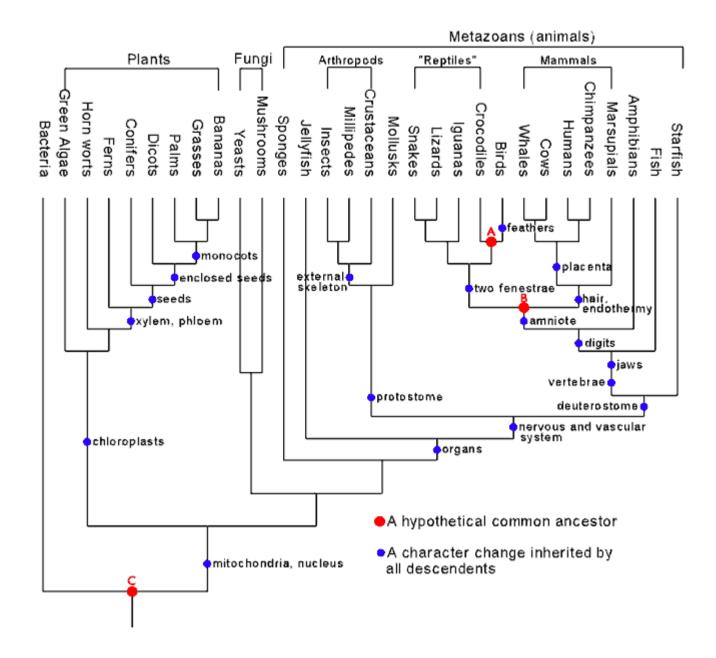
Hierarchical Clustering

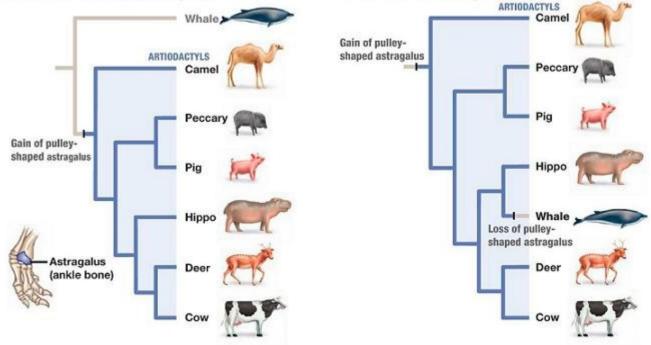
Class	Algorithmic Methods of Data Mining
Program	M. Sc. Data Science
University	Sapienza University of Rome
Semester	Fall 2015
Lecturer	Carlos Castillo http://chato.cl/

Sources:

- Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, May 2014. Chapter 14. [download]
- Evimaria Terzi: Data Mining course at Boston University http://www.cs.bu.edu/~evimaria/cs565-13.html



http://www.talkorigins.org/faqs/comdesc/phylo.html



(a) The astragalus is a synapomorphy that identifies artiodactyls as a monophyletic group.

(b) If whales are related to hippos, then two changes occurred in the astragalus.

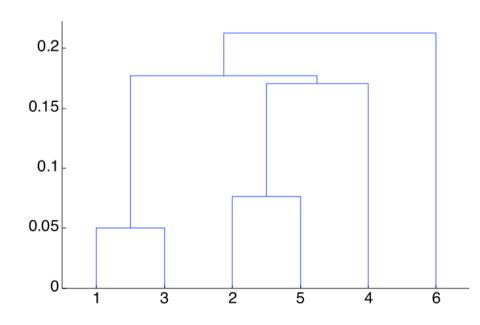
(c) Data on the presence and absence of SINE genes support the close relationship between whales and hippos.

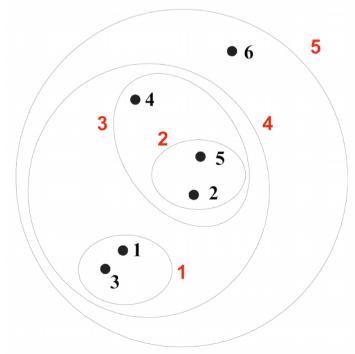
	Locus	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	1 = gene present 0 = gene absent
	Cow	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	0	0	? = still undetermined
	Deer	0	0	0	0	0	0	0	1	?	1	1	1	1	1	1	?	1	1	0	0	
	Whale	1	1	1	1	1	1	1	0	?	1	0	1	1	0	0	0	?	1	0	0	Whales and hippos share four unique SINE genes (4, 5, 6, and 7)
	Hippo	0	?	0	1	1	1	1	0	1	1	0	1	1	0	0	0	?	1	0	0	
	Pig	0	0	0	?	0	0	0	0	?	0	0	0	?	?	0	0	0	1	1	1	
	Peccary	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	2	1	1	
	Camel	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
© 2010 Pearson Educat	tion, Inc.																					

http://www.chegg.com/homework-help/questions-and-answers/part-phylogenetic-tree-shown-figure-b-sines-10-12-13-first-insert-genomes-artiodactyls-phy-q4932026

Hierarchical Clustering

- Produces a set of **nested clusters** organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits





Strengths of Hierarchical Clustering

- No assumptions on the number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- Hierarchical clusterings may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc

Hierarchical Clustering Algorithms

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

- Divisive:

• Start with one, all-inclusive cluster

• At each step, split a cluster until each cluster contains a point (or there are ${\bf k}$ clusters)

- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Complexity of hierarchical clustering

- Distance matrix is used for deciding which clusters to merge/split
- At least quadratic in the number of data points
- Not usable for large datasets

Agglomerative clustering algorithm

- Most popular hierarchical clustering technique
- Basic algorithm:
 - Compute the distance matrix between the input data points Let each data point be a cluster

Repeat

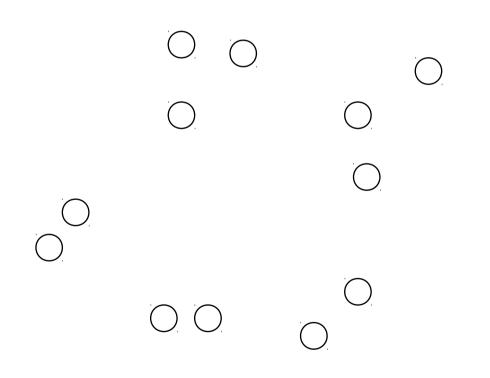
Merge the two closest clusters Update the distance matrix **Until** only a single cluster remains

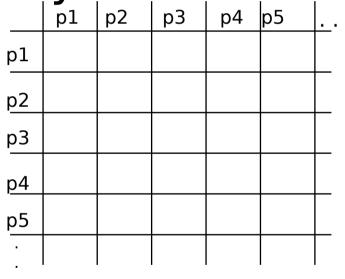
Key operation is the computation of the distance between two clusters

Different definitions of the distance between clusters lead to different algorithms

Input/ Initial setting

 Start with clusters of individual points and a distance/proximity matrix

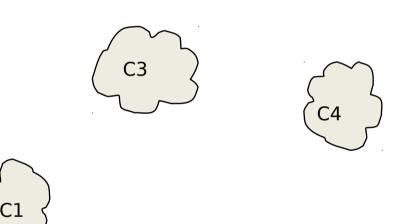




Distance/Proximity Matrix

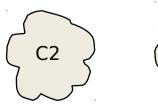
Intermediate State

• After some merging steps, we have some clusters



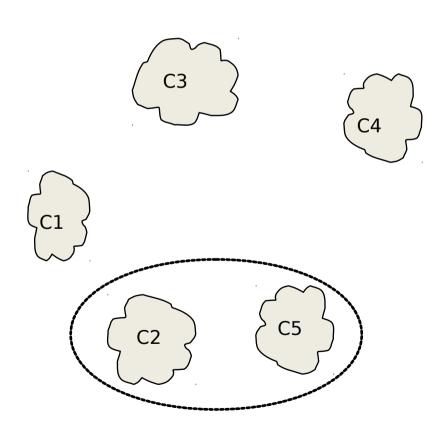
	C1	C2	С3	C4	C5
C1					
C2					
C3					
<u>C4</u>					
C5					

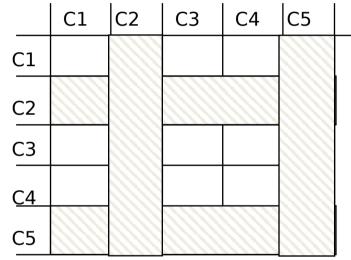
Distance/Proximity Matrix



Intermediate State

• Merge the two closest clusters (C2 and C5) and update the distance matrix.

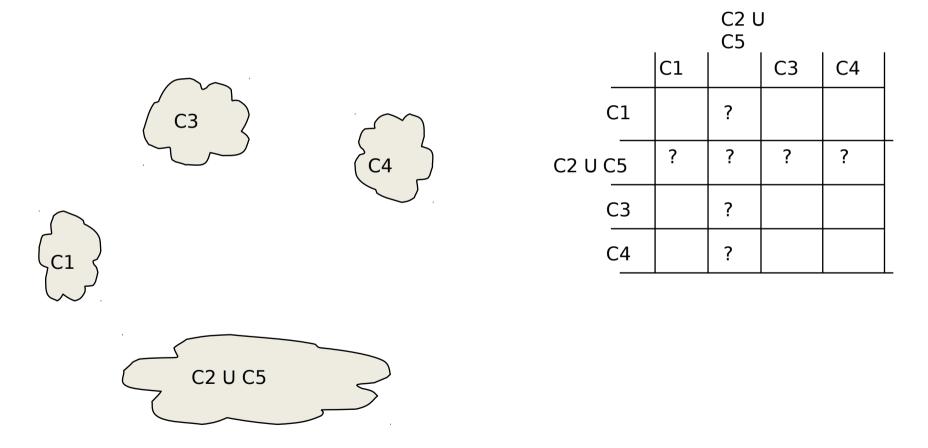




Distance/Proximity Matrix

After Merging

• "How do we update the distance matrix?"



Distance between two clusters

- Each cluster is a set of points
- How do we define distance between two sets of points
 - Lots of alternatives
 - –Not an easy task

Distance between two clusters

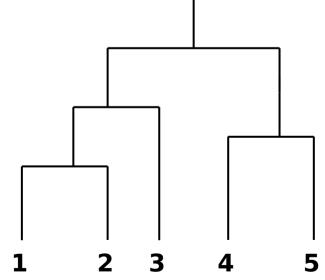
- Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j
- The distance is defined by the two most similar objects

$$D_{\text{single}} = \min_{x,y} \{ d(x,y) \mid x \in C_i, y \in C_j \}$$

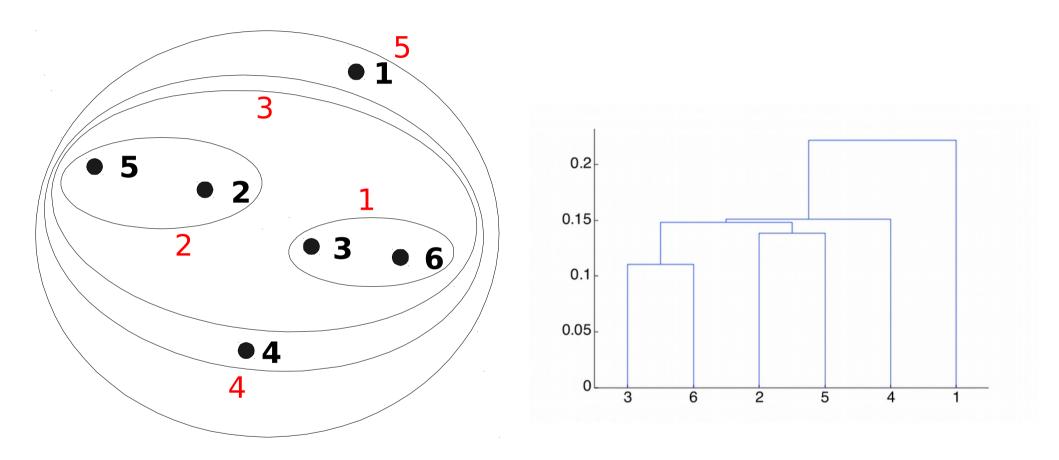
Single-link clustering: example

• Determined by one pair of points, i.e., by one link in the proximity graph.

	11	12	13	14	15	
11	1.00	0.90 1.00 0.70 0.60 0.50	0.10	0.65	0.20	
12	0.90	1.00	0.70	0.60	0.50	
13	0.10	0.70	1.00	0.40	0.30	
14	0.65	0.60	0.40	1.00	0.80	
15	0.20	0.50	0.30	0.80	1.00	1



Single-link clustering: example



Nested Clusters

Dendrogram

Exercise: 1-dimensional clustering

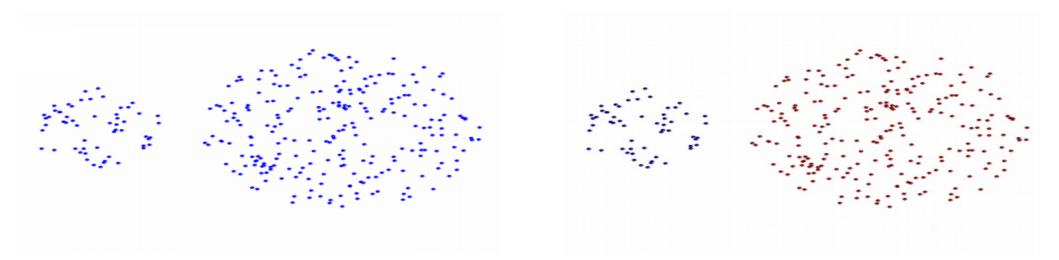
5 11 13 16 25 36 38 39 42 60 62 64 67

Exercise:

Create a hierarchical agglomerative clustering for this data. To make this deterministic, if there are ties, pick the left-most link.

Verify: clustering with 4 clusters has 25 as singleton.

Strengths of single-link clustering

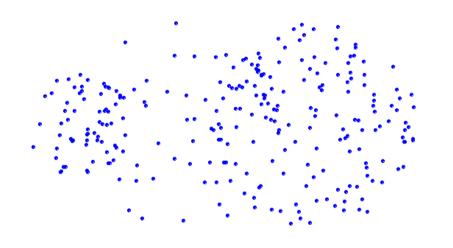


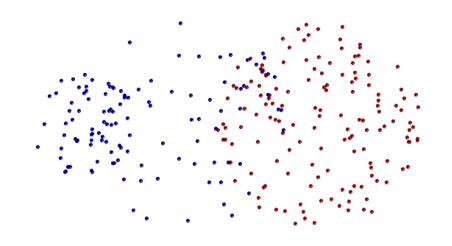
Original Points

Two Clusters

• Can handle non-elliptical shapes

Limitations of single-link clustering





Original Points

Two Clusters

- Sensitive to noise and outliers
- It produces long, elongated clusters

Distance between two clusters

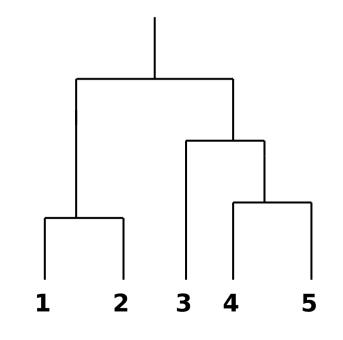
- Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j
- The distance is defined by the two most dissimilar objects

$$D_{\text{complete}} = \max_{x,y} \{ d(x,y) \mid x \in C_i, y \in C_j \}$$

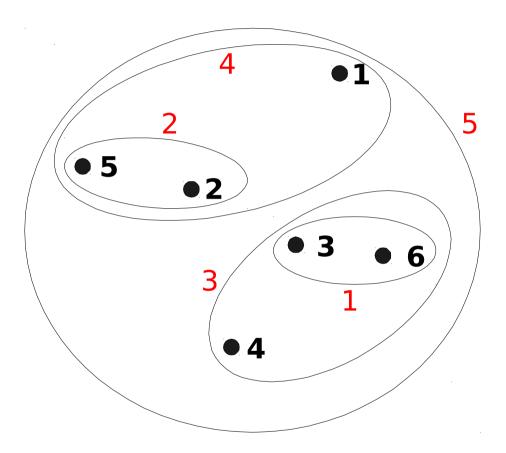
Complete-link clustering: example

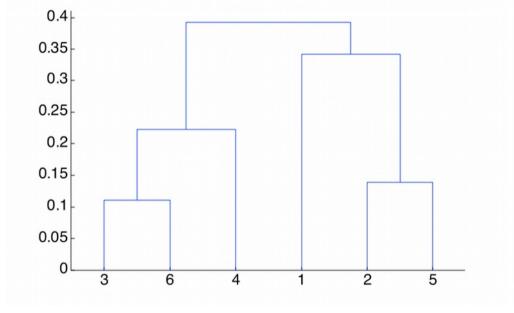
• Distance between clusters is determined by the two most distant points in the different clusters

	11	12	13	14	15
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00



Complete-link clustering: example

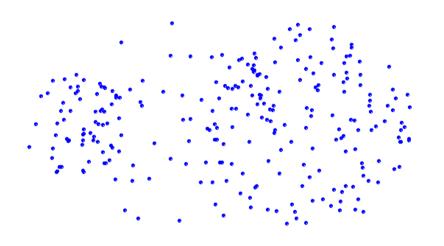


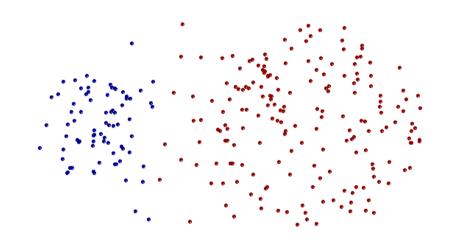


Nested Clusters

Dendrogram

Strengths of complete-link clustering



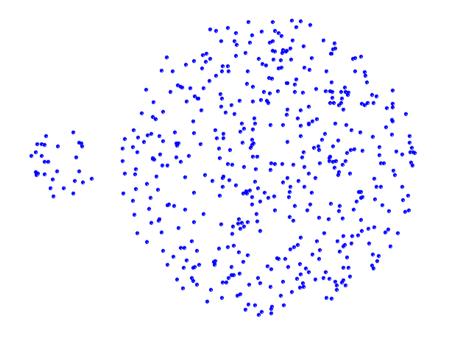


Original Points

Two Clusters

- More balanced clusters (with equal diameter)
- Less susceptible to noise

Limitations of complete-link clustering



Original Points

Two Clusters

- Tends to break large clusters
- All clusters tend to have the same diameter small clusters are merged with larger ones

Distance between two clusters

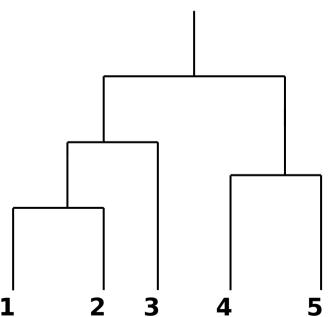
 Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_j

$$D_{\text{average}} = \frac{1}{|C_i| \times |C_j|} \sum_{x \in C_i, y \in C_j} d(x, y)$$

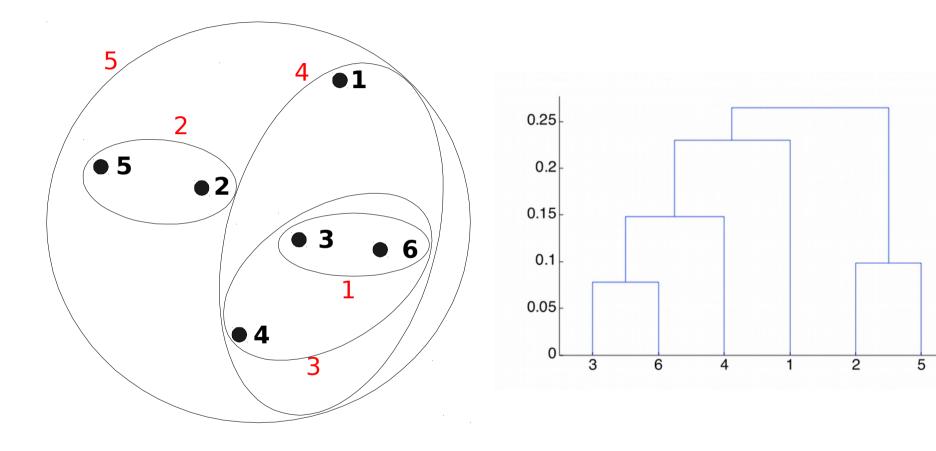
Average-link clustering: example

 Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

	11	12	13		15
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00



Average-link clustering: example



Nested Clusters

Dendrogram

Average-link clustering: discussion

- Compromise between Single and Complete Link
- Strengths
 - Less susceptible to noise and outliers
- Limitations
 - Biased towards globular clusters

Distance between two clusters

 Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j

$$D_{\text{centroids}}(C_i, C_j) = d(r_i, r_j)$$

Distance between two clusters

 Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ij}

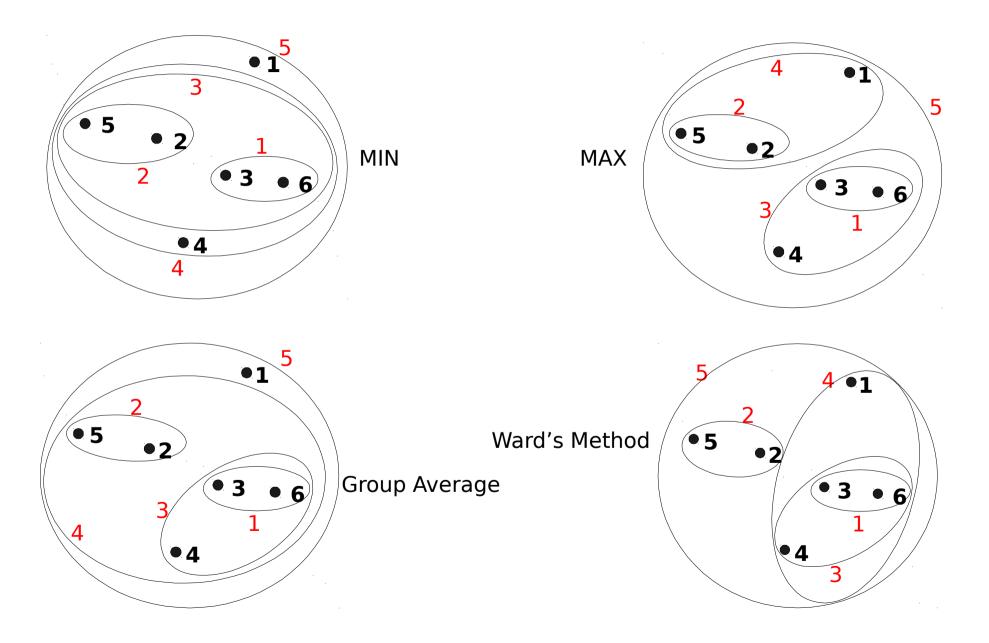
$$D_W(C_i, C_j) = \sum_{x \in C_i} (x - r_i)^2 + \sum_{x \in C_j} (x - r_j)^2 - \sum_{x \in C_{ij}} (x - r_{ij})^2$$

- r_i: centroid of C_i
- r_j: centroid of C_j
- r_{ij}: centroid of C_{ij}

Ward's distance for clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of k-means
 Can be used to initialize k-means

Hierarchical Clustering: Comparison



Hierarchical Clustering: Time and Space requirements

- For a dataset X consisting of **n** points
- O(n²) **space**; it requires storing the distance matrix
- O(n³) time in most of the cases
 - There are n steps and at each step the size n² distance matrix must be updated and searched
 - Complexity can be reduced to O(n² log(n)) time for some approaches by using appropriate data structures