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Abstract

Despite the significant efforts made by the research commu-
nity in recent years, automatically acquiring valuable infor-
mation about high impact-events from social media remains
challenging. We present EVIDENSE, a graph-based approach
for finding high-impact events (such as disaster events) in so-
cial media. Our evaluation shows that our method outper-
forms state-of-the-art approaches for the same problem, in
terms of having higher precision, lower number of duplicates,
while providing a keyword-based description that is succinct
and informative.

Introduction
Social media have been playing increasingly a major role
during crises and disasters. For example, the American Red
Cross (ARC) pointed out the effectiveness of social media
and mobile apps in handling emergency situations such as
those generated by a disaster event.1.

Unfortunately, despite the significant efforts made by the
research community in recent years, automatically acquir-
ing valuable information about high impact-events from so-
cial media remains challenging. This is due to fact that so-
cial content is often noisy, inconsistent and ambiguous. As a
result, making sense of a large collection of tweets, for ex-
ample, is non-trivial even in the case when the collection of
tweets is static and it does not evolve over time.

One of the challenges we address in our work is how
to provide a succinct keyword-based description of high-
impact events containing the most relevant information
about the events, such as what happened, where, and when.
According to a survey by the US Congressional Service,
the administrative cost for monitoring multiple social me-
dia sources, which typically produce large amounts of noisy
data, is significant (Lindsay 2011). Therefore, in order to al-
leviate the burden of analyzing social content, a succinct and
informative description of the events is needed.

Our approach consists of the following steps: i) filtering
of the tweets by retaining only those containing at least one
term in a given lexicon. ii) finding locations whose number
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1http://www.redcross.org/news/press-release/More-
Americans-Using-Mobile-Apps-in-Emergencies

of occurrences in tweets deviates significantly on a given
time window from their average frequency; iii) a graph min-
ing approach for selecting the relevant keywords in the de-
scription, based on a novel definition of a clique and a quasi-
clique in the weighted case. Our definition of a weighted
clique, which is a generalization of a clique in an unweighted
graph, ensures an event is described in a succinct manner by
relevant keywords. We call our approach EVIDENSE, as our
graph mining approach is based on finding “dense” regions
in the graph representing the co-occurrence of keywords in
the tweets.

We evaluate this algorithm against state-of-the-art ap-
proaches for the same or similar problems on a collection
of tweets covering the period between November 2015 and
February 2016, by means of a crowdsourcing platform. Our
experimental evaluation shows that our approach outper-
forms the baselines both in terms of precision (at k) and
number of duplicates, while the keyword-based description
provided by our algorithm is succinct and informative.

Given these results, we consider EVIDENSE could rep-
resent a valuable tool for analyzing both social content and
news articles from mainstream media, as well as for studying
how they compare. It could also be used to boost the per-
formance of other approaches. For example, collections of
tweets labeled as related to disasters by our approach could
be used to create training sets for automatic classifiers.

Related Work. In our survey of the related work and in our
experimental evaluation, we focus on those approaches that
allow a large-scale analysis over a long period of time. In
particular, we focus on unsupervised approaches that en-
force or allow to enforce some kind of constraint on the
output size. We summarize the relevant related work as fol-
lows. (Weng and Lee 2011) developed an event detection
algorithm (EDCOW) based on clustering of the wavelet-
based signal of words. The approach developed in (Guille
and Favre 2014) aims at finding words with similar tem-
poral patterns in a given time window. EDCOW has been
shown to perform better than several other event detection
techniques in a recent study (Weiler, Andreas, Grossniklaus,
Michael and Scholl 2015). (Angel et al. 2014) developed an
algorithm for maintaining overlapping dense subgraphs with
limited size in a dynamic graph. Another graph mining tech-
nique for real-time event discovery is presented in (Agarwal,



Ramamritham, and Bhide 2012). Finding dense subgraphs
of an input graph has received increasing attention in re-
cent years, in the graph mining community: (Balalau et al.
2015), (Danisch, Balalau, and Sozio 2018), (Danisch, Chan,
and Sozio 2017), (Epasto, Lattanzi, and Sozio 2015).

Algorithm
Our algorithm consists of the following main steps: 1) col-
lection of tweets containing keywords related to disaster
events by means of the Twitter API; 2) recognition and tag-
ging of mentions of locations in the tweets; 3) finding bursts
of mentions of locations; 4) mentions of locations are finally
complemented with related keywords so as to provide more
informative results. Each of these steps is described in the
following paragraphs.
Collection of Tweets and Preprocessing. Tweets are fil-
tered using disaster keywords (Olteanu et al. 2014) and for
the recognition and tagging of locations, we use an entity
recognition tagger that was trained on Twitter data (Ritter et
al. 2011). We remove stopwords, URLs and special charac-
ters such as emoticons.
Finding Bursts of Locations. When an event such as a dis-
aster event occurs, we observe a burst of activity on Twitter
with terms pertinent to the event increasing suddenly their
frequency in tweets. In our approach (where tweets contain
keywords related to disaster events), a burst in the number
of mentions of a location gives us a first signal that a disas-
ter event is unfolding at that location. Previous works (Pan
and Mitra 2011) have used geolocation of posts and not
mentions of locations. We argue that using mentions of lo-
cations makes our algorithm more versatile, allowing it to
analyze datasets coming from different sources. Burstiness
of words in streams of data is a well-studied topic (Zhu
and Shasha 2003; Lappas et al. 2009) and in our approach,
we use a simple technique, similar to other event detection
methods (Guille and Favre 2014).

For each location, we compute a set of intervals in which
the deviation between the frequency of the location and its
expected frequency is always above a threshold. Our in-
tuition is that all tweets (dealing with the same location)
posted during each of those intervals refer to the same event.
We refer to such intervals as interesting intervals and we are
interested in finding maximal interesting intervals. The ex-
pected frequency of a location is computed assuming that lo-
cation frequencies can be approximated by the binomial dis-
tribution. Then, all the (location, maximal interesting inter-
val) pairs are ranked according to how much the frequency
of a location deviates from its expected frequency and we
retain the top k pairs.
Finding Quasi-Cliques. In order to complement the set of
locations with additional information about the correspond-
ing event, we employ a graph mining approach. In particular,
for each location and each interesting interval for that loca-
tion, we wish to find a set of terms which induce a dense
region in the co-occurrence graph during that time interval.
Given an interesting interval I and a collection of tweets, we
define a weighted undirected graph GI = (VI , EI), where
VI consists of the set of terms in the collection of tweets,

Figure 1: The left subgraph has a larger weight than the right
one, but the nodes in the right subgraph are better connected.

while there is an edge between two nodes if the correspond-
ing terms co-occur in at least one tweet posted within I. A
weight function c : E → R+ represents the number of co-
occurrences of terms in tweets posted within I.

Several definitions of weighted cliques have been pro-
vided in the literature, such as a subgraph of maximum to-
tal weight where any two nodes are connected (Östergård
1999), as well as a subgraph with maximum total weight
and number of nodes no larger than a threshold provided
in input (Alidaee et al. 2007). Observe that both definitions
would favor the graph on the left in Figure 1, which exhibit
weak connections between the set of nodes {1, 2} and {3,4}.
As a result, those two different parts of the graph might ac-
tually refer to two different events. It is more likely that the
nodes of the graph on the right in Figure 1 refer to the same
event, as the edges of the graph have the same weight.

This motivates the following novel definitions of cliques
and quasi-cliques. We say that a graph H is a weighted
clique if all pairs of nodes in H are connected by an edge
with the same weight. Given a parameter γ > 0, we then
define a weighted quasi-clique as follows.

Definition 1 (Weighted Quasi-Clique) Given an undi-
rected weighted graph H = (V (H), E(H), w), 0 < γ ≤ 1,
we say that H is a weighted γ-quasi-clique if the following
holds: ∑

e∈E(H)

w(e) ≥ γ · wmax(H)

(
|V (H)|

2

)
,

where wmax(H) = maxe∈E(H)(w(e)).

We define the function qG : V → (0, 1] (q for short) to be
the function which associates to every set S ⊆ V a rational
number γ such that the subgraph induced by S in G is a γ-
quasi-clique and γ is the largest value for which this holds.

Finding quasi-cliques is an NP-hard problem, therefore
we resort to the following heuristic for finding quasi-cliques
containing a node v and at most s nodes. The algorithm starts
with v and adds the edge with maximum weight containing
v. At any given step, let S be set of current nodes. If |S| =
s, the algorithm stops. Otherwise, it adds a node x in the
neighborhood of S maximizing q(S ∪{x}) provided that by
adding x the resulting subgraph is still a γ-quasi-clique.

Experimental Evaluation
Corpora. We collect tweets posted over a period of 4
months between November 2015 and February 2016. We use



the Twitter Streaming API while filtering the tweets so that
they contain at least one term related to disasters (Olteanu et
al. 2014) and they are written in English. We obtain approx
3M tweets in total, which we divide into four datasets (one
per month).
Related work. We compare against MABED (Guille and
Favre 2014) and EDCOW (Weng and Lee 2011). All ap-
proaches are evaluated on the same collection of tweets.
There has been significant disagreement among the crowd
workers when interpreting the results of (Angel et al. 2014).
Therefore, we omit such an approach from our study, defer-
ring a more careful evaluation to future work.
Parameter settings. In our approach, we find the top 20
events and we set the size of the quasi-clique to be at most
10 and the γ parameter at least 0.5. We run MABED us-
ing the implementation provided by the authors and the set-
ting specified in the original paper (Guille and Favre 2014),
that is p = 10, θ = 0.7 and σ = 0.5. For the EDCOW
algorithm we use the implementation of (Weiler, Andreas,
Grossniklaus, Michael and Scholl 2015) and we set the pa-
rameters as follows: the size of first level of intervals is
s = 100s, while we take ∆ = 32, setting a size of 3200s
for the second-level intervals and, as in (Weiler, Andreas,
Grossniklaus, Michael and Scholl 2015), we set γ = 1. As
EDCOW does not enforce any constraint on the size of the
output, we order the results according to ε (as defined in the
original paper), which measures the relevance of the results
and retain only the top k results.
Metrics. We evaluate the precision at k, denoted with P@k
(or precision for short), which is defined as the number of
true events in the top k results, divided by k. In addition to
the precision, we compute the fraction of duplicate events
among all the events retrieved, i.e. the DeRate (Li, Sun, and
Datta 2012). From these two metrics, we can infer a third
one, which measures the fraction of unique events (i.e. dupli-
cates do not contribute) in the top k results. We denote such a
metric with U@k. We observe that if an algorithm performs
best in terms of U@k, it performs best also in terms of re-
call. Therefore, we do not report recall in our experimental
evaluation.
Crowdsourcing Settings. In order to ensure a fair compari-
son, we use a crowdsourcing service, GetHybrid2. For each
result produced by any of the approaches, we ask 5 workers
to determine whether it was a disaster event, that is an event
considered to be a disaster by the US Government or the In-
ternational Disaster Database.3 We added to the description
of a result two relevant tweets in order to facilitate the label-
ing task. In order to evaluate a result, a worker would select
one of the following answers to the question of what type of
event do the keywords and tweets describe:

(A) A natural disaster (earthquake, landslide, volcano, ex-
treme temperature, hurricane, large and dense fog, large
storm, flood, tsunami, drought, wildfire, epidemic, large
accident involving animals, asteroid impact),

2https://www.gethybrid.io
3https://www.ready.gov/be-informed, http://

www.emdat.be/classification

(B) A technological disaster (chemical spill, building col-
lapse, explosion, fire, gas leak, large poisoning, nuclear,
radiation, cyberattack),

(C) A human-induced disaster (war, terror attack),

(D) A large transport accident (air, road, rail, water),

(E) Not a natural, technological, or human-induced disas-
ter, or large transport accident.

Answers A-D correspond to a disaster. We label a result
as a disaster if 3 out of 5 workers confirmed. In order to
compute the DeRate, we considered duplicate events to be
subevents or consequences of an event. Two events are con-
sidered to be duplicates if 3 out of 5 workers confirmed.
Estimating DeRate and U@k. The task of estimating the
average number of duplicate events is non-trivial, given the
large number of results. Asking the workers in GetHybrid
to estimate the number of duplicate events in a list contain-
ing approximately 20 or more results is time-consuming and
most probably would result in a non-accurate evaluation.
Therefore, we draw a random sample from the set of all pos-
sible event pairs. Each worker is then asked to determine
whether a given pair of events in the sample contains dupli-
cate events or not. The resulting fraction of duplicate event
pairs in the sample is used to infer a 95% confidence interval
on the fraction of duplicate event pairs on the whole dataset,
using the Wilson score method (Newcombe 1998). From the
fraction of duplicate pairs we can estimate the number of
unique events, U@k.
Comparison. In Table 1 we present the average P@20 for
all the approaches over the time period Nov. 2015 - Feb.
2016. We observe that EVIDENSE outperforms the other two
approaches.

Method Average P@20
EDCOW 0.325
MABED 0.537

EVIDENSE 0.737

Table 1: Average precision over Nov. 2015 - Feb. 2016.

We evaluate the number of duplicate events in the results.
First, we measure the fraction of duplicate event pairs in our
sample. This is shown in Table 2. Observe, that EVIDENSE
produces less duplicate event pairs. In particular, our results
are better with a 95% confidence.

Method Fraction in sample 95% Confidence Interval
EDCOW 0.120 0.049 to 0.250
MABED 0.220 0.145 to 0.316

EVIDENSE 0.020 0.003 to 0.077

Table 2: Fraction of duplicate event pairs.

From the results shown in Table 2, we obtain a 95%
confidence interval on the fraction of duplicate events,
i.e. the DERate. We obtain a 95% confidence interval of
[0.000, 0.846] for EDCOW, [0.372, 0.906] for MABED,
and [0.000, 0.474] for EVIDENSE. From the latter result, it
is difficult to determine which algorithm performs best in



terms of DERate. Moreover, observe that approaches with
higher precision might be penalized by the DERate, in that,
they tend to have a larger number of duplicates. For example,
an approach which retrieves exactly one event has a DERate
of zero. Therefore, we also consider the U@k metric, that is,
the fraction of unique events in the top k results. The results
are shown in Table 3. We can see that even with a pessimistic
estimate, EVIDENSE outperforms the other approaches in
terms of U@k, while the fraction of unique events in the
top-20 results can be up to 73.7%.

Method U@20
EDCOW 0.050 to 0.325
MABED 0.050 to 0.337

EVIDENSE 0.387 to 0.737

Table 3: Average ratio of unique events Nov. 2015 - Feb.
2016.

The output of our algorithm is shown in Table 4. We can
see that the description of each of the events is succinct and
informative. In particular, one can easily retrieve the location
of the event (in bold), its time-frame and what happened.

Time (UTC) Event keywords
Dec 03 02:20,
Dec 07 08:50

San Bernardino, dead, female, #san-
bernardino, killed, male, police, shooting

Dec 27 01:04,
Dec 28 03:37

Dallas, Rowlett, tornado

Dec 07 03:24,
Dec 10 21:11

Chennai, damaged, floods, fresh, issue,
lost, passport, psks, sushmaswaraj

Dec 04 09:12,
Dec 04 23:23

Cairo, attack, firebomb, killed, nightclub,
people, restaurant

Dec 28 20:15,
Dec 29 09:21

Cleveland, 12-year-old, Tamir Rice,
charged, death, grand, indict, jury, police

Table 4: Top 5 events discovered in December 2015 by EVI-
DENSE. The event is centered on the location given in bold.

Conclusions
We presented EVIDENSE, a graph-based approach for find-
ing high-impact events in social media. We address the chal-
lenge of providing a succinct and informative description of
the events retrieved with our approach while focusing on dis-
aster events.

EVIDENSE could represent a valuable tool for analyz-
ing social content and could also be used to boost the per-
formance of other approaches. For example, collections of
tweets labeled as related to disasters by our approach could
be used to create training sets for automatic classifiers.
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