
1

Text Indexing

Class Algorithmic Methods of Data Mining
Program M. Sc. Data Science
University Sapienza University of Rome
Semester Fall 2015
Lecturer Carlos Castillo http://chato.cl/

Sources:
● Gonzalo Navarro: “Indexing and Searching.” Chapter 9 in

Modern Information Retrieval, 2nd Edition. 2011. [slides]
● Christopher D. Manning, Prabhakar Raghavan & Hinrich

Schütze: “Introduction to Information Retrieval”. 2008 [link]

http://chato.cl/
http://grupoweb.upf.es/WRG/mir2ed/slides.php
http://nlp.stanford.edu/IR-book/html/htmledition/faster-postings-list-intersection-via-skip-pointers-1.html

2

Index by document ID

BBC20151015001

CNN20150809002

AFP20130917001

RTE20151019001

TVE20140914001

BBC20151015001

CNN20150809002

AFP20130917001

RTE20151019001

TVE20140914001

File 2 Doc 2

File 1 Doc 1

File 1 Doc 2

File 1 Doc 3

File 2 Doc 1

Document identifiers Physical locations

3

Search by keywords

● Given a set of keywords
● Find documents containing all keywords
● Each keyword may be in millions of documents
● Hundreds of queries per second

4

Indexing the documents helps

● For an Information Retrieval system that uses an index,
efficiency means:
– Indexing time: Time needed to build the index

– Indexing space: Space used during the generation of the index

– Index storage: Space required to store the index

– Query latency: Time interval between the arrival of the query
and the generation of the answer

– Query throughput: Average number of queries processed per
second

● We assume a static or semi-static collection

5

Inverted index

● The index we have so far:
– Given a document ID

– Return the words in the document

● The index we want:
– Given a word

– Return the IDs of documents containing that word

6

Term-document matrix

Doc frequency Term frequencies
Space inefficient: why?

7

How large is the vocabulary?

In English:

Why it is not bounded?

8

Inverted index

9

Inverted index (vocabulary)

What are the alternatives for storing the
vocabulary?

What are the trade-offs involved?

10

Full inverted index
(single document, character level)

● Allows us to answer phrase and proximity
queries, e.g. “theory * practice” or “difference
between theory and practice”

11

Full inverted index
(multiple documents, word-level)

12

Space usage of an index

● Vocabulary requires
● Occurrences require
● Address documents or words?
● Address blocks is an intermediary solution

13

Phrase search

● How do you do a phrase search with:
– Addressing document

– Addressing words

– Addressing blocks

14

Estimated sizes of indices

15

Try it

d1: “global warming”

d2: “global climate”

d3: “climate change”

d4: “warm climate”

d5: “global village”

Build an inverted index with word
addressing for these documents

Consider “warm” and “warming” as a
single term “warm”

Verify: third posting list has 3 docs

http://chato.cl/2015/data_analysis/exercise-answers/text-indexing_exercise_01_answer.txt

http://chato.cl/2015/data_analysis/exercise-answers/text-indexing_exercise_01_answer.txt

16

Searching time

● Assuming the vocabulary fits on main memory,
and m terms in the query, this is O(m)

● The time is dominated by merging the lists of
the words

● Merging is fast if lists are sorted
– At most n1 + n2 comparisons where n1 and n2 are

the sizes of the posting lists

17

Example

● Documents containing “syria”
– 1, 3, 12, 15, 19, 20, 34, 90, 96

● Documents containing “russia”
– 1, 9, 10, 18, 19, 24, 35, 90, 101

What should we do if one of the posting lists is very small
compared to the other?

What should we do if there are more than 2 posting lists?

18

Skip lists in indexing

● “Skips” are special shortcuts in the list
● Useful to avoid certain comparisons
● Good strategy is skips for list of size

19

Compressing inverted indexes

● Documents containing “robot”
– 1, 3, 12, 15, 19, 20, 24

● Sorted in ascending order, could encode as (smaller)
gaps
– 1, +2, +9, +3, +4, +1, +4

● Gaps are small for frequent words and large for
infrequent words

● Thus, compression can be obtained by encoding
small values with shorter codes

20

Binary coding

Number (decimal) Binary (16 bits) Unary

1 0000000000000001 0

2 0000000000000010 10

3 0000000000000011 110

4 0000000000000100 1110

5 0000000000000101 11110

6 0000000000000110 111110

7 0000000000000111 1111110

8 0000000000001000 11111110

9 0000000000001001 111111110

10 0000000000001010 1111111110

16 bits allows to encode gaps of 64K docids

21

Unary coding

Number (decimal) Binary (16 bits) Unary

1 0000000000000001 0

2 0000000000000010 10

3 0000000000000011 110

4 0000000000000100 1110

5 0000000000000101 11110

6 0000000000000110 111110

7 0000000000000111 1111110

8 0000000000001000 11111110

9 0000000000001001 111111110

10 0000000000001010 1111111110

For small gaps this saves a lot of space

22

Elias-γ coding

● Unary code for

● Binary code of length for

● Example

23

Elias-γ coding

Number (decimal) Binary (16 bits) Unary Elias-γ

1 0000000000000001 0 0

2 0000000000000010 10 100

3 0000000000000011 110 101

4 0000000000000100 1110 11000

5 0000000000000101 11110 11001

6 0000000000000110 111110 11010

7 0000000000000111 1111110 11011

8 0000000000001000 11111110 1110000

9 0000000000001001 111111110 1110001

10 0000000000001010 1111111110 1110010

In practice, indexing with this coding uses about 1/5 of the
space in TREC-3 (a collection of about 1GB of text)

24

Try it

Encode the list 1, 5, 14 using:
● Standard binary coding (8 bits)
● Gap encoding in binary (8 bits)
● Gap encoding in unary
● Gap encoding in gamma coding

Which one is shorter?

http://chato.cl/2015/data_analysis/exercise-answers/text-indexing_exercise_02_answer.txt

http://chato.cl/2015/data_analysis/exercise-answers/text-indexing_exercise_02_answer.txt

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

