Link-Based Ranking

Class	Algorithmic Methods of Data Mining
Program	M. Sc. Data Science
University	Sapienza University of Rome
Semester	Fall 2015
Lecturer	Carlos Castillo http://chato.cl/

Sources:

- Fei Li's lecture on PageRank
- Evimaria Terzi's lecture on link analysis.
- Paolo Boldi, Francesco Bonchi, Carlos Castillo, and Sebastiano Vigna. 2011. Viscous democracy for social networks. Commun. ACM 54, 6 (June 2011), 129-137. [link]

Purpose of Link-Based Ranking

- Static (query-independent) ranking
- Dynamic (query-dependent) ranking
- Applications:
 - Search in social networks
 - Search on the web

Given a set of connected objects

Assign some weights

Alternatives

- Various centrality metrics
 - Degree, betweenness, ...
- Classical algorithms
 - HITS / Hubs and Authorities
 - PageRank

HITS (Hubs and Authorities)

HITS

- Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5 (September 1999), 604-632. [DOI]
- Query-dependent algorithm
 - Get pages matching the query
 - Expand to 1-hop neighborhood
 - Find pages with good out-links ("hubs")
 - Find pages with good in-links ("authorities")

Root set = matches the query

Root Set

Base set S = root set plus 1-hop neighbors

Base set S is expected to be small and topically focused.

Base graph S of *n* nodes

Bipartite graph of 2n nodes

Bipartite graph of 2n nodes

0) Initialization:

$$h_1 = h_2 = h_3 = h_4 = h_5 = 1$$

1) Iteration:

$$a_i = \sum_{j \to i} h_j$$

2) Normalization:

$$a_i = \frac{a_i}{\sum_j a_j}$$

 $h_i = \sum_{i \to j} a_j$

$$h_i = \frac{h_i}{\sum_j h_j}$$

Try it!

Complete the table. Which one is the biggest hub? Which the biggest authority? Does it differ from ranking by degree?

What are we computing?

$$a^{t} = A^{T}h^{t-1}$$

$$h^{t} = Aa^{t-1}$$
replacing : $a^{t} = A^{T}Aa^{t-1}$
after convergence : $a = A^{T}Aa$

- Vector a is an eigenvector of $A^{T}A$
- Conversely, vector h is an eigenvector of AA^{T}

• HITS favors the largest dense sub-graph

After *n* iterations:

PageRank

PageRank

- The pagerank citation algorithm: bringing order to the web by L Page, S Brin, R Motwani, T Winograd - 7th World Wide Web Conference, 1998 [link].
- Designed by Page & Brin as part of a research project that started in 1995 and ended in 1998 ... with the creation of Google

A Simple Version of PageRank

$$P_i = c \sum_{j \to i} \frac{P_j}{N_j}$$

- N_j : the number of forward links of page j
- c: normalization factor to ensure $||P||_{L1} = |P_1 + ... + P_n| = 1$

An example of Simplified PageRank

First iteration of calculation

An example of Simplified PageRank

Second iteration of calculation

An example of Simplified PageRank

Convergence after some iterations

A Problem with Simplified PageRank

A loop:

During each iteration, the loop accumulates rank but never distributes rank to other pages!

An example of the Problem

First iteration

An example of the Problem

Second iteration ... see what's happening?

An example of the Problem

Convergence

What are we computing? $p^{t} = Ap^{t-1}$ after convergence : p = Ap

- p is an eigenvector of A with eigenvalue 1
- This (power method) can be used if A is:
 - Stochastic (each row adds up to one)
 - Irreducible (represents a strongly connected graph)
 - Aperiodic (does not represent a bipartite graph)

Markov Chains

- Discrete process over a set of states
- Next state determined by current state and current state only (no memory of older states)
 - Higher-order Markov chains can be defined
- Stationary distribution of Markov chain is a probability distribution such that p = Ap
- Intuitively, *p* represents "the average time spent" at each node if the process continues forever

Random Walks in Graphs

- Random Surfer Model
 - The simplified model: the standing probability distribution of a random walk on the graph of the web. simply keeps clicking successive links at random
- Modified Random Surfer
 - The modified model: the "random surfer" simply keeps clicking successive links at random, but periodically "gets bored" and jumps to a random page based on the distribution of E
 - This guarantees irreducibility
 - Pages without out-links (dangling nodes) are a row of zeros, can be replaced by E, or by a row of 1/n

Modified Version of PageRank

$$P_i = \alpha \sum_{j \to i} \frac{P_j}{N_j} + (1 - \alpha)E_i$$

E(i): web pages that "users" jump to when they "get bored"; Uniform random jump => E(i) = 1/n

An example of Modified PageRank

34

Variant: personalized PageRank

 Modify vector E(i) according to users' tastes (e.g. user interested in sports vs politics)

PageRank and internal linking

- A website has a maximum amount of Page Rank that is distributed between its pages by internal links [depends on internal links]
- The maximum amount of Page Rank in a site increases as the number of pages in the site increases.
- By linking poorly, it is possible to fail to reach the site's maximum Page Rank, but it is not possible to exceed it.

36

PageRank as a form of actual voting (liquid democracy)

- If alpha = 1, we can implement liquid democracy
 - In liquid democracy, people chose to either vote or to delegate their vote to somebody else
- If alpha < 1, we have a sort of "viscous" democracy where delegation is not total

PageRank as a form of liquid democracy

One of these two graphs has alpha = 0.9.

The other has alpha = 0.2.

Which one is which?

PageRank Implementation

- Suppose there are n pages and m links
- Trivial implementation of PageRank requires O(m+n) memory
- Streaming implementation requires O(n) memory ... how?
- More on PageRank to follow in another lecture ...