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Sub-graphs
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Subgraph

Subset of 
nodes, and 
edges among 
those nodes
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Ego network

Ego graph of node x = neighbors and the links between them

x
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Typical pattern

Oddball: Spotting anomalies in weighted graphs
Leman Akoglu, Mary McGlohon, Christos Faloutsos
PAKDD 2010
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k-core decomposition
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k-core decomposition

● Remove all nodes having degree 1
– Those are in the 1-core

● Remove all nodes having degree 2 in the remaining 
graph
– Those nodes are in the 2-core

● Remove all nodes having degree 3 in the remaining 
graph
– Those nodes are in the 3-core

● Etc.



8

Example

https://openi.nlm.nih.gov/detailedresult.php?img=3368241_fnagi-04-00013-g0001&req=4 

https://openi.nlm.nih.gov/detailedresult.php?img=3368241_fnagi-04-00013-g0001&req=4
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Try it!

How many nodes are there in the 
each core of this graph?

http://www.cpt.univ-mrs.fr/~barrat/NHM.pdf 

http://www.cpt.univ-mrs.fr/~barrat/NHM.pdf
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Graph s-t cuts
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Min s-t cut
Given a weighted graph G(V,E), W:E→R
An (s-t)-cut C=(S,T) is such that

– S ∪ T=V
– s ∈ S, t ∈ T 

The cost of a cut is 

Key problem: given G, s, t, find min weight s-t cut
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Example of two s-t cuts

s t
If all edge weights are equal, which one is a smaller cut, 
the red or the green? Is this the smaller cut in this case?
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Example of two s-t cuts

s t
What about now, what is the 
smaller s-t cut in the graph?

4

2

2

5

2

14
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What defines an s-t cut?

● Can I take an arbitrary set of edges and claim it 
is an s-t cut?

● Is this an s-t cut? Why? Why not?

s t
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Simple s-t paths and s-t cuts

● For a subset of edges S of a graph to be a cut, 
every simple path between s and t should 
contain exactly one edge in E
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Maximum flows
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Maximum flow: example 1

● If edge weights were capacities, what is the 
maximum flow that can be sent from s to t?

s t

5 m3/second 1 m3/second 3 m3/second
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Maximum flow: example 2

● If edge weights were capacities, what is the 
maximum flow that can be sent from s to t?

s t

5

4

4

6

1

2
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Maximum flow problem

● What is the maximum “flow” that can be carried 
from s to t?
– Think of edge weights as capacities (e.g. m3/s of 

water)

● What is the flow of an edge?
– The amount sent through that edge (an assignment)

● What is the net flow of a node?
– The amount exiting the node minus the amount 

entering the node
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Formulating the max flow problem

● The flow through each edge should be 
● Net flow node h = OUT(h) – IN(h)
● Node s should have positive flow v
● Node t should have negative flow -v
● What should be the flow of the other nodes?
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Formulating the max flow problem

● Net flow node h = OUT(h) - IN(h)
● Node s should have positive flow v
● Node t should have negative flow -v

● What should be the flow of a node?

h
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Max flow as a linear program

http://www.dii.unisi.it/~agnetis/mincutENG.pdf 

http://www.dii.unisi.it/~agnetis/mincutENG.pdf
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Writing the dual
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Writing the dual

● Variables ui don't enter the objective, only their difference is in the 
constraints

● We can set them arbitrarily, in particular us = 0, ut = 1

● Remember: the infimum of the solutions of the dual is the 
supremum of the solutions of primal
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Dual (after simplification)

● Observe what happens with the values of u 
in every path going from s to t

u=0 u=? u=? u=1u=?...
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Dual (after simplification)

● Given these constraints, the sequence must 
increase, and can only increase once

u=0 u=0 u=1 u=1u=1...
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Dual (after simplification)

● Important theorem: every feasible 
solution can be written as a cut (S, S')
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Dual solutions are cuts

● Every feasible solution of the dual has the form 
of a cut (S, S')

u
s
=0 u

t
=1

S S'
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Dual solutions are cuts

● Every feasible solution of the dual has the form 
of a cut (S, S')

u
s
=0

u
i
=0 u

i
=1

u
i
=0

u
t
=1

S S'
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Dual solutions are (s-t)-cuts

u
s
=0

u
i
=0 u

i
=1

u
i
=0

u
t
=1

S S'
and remember we're trying to minimize
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One more thing about the solution

y
ij
 is a dual variable corresponding to primal constraint

If y
ij
 is non-zero, then the corresponding constraint is tight
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Summarizing

● Min-cut and Max-flow are equivalent problems
– Their solutions are also equal: the value of the 

maximum flow is equivalent to the minimum cut

● Think of a chain that breaks at the weakest link
● Both can be solved exactly in polynomial time
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A simple randomized algorithm

● Pick an edge at random (u,v)
● Merge u and v in new vertex uv
● Edges between u and v are removed
● Edges pointing to u or v are added as multi-

edges to vertex uv
● When only s and t remain, the multi-edges are 

a cut, probably the minimum one

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html 

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html
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Example contractions

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html 

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html
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Example run

s t s t s t

s t s

t

s

t

s

t

s

t

s t

Cut of weight 2 found!
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Randomized algorithm might miss 
the min cut

● Multiple runs are required
● The probability that this finds the min cut in one 

run is about 1/log(n), so O(log n) iterations are 
required to find min cut

● Each iteration costs O(n2 log n)
● O(n2 log2 n) operations needed to find min cut
● Exact algorithm: O(n3 + n2 log n); the n3 is 

because of |V||E| operations required

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html 

http://www.cs.berkeley.edu/~jfc/cs174lecs/lec18/lec18.html
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Densest sub-graph
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Density measures

● Density = Average degree = 2|E|/|V|
– Sometimes just |E|/|V|

● Edge ratio = (2|E|)/(|V|(|V|-1))
– What is |V|(|V|-1|)/2?
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Densest sub-graph
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Goldberg's algorithm for densest 
subgraph

● Requires: min-cut problem

Slides on this section from: http://www.math.cmu.edu/~ctsourak/amazing.html 

http://www.math.cmu.edu/~ctsourak/amazing.html
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Goldberg's algorithm (1)
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Goldberg's algorithm (2)
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Goldberg's algorithm (3)
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Goldberg's algorithm (4)
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Goldberg's algorithm (5)

If this exists for non-empty S, then S is a sub-graph of density c
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Goldberg's algorithm (6)

● to find the densest subgraph perform binary 
search on c
– logarithmic number of min-cut calls

– each min-cut call requires O(|V||E|) time

● problem can also be solved with one min-cut 
call using the parametric max-flow algorithm

https://www.cs.cmu.edu/~jonderry/maxflow.pdf
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A faster algorithm

● Charikar, M. (2000). Greedy approximation 
algorithms for nding dense components in a 
graph. In APPROX.

● Approximate algorithm (by a factor of 2)
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Greedy algorithm
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Example run of Greedy Algorithm

Done!
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Example run of Greedy Algorithm

Density computed
as |E|/|V|

13/11=1.18 14/10=1.40 13/9=1.44 12/8=1.50

11/7=1.57 9/6=1.50 8/5=1.60 6/4=1.50

3/3=1.00 1/2=0.50 0/1=0.00
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Example run of Greedy Algorithm

Done!

13/11=1.18 14/10=1.40 13/9=1.44 12/8=1.50

11/7=1.57 9/6=1.50 8/5=1.60 6/4=1.50

3/3=1.00 1/2=0.50 0/1=0.00
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Approximation guarantee

● S* = optimal sub-graph (highest density)

● density(S*) = λ = |e(S*)| / |S*|
● For all v in S*, deg(v) >= λ, because

Because of optimality of S*

https://people.cs.umass.edu/~barna/paper/dense-subgraph-full.pdf 

https://people.cs.umass.edu/~barna/paper/dense-subgraph-full.pdf
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Approximation guarantee (cont)

Hence,
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Approximation guarantee (cont.)

● Now, let's consider when greedy removes the 
first vertex of the optimal solution

● At that point, all the vertices of the remaining 
subgraph (S) have degree >= λ, because v has 
degree >= λ

● Hence, this subgraph has more than           
edges, and density more than 

● Hence this is a 2-approximate algorithm



58

Bi-partite near cliques
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Dense subgraphs in matrix 
representation of a graph

Re-arrange rows and columns
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Dense subgraphs in matrix 
representation of a graph

Re-arrange rows and columns

Similar to a
bi-partite clique
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Example of bi-partite near-cliques

Fans and artists in cultural products also create bi-partite near-cliques.
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Scalable method for dense sub-
graphs

● D. Gibson, R. Kumar, and A. Tomkins. 
Discovering large dense subgraphs in massive 
graphs. In VLDB ’05: Proc. 31st Intl. Conf. on 
Very Large Data Bases, pages 721–732. ACM, 
2005.

● Can be applied to arbitrarily large graphs
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Shingling algorithm

● Take a permutation π and apply it to both sets

● Take the minimum element in each set under 
this permutation

● The probability of the two minima matching is 
the Jaccard coefficient of A and B

A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering 
of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166, 1997.
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Example

● A = {dcab, abcd, cabb, aabd}
● B = {abcd, dabc, abbd, badd, dcab}
● Suppose permutation = “sort by second 

character, then by fourth”
– Minimum(A) = cabb

– Minimum(B) = dabc

– Bad luck this time, however …

● If you use many permutations, you can get 
good estimates of Jaccard coefficient



65

How to build the permutations

● What is a natural family of permutations to use?
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Yes

● That's why this method is often referred to as 
min-hashing
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Advantages of shingling

● A and B can be huge
– but the shingle vector is of fixed size!

– comparisons of shingles are much faster

● How to apply this to finding dense sub-graphs?
– We are going to use procedure shingle(list), which 

computes a shingle of size c of a list
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Algorithm

● Let e(v) be the edges of v
● Start with lists <v, e(v)>
● Compute <v, shingles(e(v))>
● Invert this list to obtain <shingle, list of v> = S1
● Cluster this list, how?

– Compute <shingle, shingles(list of v)> = S2

– Cluster S2 using any clustering method

● Output = list of shingles, and list of vertices sharing those 
shingles
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Algorithm (visually)

http://charuaggarwal.net/dense-survey 

http://charuaggarwal.net/dense-survey
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