
Graph partitioning I:
Dense Sub-Graphs

Class Algorithmic Methods of Data Mining
Program M. Sc. Data Science
University Sapienza University of Rome
Semester Fall 2015
Lecturer Carlos Castillo http://chato.cl/

Sources:
● Tutorial by A. Beutel, L. Akoglu, C. Faloutsos [Link]
● Frieze, Gionis, Tsourakakis: “Algorithmic techniques for modeling

and mining large graphs (AMAzING)” [Tutorial]
● A survey of algorithms for dense sub-graph discovery [link]

http://chato.cl/
https://www.cs.cmu.edu/~abeutel/kdd2015_tutorial/slides/010Subgraph.pdf
http://www.math.cmu.edu/~ctsourak/amazing.html
http://charuaggarwal.net/dense-survey

2

Sub-graphs

3

Subgraph

Subset of
nodes, and
edges among
those nodes

4

Ego network

Ego graph of node x = neighbors and the links between them

x

5

Typical pattern

Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos
PAKDD 2010

6

k-core decomposition

7

k-core decomposition

● Remove all nodes having degree 1
– Those are in the 1-core

● Remove all nodes having degree 2 in the remaining
graph
– Those nodes are in the 2-core

● Remove all nodes having degree 3 in the remaining
graph
– Those nodes are in the 3-core

● Etc.

8

Example

https://openi.nlm.nih.gov/detailedresult.php?img=3368241_fnagi-04-00013-g0001&req=4

https://openi.nlm.nih.gov/detailedresult.php?img=3368241_fnagi-04-00013-g0001&req=4

9

Try it!

How many nodes are there in the
each core of this graph?

http://www.cpt.univ-mrs.fr/~barrat/NHM.pdf

http://www.cpt.univ-mrs.fr/~barrat/NHM.pdf

10

Graph s-t cuts

11

Min s-t cut
Given a weighted graph G(V,E), W:E→R
An (s-t)-cut C=(S,T) is such that

– S ∪ T=V
– s ∈ S, t ∈ T

The cost of a cut is

Key problem: given G, s, t, find min weight s-t cut

12

Example of two s-t cuts

s t
If all edge weights are equal, which one is a smaller cut,
the red or the green? Is this the smaller cut in this case?

13

Example of two s-t cuts

s t
What about now, what is the
smaller s-t cut in the graph?

4

2

2

5

2

14

14

What defines an s-t cut?

● Can I take an arbitrary set of edges and claim it
is an s-t cut?

● Is this an s-t cut? Why? Why not?

s t

15

What defines an s-t cut?

● Can I take an arbitrary set of edges and claim it
is an s-t cut?

● Is this an s-t cut? Why? Why not?

s t

16

What defines an s-t cut?

● Can I take an arbitrary set of edges and claim it
is an s-t cut?

● Is this an s-t cut? Why? Why not?

s t

17

What defines an s-t cut?

● Can I take an arbitrary set of edges and claim it
is an s-t cut?

● Is this an s-t cut? Why? Why not?

s t

18

Simple s-t paths and s-t cuts

● For a subset of edges S of a graph to be a cut,
every simple path between s and t should
contain exactly one edge in E

19

Maximum flows

20

Maximum flow: example 1

● If edge weights were capacities, what is the
maximum flow that can be sent from s to t?

s t

5 m3/second 1 m3/second 3 m3/second

21

Maximum flow: example 2

● If edge weights were capacities, what is the
maximum flow that can be sent from s to t?

s t

5

4

4

6

1

2

22

Maximum flow problem

● What is the maximum “flow” that can be carried
from s to t?
– Think of edge weights as capacities (e.g. m3/s of

water)

● What is the flow of an edge?
– The amount sent through that edge (an assignment)

● What is the net flow of a node?
– The amount exiting the node minus the amount

entering the node

23

Formulating the max flow problem

● The flow through each edge should be
● Net flow node h = OUT(h) – IN(h)
● Node s should have positive flow v
● Node t should have negative flow -v
● What should be the flow of the other nodes?

24

Formulating the max flow problem

● Net flow node h = OUT(h) - IN(h)
● Node s should have positive flow v
● Node t should have negative flow -v

● What should be the flow of a node?

h

25

Max flow as a linear program

http://www.dii.unisi.it/~agnetis/mincutENG.pdf

http://www.dii.unisi.it/~agnetis/mincutENG.pdf

26

Writing the dual

27

Writing the dual

● Variables ui don't enter the objective, only their difference is in the
constraints

● We can set them arbitrarily, in particular us = 0, ut = 1

● Remember: the infimum of the solutions of the dual is the
supremum of the solutions of primal

28

Dual (after simplification)

● Observe what happens with the values of u
in every path going from s to t

u=0 u=? u=? u=1u=?...

29

Dual (after simplification)

● Given these constraints, the sequence must
increase, and can only increase once

u=0 u=0 u=1 u=1u=1...

30

Dual (after simplification)

● Important theorem: every feasible
solution can be written as a cut (S, S')

31

Dual solutions are cuts

● Every feasible solution of the dual has the form
of a cut (S, S')

u
s
=0 u

t
=1

S S'

32

Dual solutions are cuts

● Every feasible solution of the dual has the form
of a cut (S, S')

u
s
=0

u
i
=0 u

i
=1

u
i
=0

u
t
=1

S S'

33

Dual solutions are (s-t)-cuts

u
s
=0

u
i
=0 u

i
=1

u
i
=0

u
t
=1

S S'
and remember we're trying to minimize

34

One more thing about the solution

y
ij
 is a dual variable corresponding to primal constraint

If y
ij
 is non-zero, then the corresponding constraint is tight

35

Summarizing

● Min-cut and Max-flow are equivalent problems
– Their solutions are also equal: the value of the

maximum flow is equivalent to the minimum cut

● Think of a chain that breaks at the weakest link
● Both can be solved exactly in polynomial time

36

A simple randomized algorithm

● Pick an edge at random (u,v)
● Merge u and v in new vertex uv
● Edges between u and v are removed
● Edges pointing to u or v are added as multi-

edges to vertex uv
● When only s and t remain, the multi-edges are

a cut, probably the minimum one

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html

37

Example contractions

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html

38

Example run

s t s t s t

s t s

t

s

t

s

t

s

t

s t

Cut of weight 2 found!

39

Randomized algorithm might miss
the min cut

● Multiple runs are required
● The probability that this finds the min cut in one

run is about 1/log(n), so O(log n) iterations are
required to find min cut

● Each iteration costs O(n2 log n)
● O(n2 log2 n) operations needed to find min cut
● Exact algorithm: O(n3 + n2 log n); the n3 is

because of |V||E| operations required

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html

40

Densest sub-graph

41

Density measures

● Density = Average degree = 2|E|/|V|
– Sometimes just |E|/|V|

● Edge ratio = (2|E|)/(|V|(|V|-1))
– What is |V|(|V|-1|)/2?

42

Densest sub-graph

43

Goldberg's algorithm for densest
subgraph

● Requires: min-cut problem

Slides on this section from: http://www.math.cmu.edu/~ctsourak/amazing.html

http://www.math.cmu.edu/~ctsourak/amazing.html

44

Goldberg's algorithm (1)

45

Goldberg's algorithm (2)

46

Goldberg's algorithm (3)

47

Goldberg's algorithm (4)

48

Goldberg's algorithm (5)

If this exists for non-empty S, then S is a sub-graph of density c

49

Goldberg's algorithm (6)

● to find the densest subgraph perform binary
search on c
– logarithmic number of min-cut calls

– each min-cut call requires O(|V||E|) time

● problem can also be solved with one min-cut
call using the parametric max-flow algorithm

https://www.cs.cmu.edu/~jonderry/maxflow.pdf

50

A faster algorithm

● Charikar, M. (2000). Greedy approximation
algorithms for nding dense components in a
graph. In APPROX.

● Approximate algorithm (by a factor of 2)

51

Greedy algorithm

52

Example run of Greedy Algorithm

Done!

53

Example run of Greedy Algorithm

Density computed
as |E|/|V|

13/11=1.18 14/10=1.40 13/9=1.44 12/8=1.50

11/7=1.57 9/6=1.50 8/5=1.60 6/4=1.50

3/3=1.00 1/2=0.50 0/1=0.00

54

Example run of Greedy Algorithm

Done!

13/11=1.18 14/10=1.40 13/9=1.44 12/8=1.50

11/7=1.57 9/6=1.50 8/5=1.60 6/4=1.50

3/3=1.00 1/2=0.50 0/1=0.00

55

Approximation guarantee

● S* = optimal sub-graph (highest density)

● density(S*) = λ = |e(S*)| / |S*|
● For all v in S*, deg(v) >= λ, because

Because of optimality of S*

https://people.cs.umass.edu/~barna/paper/dense-subgraph-full.pdf

https://people.cs.umass.edu/~barna/paper/dense-subgraph-full.pdf

56

Approximation guarantee (cont)

Hence,

57

Approximation guarantee (cont.)

● Now, let's consider when greedy removes the
first vertex of the optimal solution

● At that point, all the vertices of the remaining
subgraph (S) have degree >= λ, because v has
degree >= λ

● Hence, this subgraph has more than
edges, and density more than

● Hence this is a 2-approximate algorithm

58

Bi-partite near cliques

59

Dense subgraphs in matrix
representation of a graph

Re-arrange rows and columns

60

Dense subgraphs in matrix
representation of a graph

Re-arrange rows and columns

Similar to a
bi-partite clique

61

Example of bi-partite near-cliques

Fans and artists in cultural products also create bi-partite near-cliques.

62

Scalable method for dense sub-
graphs

● D. Gibson, R. Kumar, and A. Tomkins.
Discovering large dense subgraphs in massive
graphs. In VLDB ’05: Proc. 31st Intl. Conf. on
Very Large Data Bases, pages 721–732. ACM,
2005.

● Can be applied to arbitrarily large graphs

63

Shingling algorithm

● Take a permutation π and apply it to both sets

● Take the minimum element in each set under
this permutation

● The probability of the two minima matching is
the Jaccard coefficient of A and B

A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166, 1997.

64

Example

● A = {dcab, abcd, cabb, aabd}
● B = {abcd, dabc, abbd, badd, dcab}
● Suppose permutation = “sort by second

character, then by fourth”
– Minimum(A) = cabb

– Minimum(B) = dabc

– Bad luck this time, however …

● If you use many permutations, you can get
good estimates of Jaccard coefficient

65

How to build the permutations

● What is a natural family of permutations to use?

66

Yes

● That's why this method is often referred to as
min-hashing

67

Advantages of shingling

● A and B can be huge
– but the shingle vector is of fixed size!

– comparisons of shingles are much faster

● How to apply this to finding dense sub-graphs?
– We are going to use procedure shingle(list), which

computes a shingle of size c of a list

68

Algorithm

● Let e(v) be the edges of v
● Start with lists <v, e(v)>
● Compute <v, shingles(e(v))>
● Invert this list to obtain <shingle, list of v> = S1
● Cluster this list, how?

– Compute <shingle, shingles(list of v)> = S2

– Cluster S2 using any clustering method

● Output = list of shingles, and list of vertices sharing those
shingles

69

Algorithm (visually)

http://charuaggarwal.net/dense-survey

http://charuaggarwal.net/dense-survey

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Near bi-partite cliques
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

