estimate
such chaining probability, we extract for each edge (q, q′) a
set of features aggregated over all sessions that contain the
queries q and q′ appearing consecutively.

This classification step produces a set of so called chain
graphs. Each chain graph is represented by a set of queries
(i.e. nodes) interconnected by edges weighted by the prob-
ability of moving from a query to another. Noisy edges (i.e.
those edges having a low probability of being traversed) are
removed on the basis of a filtering process by means of a
threshold value t.

4. EXPERIMENTAL FRAMEWORK
Our experiments have been conducted on the AOL query

log and on a hardware consisting of a cluster of machines
equipped with G5 PowerPCs and 5 Gb of RAM each.



The AOL data-set contains about 20 million queries is-
sued by about 650, 000 different users, submitted to the AOL
search portal over a period of three months from 1st March,
2006 to 31st May, 2006. Each query record comes with the
user ID, timestamp, and the list of results returned to the
user. After the controversial discussion followed to its initial
public delivery, AOL has withdrawn the query log from their
servers and is not offering it for download anymore. We de-
cided to run experiments on that log anyways, because of
the following reasons. First of all, the log spans a long pe-
riod of time and this allows us to show how models for query
suggestions degrade in a more realistic way. Second, we are
not disclosing any sensitive information neither about users
nor about usage behavior. Therefore, we are not breaching
into the privacy of any specific user. Last, but not least, the
query log is still available on the web. Everybody can easily
find and download it. Indeed we consider this a strong point
in favor of its use: the availability of data allows the repeata-
bility of experiments which is an important requirement for
any scientific work.

To assess the aging effects on QFG models we conducted
several experiments to evaluate the impact of different fac-
tors. The log has been split into three different segments.
Two of them have been used for training and the third one
for testing. The three segments correspond to the three dif-
ferent months of users activities recorded in the query log.
We fixed the test set – i.e. the set of queries from which
we generate recommendations – to be the queries submit-
ted in the last month. We also have conducted experiments
with different training granularities, based on weekly and bi-
weekly training sets. Results on those shorter training seg-
ments are consistent with those presented in the following,
and we are omitting them for brevity.

The QFGs over the two monthly training segments have
been constructed according to the algorithm presented by
Boldi et al. in [4]. This method uses chaining probabilities
measured by means of a machine learning method. The ini-
tial step was thus to extract those features from each train-
ing log, and storing them into a compressed graph repre-
sentation. In particular we extracted 25 different features
(time-related, session and textual features) for each pair of
queries (q, q′) that are consecutive in at least one session of
the query log.

Table 1 shows the number of nodes and edges of the dif-
ferent graphs corresponding to each query log segment used
for training.

time window id nodes edges
March 06 M1 3,814,748 6,129,629
April 06 M2 3,832,973 6,266,648

Table 1: Number of nodes and edges for the graphs
corresponding to the two different training seg-
ments.

It is important to remark that we have not re-trained the
classification model for the assignment of weights associated
with QFG edges. We reuse the one that has been used in [4]
for segmenting users sessions into query chains1. This is
another point in favor of QFG-based models. Once you train
the classifier to assign weights to QFG edges, you can reuse
it on different data-sets without loosing in effectiveness. We

1We thank the authors of [4] for providing us their model.

want to point out, indeed, that what we are evaluating in
this work is that QFGs themselves age much faster than the
model used to build them. This is a subtle difference we
want to state clearly.

Once the QFG has been built, the query recommendation
methods are based on the probability of being at a certain
node after performing a random walk over the query graph.
This random walk starts at the node corresponding to the
query for which we want to generate a suggestion. At each
step, the random walker either remains in the same node
with a probability α, or it follows one of the out-links with
probability equal to 1 − α; in the latter case, out-links are
followed proportionally to w(i, j). In all the experiments
we computed the stable vector of the random walk on each
QFG by using α = 0.15. Actually, the stable vector is com-
puted according to a Random Walk with Restart model [13].
Instead of restarting the random walk from a query chosen
uniformly at random, we restart the random walk only from
a given set of nodes. This is done by using a preference
vector v, much in the spirit of the Topic-based PageRank
computation [10], defined as follows. Let q1, . . . , qn be a
query chain (q1 is the most recently submitted query). The
preference vector v is defined in the following way: vq = 0
for all q /∈ q1, . . . , qn and vqi ∝ βi. β is a weighting factor
that we set in all of our experiments to be β = 0.90.

5. EVALUATING THE AGING EFFECT
One of the main goals of this paper is to show that time

has some negative effects on the quality of query suggestions
generated by QFG-based models. It is also worth remark-
ing that we can safely extend the discussion that follows also
to suggestion models different from QFG-based ones. As a
matter of fact, the presence of “bursty” [12] topics could re-
quire frequent model updates whatever model we are using.
To validate our hypothesis about the aging of QFG-based
models we have conducted experiments on models built on
the two different training segments described in the above
section.

In order to assess the various reasons why a QFG-based
model ages we have considered, for each segment, two classes
of queries, namely F1, and F3, which respectively corre-
spond to queries having a strong decrease and a strong in-
crease in frequency. F1 is the set of the 30 queries that are
among the 1,000 most frequent queries in the first month
(M1) but whose frequency has had the greater drop in the
last month covered by the query log (M3). Conversely, F3

is the set of the 30 queries among the 1,000 most frequent
queries in the test log M3 whose frequency has the greater
drop in the first part of the log M1. Actually, to make the
assessment more significant, we do not include queries that
are too similar, and we do not include queries containing
domain names within the query string. Figure 1 graphically
show where the selected queries for each class fall when we
plot the popularity of the top-1000 most frequent queries in
M1 (M3) by considering query ids assigned according to
frequencies in M3 (M1).

Some examples of queries in F1 are: “shakira”, “ameri-
canidol”, “ecards”, “nfl”. Such queries are related to par-
ticular events in March 2006, for instance singer Shakira
in March 2006 released a new album. Some examples of
queries in F3 are: “mothers day gift”, “mothers day poems”,
“memorial day”, “da vinci code”. As in the previous case,
F3 queries are strongly related to that particular period of
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Figure 1: Queries in F3. The set of top 1,000 queries
inM3 compared with the same set projected onM1.
Query identifiers are assigned according to frequen-
cies in M3. The circled area in the plot highlights
the zone from where F3 was drawn.

time. For instance, in May 2006 the movie adaptation of the
popular book “Da Vinci Code” was released.

We selected two distinct sets because we want to assess
the effectiveness of recommendations for both new or emerg-
ing query topics in the test log (i.e. queries in F3), and for
queries that are frequent in the first month but poorly rep-
resented (or absent) in the test month (i.e. queries in F1).

The first evaluation we perform is a human-based assess-
ment of the quality of query suggestions generated by models
trained on the two different segments. From each query in
F1 and F3 we generated the top 20 recommendations using
four different sets of QFG-based models: three of them are
filtered with different values of the threshold t (0.5, 0.65,
and 0.75), one is generated without filtering (t = 0). Each
set consists of QFGs built on either M1 or M2.

The generated recommendations were manually evaluated
and classified as useful and not useful. We consider useful
a recommendation that undoubtedly interprets the possible
intent of the user better than the original query.

filtering
threshold

average number
of useful sugges-
tions on M1

average number
of useful sugges-
tions on M2

F1 F3 F1 ∪ F3 F1 F3 F1 ∪ F3

0 2.51 2.02 2.26 2.12 2.46 2.29
0.5 3.11 2.69 2.9 2.88 2.87 2.87
0.65 3.02 2.66 2.84 2.8 2.71 2.76
0.75 3 2.64 2.82 2.72 2.68 2.7

Table 3: Model aging statistics varying the model
type and the temporal window. Results were man-
ually assessed.

Table 3 shows the results of the human assessment per-
formed by counting, for each query and the three different
threshold levels, the number of useful suggestions. We av-
eraged the counts over all the queries evaluated. For each
training period we show the average number of useful sug-
gestion for queries in the three different groups, i.e. F1, F3,
and F1 ∪ F3.

From the table we can draw some interesting conclusions.
First, the performance of the models built from M1 and
M2 are quite similar (column F1 ∪ F3). This might seem

a counterexample to the hypothesis that the models age.
Actually, by breaking down the overall figure into separate
figures for F1 and F3 we can observe that for all the queries
in F3 the suggestions built from M2 are more useful than
those built on M1.

Furthermore, by inspecting some of the suggestions gener-
ated for the queries shown in Table 2, it is evident that some
of the suggestions are “fresher” (i.e. more up-to-date) in the
case of a model built on M2 than those obtained on mod-
els built on M1. This is particularly true for queries in F3.
For instance, for the query “lost” suggestions computed by
a model trained onM2 appear to be more meaningful than
those suggested using an old model on that particular pe-
riod of time. Furthermore, another interesting observation
is that filtering (i.e. removing noisy edges) works pretty well
since it increases the average number of useful suggestions.

When we performed the assessment of the suggestions we
noted a phenomenon regarding the scores computed on the
different QFGs by the random walk-based method. Let us
consider again the results shown in Table 2 and let us look
at the suggestions, with the relative scores, computed for 6
queries (3 queries from F1 and 3 queries from F3) on M1

and M2.
As we go further down the list sorted by score, when the

quality of the suggestions starts to degrade, we often observe
that the useless suggestions are associated with the same
low score values, e.g. “regions banking”, “aol email only”,
“adultactioncamcom” are three different (and useless) query
suggestions for the query“harley davidson”whose QFG com-
puted score is always 1394.

From the above observation we make the following hy-
pothesis that we will use to derive a second automatic eval-
uation methodology to assess the“usefulness”of suggestions:

when a QFG-based query recommender system
gives the same score to consecutive suggestions,
these recommendations and the following ones
having a lower score are very likely to be useless.

A QFG-based recommender system recommends queries
by computing a random walk with restart on the model. At
each step, the random walker either remains in the same
node with a probability α, or it follows one of the out-links
with probability equal to 1− α. Out-links are followed pro-
portionally to w(i, j). Let us suppose the recommender sys-
tem starts recommending more than k queries sharing the
same score for the given query q. On the QFG model it
means that the query q has more than k out-links sharing
the same probability (w(i, j)). Due to the lack of informa-
tion the system is not able to assign a priority to the k
recommended queries. This is the reason why we consider
these recommendations as “useless”.

This heuristic considers useful k query recommendations
if the suggestions following the top-k recommended queries
have equal scores associated with them. Consider again the
case of the query harley davidson, we have six queries with
different scores and then the remaining queries (for which
the associated scores are equal) are clearly useless.

We perform the automatic analysis described above to
the 400 most frequent queries in the third month for which
recommendations were generated on models built on either
M1 or M2. For all the experiments we set k = 3. Table 4
shows that according to this measure of quality filtered mod-
els works better than unfiltered ones. The filtering process



Set Query
M1 M2

Score Suggestions Score Suggestions

F3

da vinci

49743 da vinci’s self portched black and white 73219 da vinci and math
47294 the vitruvian man 33769 da vinci biography
35362 last supper da vinci 31383 da vinci code on portrait
31307 leonardo da vinci 29565 flying machines
30234 post it 28432 inventions by leonardo da vinci
30234 handshape 20stories 26003 leonardo da vinci paintings

23343 friends church
23343 jerry c website

survivor

8533 watch survivor episodes 7392 survivor preview
8083 survivor island 7298 watch survivor episodes
4391 2006 survivor 7110 survivor island album
4310 bubba gump hat 4578 survivor edition 2006
4310 big shorts 3801 cbs the great race

3801 chicken and broccoli

lost

16522 lost fan site 5138 lost season 2
3634 abcpreview.go.com 3742 lost update
2341 altricious 2162 lost easter eggs
2341 5 year treasury rate 1913 abcpreview.go.com
2341 1-800-sos-radon 1913 antique curio cabinets

1913 4440

F1

anna nicole smith

11113 anna nicole smith nude 23497 anna nicole smith recent news
11101 anna nicole smith - supreme court 18694 anna nicole smith and supreme court
11054 anna nicole smith diet 18546 anna nicole smith and playboy
10274 anna nicole smith with liposuction 16836 anna nicole smith pictures
4677 cameron diaz video 15289 anna nicole smith free nude pics
4677 calcination 13436 anna nicole smith diet

6642 branson tractors
6642 bandlinoblu jeans

harley davidson

5097 harley davidson ny 5749 harley davidson premium sound system owners manual
2652 american harley davidson 3859 automatic motorcycles
2615 2002 harley davidson ultra classic 3635 harley davidson credit
2602 adamec harley davidson 3618 cherokee harley davidson
2341 air fight 2103 harley davidson sporster
2341 928 zip code 1965 2002 harley davidson classic
2341 antispy ware 1394 regions banking

1394 aol email only
1394 adultactioncamcom

shakira

10989 shakira video 3281 hips don’t lie
7522 shakira albums 3281 shakira hips don’t lie video
7522 shakira my hips don’t lie 3175 shakira video
5836 shakira biography 3042 shakira wallpaper
3864 70s music funk 2811 shakira album
3864 97.1zht 2592 shakira nude

1868 cant fight the moonlight
1868 free video downloads

Table 2: Some examples of recommendations generated on different QFG models. Queries used to gener-
ate recommendations are taken from different query sets. For each query we present the most important
recommendations with their assigned relative scores.

reduces the “noise” on the data and generates more precise
knowledge on which recommendations are computed. Fur-
thermore, the increase is quite independent from the thresh-
old level, i.e. by increasing the threshold from 0.5 to 0.75
the overall quality is, roughly, constant.

filtering
threshold

average number
of useful sugges-
tions on M1

average number
of useful sugges-
tions on M2

0 2.84 2.91
0.5 5.85 6.23
0.65 5.85 6.23
0.75 5.85 6.18

Table 4: Recommendation statistics obtained by us-
ing the automatic evaluation method on a set of 400
queries drawn from the most frequent in the third
month.

We further break down the overall results shown in Table 4
to show the number of queries on which the QFG-based
model generated a given number of useful suggestions. We
plot this histogram to compare those numbers on M1 and
M2 in Figure 2. To highlight more the effect of incremental
updates we show in Figure 3 the total number of queries
having at least a certain number of useful recommendation.
For example, the third bucket shows how many queries have
at least three useful suggestions. For each bucket, results for
M2 are always better than the ones for M1.

First of all, when we train a QFG-based model on M2

the percentage of queries having 0 useful results is remark-
ably lower than those measured on the model trained on
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Figure 2: Histogram showing the number of queries
(on the y axis) having a certain number of useful
recommendations (on the x axis). Results are eval-
uated automatically.
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Figure 3: Histogram showing the total number of
queries (on the y axis) having at least a certain num-
ber of useful recommendations (on the x axis). For
instance the third bucket shows how many queries
have at least three useful suggestions.



M1. Furthermore, for Figure 3 we can observe that a model
trained on M2 has a larger percentage of queries for which
the number of useful suggestions is at least 4.

This confirms our hypothesis that QFG-based recommen-
dation models age and have to be updated in order to always
generate useful suggestions.

6. COMBATING AGING IN QUERY-FLOW
GRAPHS

Models based on Query Flow Graphs age quite rapidly in
terms of their performance for generating useful recommen-
dations.

The pool of queries we use to generate recommendation
models (M1) contains both frequent and time-sensitive queries.
We consider time-sensitive those queries that are both fre-
quent and have a large variation with respect to their value
in the previous month(s) (e.g. > 50% of positive variation).
Time-sensitive queries are related for instance to movies,
new products being launched, fashion, and in general with
news events generating query bursts. In Figure 1 it is easy
to identify time-sensitive queries by looking at those with
the greater variation between their frequencies over the two
months.

As Tables 3 and 8 show, if we compute recommendations
on older models the average recommendation quality de-
grades. Indeed, “stable” queries, i.e. those queries that are
(relatively) frequent in each period of the year, also have to
be taken into account by the model. Therefore, we must be
able to give suggestions that are not too much influenced
by time or, in other words, to update the recommendation
model instead of rebuilding a new model from scratch dis-
regarding older knowledge.

There are two ways of building an updated QFG: i) re-
building the model by considering the whole set of queries
from scratch, or ii) using the old QFG-based model and
adding fresh queries to it.

A straightforward option is to compute a new QFG rep-
resenting the two months. The new part of the query log
(M2) is merged with the old one (M1) obtaining a new
data-set to be used for building the new model. The merged
data-set can be processed from scratch by performing all the
steps necessary to build a QFG (i.e. preprocessing, features
generation, compression, normalization, chain graph gener-
ation, random walk computation). The old model is simply
discarded.

The other option is computing recommendations on an
“incremental model” that is built by merging the old QFGs
with the one obtained from the new queries. In this way:
i) we refresh the model with new data covering time-related
queries; ii) the “old” part of the model contributes to main-
tain quality on frequent and time-unrelated queries. The
methodology we are proposing incrementally extends the
recommendation model with a sub-model built on more re-
cent data. A sound incremental approach has to consistently
update the old model with fresh data continuously or after
fixed periods of time. Another advantage of this approach is
that the new model can be built by spending only the time
needed to build a QFG from a relatively small set of new
queries, plus the cost of the merging process.

Let us introduce an example to show the main differences
among the two approaches in terms of computational time.
Table 5 shows the total elapsed times to create different

QFGs. Suppose the model used to generate recommenda-
tions consists of a portion of data representing one month
(for M1 and M2) or two months (for M12) of the query
log. The model is being updated every 15 days (for M1

andM2) or every 30 days (forM12). By using the first ap-
proach, we pay 22 (44) minutes every 15 (30) days to rebuild
the new model from scratch on a new set of data obtained
from the last two months of the query log. Instead, by using
the second approach, we need to pay only 15 (32) minutes
for updating the one-month (two-months) QFG.

“From scratch” “Incremental”
Dataset strategy [min.] strategy [min.]

M1 (March 2006) 21 14
M2 (April 2006) 22 15

M12 (March and April) 44 32

Table 5: Time needed to build a Query Flow Graph
from scratch and using our “incremental” approach
(from merging two QFG representing an half of
data).

The time spent in updating incrementally the model is, in
practice, shorter than the time needed to build the model
from scratch (in our case it is almost two third (i.e. 32%)
that time). The process of merging two QFGs can be per-
formed using an open-source Java tool [8] that implements
a graph algebra giving users the possibility to perform some
operations on WebGraph [7] encoded graphs. In our exper-
iments we used three different QFGs built onM1,M2, and
M12 defined as in the first column of Table 5.

query M1 M2 M12

mothers day 2 3 3
da vinci 4 6 7

lost 2 4 6
philippines 2 2 3

Table 6: Manual assessment of the number of useful
recommendations generated for some time-related
queries on the three different models.

Table 6 shows the importance of having an incremental
approach for time-related queries. It is evident from the
table that the model built on M12 always gives the best
recommendations, in terms of quality, with respect to the
two separate models M1 and M2.

Table 7 shows example query suggestions generated by
the system, to demonstrate the improved quality of the rec-
ommendations. These results suggest a positive effect of the
incremental-update method on the recommendation quality.

As in the previous section we evaluated the quality of the
recommendations, also by using the automatic procedure
above described. The results are shown on Table 8. We have
used the same set of 400 queries for which recommendations
were generated using the QFG built on M12.

Again, the results suggested by the anecdotal evidence,
are confirmed by the assessment procedure. The model built
on the two merged train segments is better than the single
M2 model (which was, in turn, better than the model built
on M1). Improvements, in this case, are quite significant
and range from 25% to 28% in accuracy.

Using the automatic evaluation method we have investi-



Query Set Query M12

F3

da vinci

86251 da vinci and math
85436 da vinci biography
83427 da vinci code on portrait
82119 da vinci’s self portched black and

white
80945 flying machines
79563 inventions by leonardo da vinci
74346 leonardo da vinci paintings
30426 friends church

survivor

7250 survivor preview
7250 watch survivor episodes
7236 survivor island panama
7110 survivor island exile
4578 survivor edition 2006
3980 survivor games
3717 big shorts
3717 baltimore bulk trash

lost

13258 lost fan site
3716 lost season 2
3640 abcpreview.go.com
3640 lost chat room
3582 lost update
3272 lost easter eggs
1913 henry gale
1858 4440
1858 1-800-sos-radon
1858 4440

F1

anna nicole
smith

15174 anna nicole smith recent news
14876 anna nicole smith and supreme court
13567 anna nicole smith court appeal
12768 anna nicorle smith and playboy
10509 anna nicole smith pictures
9832 anna nicole smith free nude pics
9411 anna nicole smith show
8971 anna nicole smith diet
8880 branson tractors
8880 bandlinoblu jeans

harley
davidson

5969 harley davidson premium sound sys-
tem owners manual

4073 harley davidson ny
4001 automatic motorcycles
3738 cherokee harley davidson
3038 harley davidson credit
2562 custom harley davidson
2494 harley davidson sporster
2166 2002 harley davidson classic
2085 regions banking
2085 1998 dodge ram ground effects kits
2085 adultactioncamcom

shakira

4174 hips don’t lie
4174 shakira albums
4140 shakira hips don’t lie video
3698 shakira video
3135 shakira nude
3099 shakira wallpaper
3020 shakira biography
3018 shakira aol music
2015 free video downloads

Table 7: Some examples of recommendations gen-
erated on different QFG models. Queries used to
generate recommendations are taken from different
query sets.

filtering
threshold

average number
of useful sugges-
tions on M2

average number
of useful sugges-
tions on M12

0 2.91 3.64
0.5 6.23 7.95
0.65 6.23 7.94
0.75 6.18 7.9

Table 8: Recommendation statistics obtained by us-
ing the automatic evaluation method on a relatively
large set of 400 queries drawn from the most fre-
quent in the third month.

gated the main reasons why we obtain such an improvement.
Looking at the different bars in Figure 4 we can observe that
values that have had the greatest improvement are those cor-
responding to a number of suggestions larger than 8 (with
the only exceptions of the cases of 10 and 14 suggestions).
In particular the improvement is remarkable in the case of
“more than 18” useful suggestions given. Figure 5 also shows
the total number of queries having at least a certain num-
ber of useful recommendations. Again, results for M12 are
remarkably better than those referring to M1, and M2.

To conclude, we have shown that recommendations given
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Figure 4: Histogram showing the number of queries
(on the y axis) having a certain number of useful
recommendations (on the x axis). Results are eval-
uated automatically.
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Figure 5: Histogram showing the total number of
queries (on the y axis) having at least a certain num-
ber of useful recommendations (on the x axis). For
instance the third bucket shows how many queries
have at least three useful suggestions.

using QFG-based models are sensitive to the aging of the
query base on which they are built. We have also shown
the superiority of QFG-based models built on queries drawn
from larger period of time and we have shown how to build
such a models without the need of retraining them from
scratch.

7. DISTRIBUTED QFG BUILDING
In this section we present a method to build QFGs that

exploit the observation made above on the feasibility of an
incremental approach to QFG-based model update. We
present an approach for building a QFG-based model on
a distributed architecture.

7.1 Divide-and-Conquer Approach
The first approach exploits a parallel divide-and-conquer

computation that proceeds by dividing the query log into
m distinct segments, building the QFG in parallel on each
processor available and the iteratively merging the different
segments until a single QFG is obtained.

The process is depicted in Figure 6. Our algorithm builds
a QFG as follows:

1. the query log is split into m parts. In the example
represented in Figure 6 files were split into 15 days
intervals;

2. the features requested to build the QFG are extracted
from the data contained in each interval. Each interval,
is processed in parallel on the different machines of the
cloud;

3. each part is compressed using the WebGraph frame-
work, obtaining a partial data-graph;



4. using the graph algebra described in [8], each partial
graph is iteratively merged. Each iteration is done in
parallel on the different available nodes of the cloud;

5. the final resulting data-graph is now processed with
other steps [4] (normalization, chain extraction, ran-
dom walk) to obtain the complete and usable QFG.
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Figure 6: Example of the building of a two months
query flow graph with a “parallel” approach.

Table 9 summarizes the computational costs of building a
QFG in a distributed way. The main benefit of this approach
is to significantly reduce the time needed to perform the
preliminary generation step.

generation of 15-days data-graph 6 min 15 sec
merge of two 15-days data-graphs 5 min 23 sec

merge of two one-month data-graphs 11 min 04 sec
TOTAL 22 min 42 sec

Table 9: Time needed to build a two-months data-
graph using our “incremental” approach and split-
ting the query log in 4 parts.

8. CONCLUSION AND FUTURE WORK
In this paper we have studied the effect of time on recom-

mendations generated using Query Flow Graphs [4] (QFGs).
These models aggregate information in a query log by pro-
viding a markov-chain representation of the query reformu-
lation process followed by multiple users. In this paper
we have shown how to extend QFG-based recommendation
models to evolving data. We have shown that the inter-
ests of search-engine users change over time and new top-
ics may become popular, while other that focused for some
time the attention of the crowds can suddenly loose impor-
tance. The knowledge extracted from query logs can thus
suffer from an aging effect, and the models used for recom-
mendations rapidly become unable to generate useful and
interesting suggestions. We have shown that the building of
a new fresh QFG from scratch is expensive. To overcome

this problem we have introduced an incremental algorithm
for updating an existing QFG. The solution proposed allows
the recommendation model to be kept always updated by
incrementally adding fresh knowledge and deleting the aged
one.

In order to validate our claims and assess our methodol-
ogy, we built different QFGs from the query log of a real-
world search engine, and we analyze the quality of the rec-
ommendation models obtained from these graphs to show
that they inexorably age. It is worth noticing that a com-
prehensive user-study is (almost) impossible on this kind
of task. To assess the effect of aging with a survey, we
would need to make users aware of the context and news
events happened in the period to which the query log is
referred (March-May 2006). Then, we have proposed a gen-
eral methodology for dealing with aging QFG models that
allows the recommendation model to be kept up-to-dated
in a remarkably lower time than that required for building
a new model from scratch. As a side result we have pro-
posed a parallel/distributed solution allowing to make QFG
creation/update operations scalable.
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