
Graph Models

Class Algorithmic Methods of Data Mining
Program M. Sc. Data Science
University Sapienza University of Rome
Semester Fall 2015
Lecturer Carlos Castillo http://chato.cl/

Sources:
● Frieze, Gionis, Tsourakakis: “Algorithmic techniques for modeling 

and mining large graphs (AMAzING)” [Tutorial]
● Lada Adamic: Zipf, Power-Laws and Pareto [Tutorial]
● Giorgios Cheliotis: Social Network Analysis [Tutorial]

http://chato.cl/
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Network characteristics

● Static networks
– Power-law degree distribution

– Small diameter

● Time-evolving networks
– Densification

– Shrinking diameters
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Heavy Tails

New Scientist, 2002
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Degree distribution

● Ck = number of elements with degree k
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Power-law degree distribution

● In a log-log plot, this looks like a straight line, 
descending with slope γ
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Power-law degree distribution

https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt 

● Power Law

log(Count) vs. log(Degree)

Many low-
degree nodes

Few high-
degree nodes

Internet in 
December 1998

https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt
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Power law appear in a wide variety 
of networks
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Example power-law networks

● Social networks
– collaboration of movie actors in films

– co-authorship by mathematicians of papers

● Internet router
● Web graphs
● Interbank payment networks
● Protein-protein interaction networks
● Semantic networks
● Airline networks

https://en.wikipedia.org/wiki/Scale-free_network#Examples 

https://en.wikipedia.org/wiki/Scale-free_network#Examples
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Try it!

● Create a dataset of 
numbers having a 
power-law degree 
distribution with 
gamma=1 (or show 
how to construct 
one)

● Create a graph 
having this 
sequence of degrees
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Estimating the exponent

● Option 1: draw the log-log plot and fit a line 
using least squares

● Option 2: Hill's estimator
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Example (in OpenOffice Calc)

x Cx

1 128

2 64

4 32

8 16

16 8

32 4

64 2

128 1

Actual value = 1.0
Hill's estimator = 1.31 in this case

http://chato.cl/2015/data_analysis/09_graph_models/hills-estimator-example.ods 

http://chato.cl/2015/data_analysis/09_graph_models/hills-estimator-example.ods
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Degree distribution is important but 
obviously isn't everything

● All these graphs have the same number of 
nodes and degree sequence
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How to obtain a power law?

● Preferential attachment is a frequently-used 
model for graph evolution

● At every time step, a new node arrives and 
connects to existing nodes with probability 
proportional to their degree
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Example

https://www.youtube.com/watch?v=4GDqJVtPEGg 

https://www.youtube.com/watch?v=4GDqJVtPEGg
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The copy model of graph evolution

Suggested as a model of WWW growth. Input: parameter α
At each timestep:
– create a new vertex t + 1

– choose an existing vertex u  V∈ t-1 uniformly at random

– the i-th out-link of t + 1 is chosen as follows:

● with probability α we select x  V∈ t−1 uniformly at random, and

● with probability 1 – α it copies the i-th out-link of u

Produces power-law distribution AND a large number of 
bipartite cliques

Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., and Upfal, E.: Stochastic models for the web graph. FOCS 2000.
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Why preferential attachment?

http://www.slideshare.net/gcheliotis/social-network-analysis-3273045 

http://www.slideshare.net/gcheliotis/social-network-analysis-3273045
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Why does this happen?

MTV Italia 31-Oct-2015
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An experiment

● Matthew J. Salganik, Peter Sheridan Dodds, 
Duncan J. Watts: Experimental Study of 
Inequality and Unpredictability in an Artificial 
Cultural Market. Science 10 February 2006. 
Vol. 311 no. 5762 pp. 854-856 [link]

http://www.sciencemag.org/content/311/5762/854.full
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Experimental conditions

Experiment 1: random order with
number of downloads

Experiment 2: sorted by descending
number of downloads

Control: random order without
number of downloads
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Evaluation metric: Gini Coefficient

Namibia 0.61, Chile 0.50, US 0.41, Italy 0.36, Spain 0.34, Norway 0.25
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Results
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Graph diameter
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Ways to characterize diameter

● diameter: largest shortest-path over all pairs.
● effective diameter:  upper bound of the shortest path of 

90% of the pairs of vertices.
● average shortest path : average of the shortest paths over 

all pairs of vertices.
● characteristic path length : median of the shortest paths 

over all pairs of vertices.
● hop-plots : plot of |Nh(u)|, the number of neighbors of u at 

distance at most h, as a function of h [Faloutsos et al., 
1999]



24

Effective diameter

hops

Effective 
Diameter

# 
re

ac
ha

b l
e 

pa
irs

https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt 

https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt
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Temporal evolution of graphs

● Jure Leskovec, Jon Kleinberg, and Christos 
Faloutsos: “Graphs over time: densification 
laws, shrinking diameters and possible 
explanations.” In KDD 2005. [DOI][Slides]

● Two main findings:
– Diameter tends to shrink

– Average degree tends to increase
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Average out-degree
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Temporal Evolution of the Graphs
● Densification Power Law 

– networks are becoming denser over time 
– the number of edges grows faster than the number 

of nodes – average degree is increasing

a … densification exponent

or

equivalently

https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt Slides on this section from:

http://dx.doi.org/10.1145/1081870.1081893
https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt
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Graph Densification – A closer look
● Densification Power Law 

● Densification exponent: 1 ≤ a ≤ 2:
– a=1: linear growth – constant out-degree 

(assumed in the literature so far)
– a=2: quadratic growth – clique

● Let’s see the real graphs!
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Densification – Physics Citations
● Citations among 

physics papers 
● 1992:

– 1,293 papers,
2,717 citations

● 2003:
– 29,555 papers, 

352,807 citations
● For each month M, 

create a graph of 
all citations up to 
month M

N(t)

E(t)

1.69

https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt


  32

Densification – Patent Citations
● Citations among 

patents granted
● 1975

– 334,000 nodes
– 676,000 edges

● 1999
– 2.9 million nodes
– 16.5 million edges

● Each year is a 
datapoint

N(t)

E(t)

1.66
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Densification – Autonomous Systems

● Graph of Internet
● 1997

– 3,000 nodes
– 10,000 edges

● 2000
– 6,000 nodes
– 26,000 edges

● One graph per 
day

N(t)

E(t)

1.18
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Densification – Affiliation Network

● Authors linked 
to their 
publications

● 1992
– 318 nodes
– 272 edges

● 2002
– 60,000 nodes

● 20,000 authors
● 38,000 papers

– 133,000 edges

N(t)

E(t)

1.15
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Effective diameter over time

● As the network grows, distances among nodes 
slowly decrease...
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Diameter – ArXiv citation graph

● Citations among 
physics papers   

● 1992 –2003
● One graph per 

year

time [years]

diameter

https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt Slides on this section from:
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Diameter – “Autonomous 
Systems”

● Graph of Internet
● One graph per 

day 
● 1997 – 2000

number of nodes

diameter
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Diameter – “Affiliation Network”

● Graph of 
collaborations in 
physics – 
authors linked to 
papers

● 10 years of data

time [years]

diameter

https://cs.stanford.edu/people/jure/pubs/powergrowth-kdd05.ppt
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Diameter – “Patents”

● Patent citation 
network

● 25 years of data

time [years]

diameter
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Other characteristics of graphs

● Giant connected component size
● Assortativity
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Size of giant connected component 
as a proportion of number of nodes
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Assortativity

● “Similarly-linked people are together”
● Perfect assortativity if everyone is only 

connected to people of the same degree
● Perfect disassortativity if everyone is only 

connected to people of different degree
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Assortativity

Disassortative

https://blogs.aalto.fi/mining4meaning/2014/03/07/rappers-and-physicists/assortativity-2/ 

Assortative
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A simple way of understanding 
assortativity

● Draw two graphs
● Graph A: Disassortative

– 5 nodes and 4 edges

– Neighbors have very different degree

● Graph B: Assortative
– 5 nodes and 4 edges

– Neighbors have similar or equal degree

http://chato.cl/2015_data_analysis/exercise-answers/graph_models_exercise_01_answer.txt 
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