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K-Means

Class Algorithmic Methods of Data Mining
Program M. Sc. Data Science
University Sapienza University of Rome
Semester Fall 2015
Lecturer Carlos Castillo http://chato.cl/

Sources:
● Mohammed J. Zaki, Wagner Meira, Jr., Data Mining and Analysis: 

Fundamental Concepts and Algorithms, Cambridge University 
Press, May 2014. Example 13.1. [download]

● Evimaria Terzi: Data Mining course at Boston University 
http://www.cs.bu.edu/~evimaria/cs565-13.html 

http://chato.cl/
http://www.dataminingbook.info/pmwiki.php/Main/BookDownload
http://www.cs.bu.edu/~evimaria/cs565-13.html
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The k-means problem

• consider set X={x1,...,xn} of n points in Rd

• assume that the number k is given

• problem:
• find k points c1,...,ck (named centers or means)

so that the cost

is minimized
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The k-means problem

• k=1 and k=n are easy special cases (why?)

• an NP-hard problem if the dimension of the 
data is at least 2 (d≥2)

• in practice, a simple iterative algorithm 
works quite well
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The k-means 
algorithm

• voted among the top-10 
algorithms in data mining 

• one way of solving the k-
means problem
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K-means algorithm
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The k-means algorithm

1.randomly (or with another method) pick k 
cluster centers {c1,...,ck}

2.for each j, set the cluster Xj to be the set of 
points in X that are the closest to center cj

3.for each j let cj be the center of cluster Xj 

(mean of the vectors in Xj)

1.repeat (go to step 2) until convergence
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Sample execution



8

1-dimensional clustering exercise

Exercise:

● For the data in the figure
● Run k-means with k=2 and initial centroids u1=2, u2=4 

(Verify: last centroids are 18 units apart)

● Try with k=3 and initialization 2,3,30

http://www.dataminingbook.info/pmwiki.php/Main/BookDownload  Exercise 13.1

http://www.dataminingbook.info/pmwiki.php/Main/BookDownload
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Limitations of k-means

● Clusters of different size
● Clusters of different density
● Clusters of non-globular shape
● Sensitive to initialization
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Limitations of k-means: different sizes
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Limitations of k-means: different 
density
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Limitations of k-means: non-spherical 
shapes



13

Boston University Slideshow Title Goes Here

Effects of bad initialization
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k-means algorithm

• finds a local optimum 

• often converges quickly 
but not always

• the choice of initial points can have large 
influence in the result 

• tends to find spherical clusters

• outliers can cause a problem

• different densities may cause a problem
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Advanced: k-means initialization
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Initialization

• random initialization 

• random, but repeat many times and take the 
best solution
• helps, but solution can still be bad

• pick points that are distant to each other
• k-means++
• provable guarantees
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k-means++

David Arthur and Sergei Vassilvitskii

k-means++: The advantages of careful 
seeding 

SODA 2007
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k-means algorithm: random 
initialization
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k-means algorithm: random 
initialization
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1

2

34

k-means algorithm: 
initialization with further-first 
traversal
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k-means algorithm: 
initialization with further-first 
traversal



22

Boston University Slideshow Title Goes Here

1

2

3

but... sensitive to outliers
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but... sensitive to outliers



24

Boston University Slideshow Title Goes Here

Here random may work well
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k-means++ algorithm

• interpolate between the two methods

• let D(x) be the distance between x and the 
nearest center selected so far

• choose next center with probability proportional to 

(D(x))a = Da(x)

 a = 0      random initialization
 a = ∞     furthestfirst traversal
 a = 2      kmeans++ 
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k-means++ algorithm

• initialization phase: 
• choose the first center uniformly at random
• choose next center with probability proportional 

to D2(x)

• iteration phase:
• iterate as in the k-means algorithm until 

convergence
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k-means++ initialization

1

2

3
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k-means++ result



29

Boston University Slideshow Title Goes Here

• approximation guarantee comes just from the 
first iteration (initialization)

• subsequent iterations can only improve cost

k-means++ provable guarantee
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Lesson learned

• no reason to use k-means and not k-means++

• k-means++ :
• easy to implement
• provable guarantee
• works well in practice
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k-means--

● Algorithm 4.1 in [Chawla & Gionis SDM 2013]

http://pmg.it.usyd.edu.au/outliers.pdf
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